This paper considers the problem of optimal investment-reinsurance for the insurer and reinsurer under the constant elasticity of variance (CEV) model. It is assumed that the net claims process is approximated by a diffusion process, both the insurer and reinsurer can invest in risk-free assets and risky assets. We use the variance premium principle to calculate the premiums of the insurer and reinsurer, and the reinsurance proportion is constrained by the net profit condition. Our objective is to maximize the joint exponential utility of the insurer and reinsurer's terminal wealth for a fixed time. By solving the HJB equation, we obtain the explicit expressions of the optimal investment-reinsurance strategy and value function. We find that the optimal reinsurance strategy can be divided into many cases and is related to the risk aversion coefficient of the insurer and reinsurer, but independent of the price of risky assets. Furthermore, we give the proof of the verification theorem. Finally, we demonstrate a numerical analysis to explain the results.
Citation: Ling Chen, Xiang Hu, Mi Chen. Optimal investment and reinsurance for the insurer and reinsurer with the joint exponential utility under the CEV model[J]. AIMS Mathematics, 2023, 8(7): 15383-15410. doi: 10.3934/math.2023786
This paper considers the problem of optimal investment-reinsurance for the insurer and reinsurer under the constant elasticity of variance (CEV) model. It is assumed that the net claims process is approximated by a diffusion process, both the insurer and reinsurer can invest in risk-free assets and risky assets. We use the variance premium principle to calculate the premiums of the insurer and reinsurer, and the reinsurance proportion is constrained by the net profit condition. Our objective is to maximize the joint exponential utility of the insurer and reinsurer's terminal wealth for a fixed time. By solving the HJB equation, we obtain the explicit expressions of the optimal investment-reinsurance strategy and value function. We find that the optimal reinsurance strategy can be divided into many cases and is related to the risk aversion coefficient of the insurer and reinsurer, but independent of the price of risky assets. Furthermore, we give the proof of the verification theorem. Finally, we demonstrate a numerical analysis to explain the results.
[1] | S. Browne, Optimal investment policies for a firm with a random risk process: exponential utility and minimizing the probability of ruin, Math. Oper. Res., 20 (1995), 937–958. https://doi.org/10.1287/moor.20.4.937 doi: 10.1287/moor.20.4.937 |
[2] | J. C. Cox, S. A. Ross, The valuation of options for alternative stochastic processes, J. Financ. Econ., 3 (1976), 145–166. https://doi.org/10.1016/0304-405x(76)90023-4 doi: 10.1016/0304-405x(76)90023-4 |
[3] | S. Asmussen, M. Taksar, Controlled diffusion models for optimal dividend pay-out, Insur. Math. Econ., 20 (1997), 1–15. https://doi.org/10.1016/s0167-6687(96)00017-0 doi: 10.1016/s0167-6687(96)00017-0 |
[4] | M. I. Taksar, Optimal risk and dividend distribution control models for an insurance company, Math. Method. Oper. Res., 51 (2000), 1–42. https://doi.org/10.1007/s001860050001 doi: 10.1007/s001860050001 |
[5] | L. Bai, J. Guo, Optimal proportional reinsurance and investment with multiple risky assets and no-shorting constraint, Insur. Math. Econ., 42 (2008), 968–975. https://doi.org/10.1016/j.insmatheco.2007.11.002 doi: 10.1016/j.insmatheco.2007.11.002 |
[6] | Z. Sun, K. C. Yuen, J. Guo, A BSDE approach to a class of dependent risk model of mean-variance insurers with stochastic volatility and no-short selling, J. Comput. Appl. Math., 366 (2020), 112413. https://doi.org/10.1016/j.cam.2019.112413 doi: 10.1016/j.cam.2019.112413 |
[7] | A. Gu, X. Guo, Z. Li, Y. Zeng, Optimal control of excess-of-loss reinsurance and investment for insurers under a CEV model, Insur. Math. Econ., 51 (2012), 674–684. https://doi.org/10.1016/j.insmatheco.2012.09.003 doi: 10.1016/j.insmatheco.2012.09.003 |
[8] | J. Cao, D. Landriault, B. Li, Optimal reinsurance-investment strategy for a dynamic contagion claim model, Insur. Math. Econ., 93 (2020), 206–215. https://doi.org/10.1016/j.insmatheco.2020.04.013 doi: 10.1016/j.insmatheco.2020.04.013 |
[9] | X. Jiang, K. C. Yuen, M. Chen, Optimal investment and reinsurance with premium control, J. Ind. Manag. Optim., 16 (2020), 2781–2797. https://doi.org/10.3934/jimo.2019080 doi: 10.3934/jimo.2019080 |
[10] | L. Xu, D. Yao, G. Cheng, Optimal investment and dividend for an insurer under a Markov regime switching market with high gain tax, J. Ind. Manag. Optim., 16 (2020), 325–356. https://doi.org/10.3934/jimo.2018154 doi: 10.3934/jimo.2018154 |
[11] | Y. Zhang, P. Zhao, B. Kou, Optimal excess-of-loss reinsurance and investment problem with thinning dependent risks under Heston model, J. Comput. Appl. Math., 382 (2021), 113082. https://doi.org/10.1016/j.cam.2020.113082 doi: 10.1016/j.cam.2020.113082 |
[12] | Z. Sun, X. Zhang, K. C. Yuen, Mean-variance asset-liability management with affine diffusion factor process and a reinsurance option, Scand. Actuar. J., 2020 (2020), 218–244. https://doi.org/10.1080/03461238.2019.1658619 doi: 10.1080/03461238.2019.1658619 |
[13] | M. Chen, K. C. Yuen, W. Wang, Optimal reinsurance and dividends with transaction costs and taxes under thinning structure, Scand. Actuar. J., 2021 (2021), 198–217. https://doi.org/10.1080/03461238.2020.1824158 doi: 10.1080/03461238.2020.1824158 |
[14] | M. Kaluszka, Optimal reinsurance under mean-variance premium principles, Insur. Math. Econ., 28 (2001), 61–67. https://doi.org/10.1016/s0167-6687(00)00066-4 doi: 10.1016/s0167-6687(00)00066-4 |
[15] | M. Kaluszka, Mean-variance optimal reinsurance arrangements, Scand. Actuar. J., 2004 (2004), 28–41. https://doi.org/10.1080/03461230410019222 doi: 10.1080/03461230410019222 |
[16] | Z. Liang, K. C. Yuen, Optimal dynamic reinsurance with dependent risks: variance premium principle, Scand. Actuar. J., 2016 (2016), 18–36. https://doi.org/10.1080/03461238.2014.892899 doi: 10.1080/03461238.2014.892899 |
[17] | X. Zhang, H. Meng, Y. Zeng, Optimal investment and reinsurance strategies for insurers with generalized mean-variance premium principle and no-short selling, Insur. Math. Econ., 67 (2016), 125–132. https://doi.org/10.1016/j.insmatheco.2016.01.001 doi: 10.1016/j.insmatheco.2016.01.001 |
[18] | X. Liang, Z. Liang, V. R. Young, Optimal reinsurance under the mean-variance premium principle to minimize the probability of ruin, Insur. Math. Econ., 92 (2020), 128–146. https://doi.org/10.1016/j.insmatheco.2020.03.008 doi: 10.1016/j.insmatheco.2020.03.008 |
[19] | K. Borch, Reciprocal reinsurance treaties, ASTIN Bulletin: The Journal of the IAA, 1 (1960), 170–191. https://doi.org/10.1017/s0515036100009557 doi: 10.1017/s0515036100009557 |
[20] | V. K. Kaishev, Optimal retention levels, given the joint survival of cedent and reinsurer, Scand. Actuar. J., 2004 (2004), 401–430. https://doi.org/10.1080/03461230410020437 doi: 10.1080/03461230410020437 |
[21] | V. K. Kaishev, D. S. Dimitrova, Excess of loss reinsurance under joint survival optimality, Insur. Math. Econ., 39 (2006), 376–389. https://doi.org/10.1016/j.insmatheco.2006.05.005 doi: 10.1016/j.insmatheco.2006.05.005 |
[22] | J. Cai, Y. Fang, Z. Li, G. E. Willmot, Optimal reciprocal reinsurance treaties under the joint survival probability and the joint profitable probability, J. Risk. Insur., 80 (2013), 145–168. https://doi.org/10.1111/j.1539-6975.2012.01462.x doi: 10.1111/j.1539-6975.2012.01462.x |
[23] | D. Li, X. Rong, H. Zhao, Optimal reinsurance-investment problem for maximizing the product of the insurer's and the reinsurer's utilities under a CEV model, J. Comput. Appl. Math., 255 (2014), 671–683. https://doi.org/10.1016/j.cam.2013.06.033 doi: 10.1016/j.cam.2013.06.033 |
[24] | D. Li, X. Rong, H. Zhao, Time-consistent reinsurance-investment strategy for an insurer and a reinsurer with mean-variance criterion under the CEV model, J. Comput. Appl. Math., 283 (2015), 142–162. https://doi.org/10.1016/j.cam.2015.01.038 doi: 10.1016/j.cam.2015.01.038 |
[25] | H. Zhao, C. Weng, Y. Shen, Y. Zeng, Time-consistent investment-reinsurance strategies towards joint interests of the insurer and the reinsurer under CEV models, Sci. China Math., 60 (2017), 317–344. https://doi.org/10.1007/s11425-015-0542-7 doi: 10.1007/s11425-015-0542-7 |
[26] | N. Zhang, Z. Jin, L. Qian, R. Wang, Optimal quota-share reinsurance based on the mutual benefit of insurer and reinsurer, J. Comput. Appl. Math., 342 (2018), 337–351. https://doi.org/10.1016/j.cam.2018.04.030 doi: 10.1016/j.cam.2018.04.030 |
[27] | Y. Bai, Z. Zhou, R. Gao, H. Xiao, Nash equilibrium investment-reinsurance strategies for an insurer and a reinsurer with intertemporal restrictions and common interests, Mathematics, 8 (2020), 139. https://doi.org/10.3390/math8010139 doi: 10.3390/math8010139 |
[28] | Y. Huang, Y. Ouyang, L. Tang, J. Zhou, Robust optimal investment and reinsurance problem for the product of the insurer's and the reinsurer's utilities, J. Comput. Appl. Math., 344 (2018), 532–552. https://doi.org/10.1016/j.cam.2018.05.060 doi: 10.1016/j.cam.2018.05.060 |
[29] | J. Grandell, Aspects of risk theory, New York: Springer, 1991. https://doi.org/10.1007/978-1-4613-9058-9 |
[30] | T. S. Ferguson, Betting systems which minimize the probability of ruin, J. Soc. Indust. Appl. Math., 13 (1965), 795–818. https://doi.org/10.1137/0113051 doi: 10.1137/0113051 |
[31] | H. U. Gerber, An introduction to mathematical risk theory, New York: R. D. Irwin, 1979. |
[32] | W. H. Fleming, H. M. Soner, Controlled Markov processes and viscosity solutions, 2 Eds., New York: Springer, 2006. https://doi.org/10.1007/0-387-31071-1 |
[33] | X. Zeng, M. Taksar, A stochastic volatility model and optimal portfolio selection, Quant. Financ., 13 (2013), 1547–1558. https://doi.org/10.1080/14697688.2012.740568 doi: 10.1080/14697688.2012.740568 |