Research article Special Issues

On certain Ostrowski type integral inequalities for convex function via AB-fractional integral operator

  • Received: 17 October 2022 Revised: 07 January 2023 Accepted: 31 January 2023 Published: 13 February 2023
  • MSC : 26A51, 26A33, 26D07, 26D10, 26D15

  • We investigate and prove a new lemma for twice differentiable functions with the fractional integral operator $ AB $. Based on this newly developed lemma, we derive some new results about this identity. These new findings provide some generalizations of previous findings. This research builds on a novel new auxiliary result that allows us to create new variants of Ostrowski type inequalities for twice differentiable convex mappings. Some of the newly presented results' special cases are also discussed. As applications, several estimates involving special means of real numbers and Bessel functions are depicted.

    Citation: Maimoona Karim, Aliya Fahmi, Zafar Ullah, Muhammad Awais Tariq Bhatti, Ather Qayyum. On certain Ostrowski type integral inequalities for convex function via AB-fractional integral operator[J]. AIMS Mathematics, 2023, 8(4): 9166-9184. doi: 10.3934/math.2023459

    Related Papers:

  • We investigate and prove a new lemma for twice differentiable functions with the fractional integral operator $ AB $. Based on this newly developed lemma, we derive some new results about this identity. These new findings provide some generalizations of previous findings. This research builds on a novel new auxiliary result that allows us to create new variants of Ostrowski type inequalities for twice differentiable convex mappings. Some of the newly presented results' special cases are also discussed. As applications, several estimates involving special means of real numbers and Bessel functions are depicted.



    加载中


    [1] D. S. Mitrinovic, J. Pecaric, A. M. Fink, Inequalities involving functions and their integrals and derivatives, Springer Science and Business Media, 53 (1991). https://doi.org/10.1007/978-94-011-3562-7_15
    [2] M. Alomari, M. Darus, S. S. Dragomir, P. Cerone, Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett., 23 (2010), 1071–1076. https://doi.org/10.1016/j.aml.2010.04.038 doi: 10.1016/j.aml.2010.04.038
    [3] M. Alomari, M. Darus, Some Ostrowski type inequalities for quasi-convex functions with applications to special means, RGMIA Res. Rep. Coll, 13 (2010).
    [4] S. S. Dragomir, S. Fitzpatrik, The Hadamard inequality for $s$-convex functions in the second sense, Demonstratio Math., 32 (1999), 687–696. https://doi.org/10.1515/dema-1999-0403 doi: 10.1515/dema-1999-0403
    [5] A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier B.V., Amsterdam, Netherlands, 2006.
    [6] K. S. Miller, B. Ross, An introduction to fractional calculus and fractional differential equations, A Wiley-Interscience Publication, John Wiley and Sons, Inc., New York, 1993.
    [7] R. Gorenflo, Fractional calculus: Some numerical methods. In: A. Carpinteri, F. Mainardi (Eds), Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, Wien-New York, 1997,277–290. https://doi.org/10.1007/978-3-7091-2664-6_6
    [8] E. Set, M. Z. Sarikaya, M. E. Ozdemir, Some Ostrowski's type inequalities for functions whose second derivatives are $s$-convex in the second sense, Demonstr. Math., 47 (2014), 37–47. https://doi.org/10.2478/dema-2014-0003 doi: 10.2478/dema-2014-0003
    [9] P. Cerone, S. S. Dragomir, J. Roumeliotis, An inequality of Ostrowski type for mappings whose second derivatives are bounded and applications, East Asian Math. J., 15 (1999), 1–9.
    [10] H. Kadakal, On refinements of some integral inequalities using improved power-mean integral inequalities, Numer. Meth. Part. Differ. Equ., 36 (2020), 1555–1565.
    [11] U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865. https://doi.org/10.1016/j.amc.2011.03.062 doi: 10.1016/j.amc.2011.03.062
    [12] T. Abdeljawad, D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, Rep. Math. Phys., 80 (2017), 11–27. https://doi.org/10.1016/S0034-4877(17)30059-9 doi: 10.1016/S0034-4877(17)30059-9
    [13] A. Atangana, D. Baleanu, New fractional derivatices with non-local and non-singular kernel, Theor. Appl. Heat Transf. Model Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [14] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85.
    [15] T. Abdeljawad, D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10 (2017), 1098–1107. https://doi.org/10.22436/jnsa.010.03.20 doi: 10.22436/jnsa.010.03.20
    [16] J. B. Liu, S. I. Butt, J. Nasir, A. Aslam, A. Fahad, J. Soontharanon, Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator, AIMS Math., 7 (2022), 2123–2141. https://doi.org/10.3934/math.2022121 doi: 10.3934/math.2022121
    [17] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge university press, 1995.
    [18] J. Nasir, S. Qaisar, S. I. Butt, H. Aydi, M. De la Sen, Hermite-Hadamard like inequalities for fractional integral operator via convexity and quasi-convexity with their applications, AIMS Math., 7 (2022), 3418–3439. https://doi.org/10.3934/math.2022190 doi: 10.3934/math.2022190
    [19] J. Nasir, S. Qaisar, S. I. Butt, A. Qayyum, Some Ostrowski type inequalities for mappings whose second derivative are convex function via fractional integral operator, AIMS Math., 3 (2021). http://doi.org/10.3934/math.2022184
    [20] A. Qayyum, A weighted Ostrowski-Grss type inequality for twice differentiable mappings and applications, Int. J. Math. Comput., 1 (2008).
    [21] T. Hussain, A. Qayyum, M. A. Mustafa, A new version of integral inequalities for a linear function of bounded variation, Turk. J. Inequal., 6 (2022).
    [22] M. M. Saleem, Z. Ullah, T. Abbas, M. B. Raza, A. Qayyum, A new Ostrowskis type inequality for quadratic kernel, Int. J. Anal. Appl., 20 (2022).
    [23] J. Amjad, A. Qayyum, S. Fahad, M. Arslan, Some new generalized Ostrowski type inequalities with new error bounds, Innov. J. Math., 1 (2022).
    [24] S. Fahad, M. A. Mustafa, Z. Ullah, T. Hussain, A. Qayyum, Weighted Ostrowskis type Integral inequalities for mapping whose first derivative is bounded, Int. J. Anal. Appl., 20 (2022).
    [25] A. Qayyum, A weighted Ostrowski-Grüss type inequality for twice differentiable mappings and applications, Int. J. Math. Comput., 1 (2008).
    [26] T. Hussain, A. Qayyum, M. A. Mustafa, A new version of integral inequalities for a linear function of bounded variation, Turk. J. Inequal., 6 (2022).
    [27] M. M. Saleem, Z. Ullah, T. Abbas, M. B. Raza, A. Qayyum, A new Ostrowski's type inequality for quadratic kernel, Int. J. Anal. Appl., 20 (2022). https://doi.org/10.28924/2291-8639-20-2022-28
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1223) PDF downloads(78) Cited by(4)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog