Research article Special Issues

An optimal investment strategy for DC pension plans with costs and the return of premium clauses under the CEV model

  • Received: 04 April 2024 Revised: 29 May 2024 Accepted: 05 June 2024 Published: 08 July 2024
  • MSC : 91B16, 91B70

  • This paper presents a novel optimization model that explores the optimal investment strategies for DC pension plans with return of premium clauses. We have assumed that the financial market consists of a risk-free asset and a risky asset, where the price of the risky asset follows the CEV model. Under the expected utility criterion, the optimal investment strategies were derived by employing stochastic optimal control theory and the Legendre transformation method. Explicit expressions of the optimal investment strategy were provided when the utility function was specified as exponential, power, or logarithmic. Finally, numerical analysis was conducted to examine the impact of factors such as interest rate, return rate, and volatility of the risky asset on the optimal strategies.

    Citation: Xiaoyi Tang, Wei Liu, Wanyin Wu, Yijun Hu. An optimal investment strategy for DC pension plans with costs and the return of premium clauses under the CEV model[J]. AIMS Mathematics, 2024, 9(8): 21731-21754. doi: 10.3934/math.20241057

    Related Papers:

  • This paper presents a novel optimization model that explores the optimal investment strategies for DC pension plans with return of premium clauses. We have assumed that the financial market consists of a risk-free asset and a risky asset, where the price of the risky asset follows the CEV model. Under the expected utility criterion, the optimal investment strategies were derived by employing stochastic optimal control theory and the Legendre transformation method. Explicit expressions of the optimal investment strategy were provided when the utility function was specified as exponential, power, or logarithmic. Finally, numerical analysis was conducted to examine the impact of factors such as interest rate, return rate, and volatility of the risky asset on the optimal strategies.



    加载中


    [1] J. F. Boulier, S. Huang, G. Tailand, Optimal management under stochastic interest rates: The case of a protected defined contribution pension funds, Insur. Math. Econ., 28 (2001), 173–189. https://doi.org/10.1016/S0167-6687(00)00073-1 doi: 10.1016/S0167-6687(00)00073-1
    [2] G. Deelstra, M. Grasselli, P. F. Koehl, Optimal investment strategies in the presence of a minimum guarantee, Insur. Math. Econ., 33 (2003), 189–207. https://doi.org/10.1016/S0167-6687(03)00153-7 doi: 10.1016/S0167-6687(03)00153-7
    [3] N. Han, M. Hung, Optimal asset allocation for the DC pension plans under inflation, Insur. Math. Econ., 51 (2012), 172–181. https://doi.org/10.1016/j.insmatheco.2012.03.003 doi: 10.1016/j.insmatheco.2012.03.003
    [4] G. H. Guan, Z. X. Liang, Optimal management of DC pension plan in a stochastic interest rate and stochastic volatility framework, Insur. Math. Econ., 57 (2014), 58–66. https://doi.org/10.1016/j.insmatheco.2014.05.004 doi: 10.1016/j.insmatheco.2014.05.004
    [5] G. H. Guan, Z. X. Liang, Optimal management of DC pension plan under loss aversion and value-at-risk constraints, Insur. Math. Econ., 69 (2016), 224–237. https://doi.org/10.1016/j.insmatheco.2016.05.014 doi: 10.1016/j.insmatheco.2016.05.014
    [6] Z. Chen, Z. F. Li, Y. Zeng, J. Y. Sun, Asset allocation under loss aversion and minimum performance constraint in a dc pension plan with inflation risk, Insur. Math. Econ., 75 (2017), 137–150. https://doi.org/10.1016/j.insmatheco.2017.05.009 doi: 10.1016/j.insmatheco.2017.05.009
    [7] R. Josa-Fombellida, P. López-Casado, J. P. Rincón-Zapatero, Portfolio optimization in a defined benefit pension plan where the risky assets are processes with constant elasticity of variance, Insur. Math. Econ., 82 (2018), 73–86. https://doi.org/10.1016/j.insmatheco.2018.06.011 doi: 10.1016/j.insmatheco.2018.06.011
    [8] Y. Dong, H. Zheng, Optimal investment of DC pension plan under short-selling constraints and portfolio insurance, Insur. Math. Econ., 85 (2019), 47–59. https://doi.org/10.1016/j.insmatheco.2018.12.005 doi: 10.1016/j.insmatheco.2018.12.005
    [9] J. Xiao, Z. Hong, C. Qin, The constant elasticity of variance (CEV) model and the Legendre transform-dual solution for annuity contracts, Insur. Math. Econ., 40 (2007), 302–310. https://doi.org/10.1016/j.insmatheco.2006.04.007 doi: 10.1016/j.insmatheco.2006.04.007
    [10] J. Gao, Optimal investment for the defined-contribution pension with stochastic salary under a CEV model, Insur. Math. Econ., 44 (2009), 479–490.
    [11] J. Gao, Optimal investment strategy for annuity contracts under the constant elasticity of variance (CEV) model, Insur. Math. Econ., 45 (2009), 9–18. https://doi.org/10.1016/j.insmatheco.2009.02.006 doi: 10.1016/j.insmatheco.2009.02.006
    [12] C. B. Zhang, X. M. Rong, H. Zhao, R. J. Hou, Optimal investment for the defined-contribution pension with stochastic salary under a CEV model, Appl. Math. J. Chinese Univ., 28 (2013), 187–203.
    [13] D. P. Li, X. M. Rong, H. Zhao, Time-consistent investment strategy for DC pension plan with stochastic salary under CEV model, J. Syst. Sci. Complex., 29 (2016), 428–454. https://doi.org/10.1007/s11424-016-3171-3 doi: 10.1007/s11424-016-3171-3
    [14] D. P. Li, X. M. Rong, H. Zhao, B. Yi, Equilibrium investment strategy for DC pension plan with default risk and return of premiums clauses under CEV model, Insur. Math. Econ., 72 (2017), 6–20. https://doi.org/10.1016/j.insmatheco.2016.10.007 doi: 10.1016/j.insmatheco.2016.10.007
    [15] H. Chen, Z. Yin, T. Xie, Determining equivalent administrative charges for defined contribution pension plans under CEV model, Math. Probl. Eng., 2018, 1–10. https://doi.org/10.1155/2018/6278353
    [16] L. He, Z. Liang, Optimal investment strategy for the DC plan with the return of premiums clauses in a mean-variance framework, Insur. Math. Econ., 53 (2013), 643–649. https://doi.org/10.1016/j.insmatheco.2013.09.002 doi: 10.1016/j.insmatheco.2013.09.002
    [17] D. L. Sheng, X. M. Rong, Optimal time-consistent investment strategies for a DC pension plan with the return of premiums clauses and annuity contracts, Discrete Dyn. Nat. Soc., 2014, 1–13. https://doi.org/10.1155/2014/862694
    [18] J. Y. Sun, Z. F. Li, Y. Zeng, Precommitment and equilibrium investment strategies for defined contribution pension plans under a jump-diffusion model, Insur. Math. Econ., 67 (2016), 158–172. https://doi.org/10.1016/j.insmatheco.2016.01.005 doi: 10.1016/j.insmatheco.2016.01.005
    [19] L. H. Bian, Z. F. Li, Pre-commitment and equilibrium investment strategies for the DC pension plan with regime switching and a return of premiums clause, Insur. Math. Econ., 81 (2018), 78–94. https://doi.org/10.1016/j.insmatheco.2018.05.005 doi: 10.1016/j.insmatheco.2018.05.005
    [20] P. H. Kohler, I. Kohler, Frailty modeling for adult and old age mortality: The application of a modified De Moivre Hazard function to sex differentials in mortality, Demogr. Res., 3 (2000). Available from: http://www.demographic-research.org/Volumes/Vol3/8/.
    [21] M. Jonsson, R. Sircar, Optimal investment problems and volatility homogenization approximations, In: Modern Methods in Scientific Computing and Applications NATO Science Series II, 75 (2002), 255–281.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(589) PDF downloads(49) Cited by(0)

Article outline

Figures and Tables

Figures(11)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog