Our aim of this paper was to present the accurate analytical approximate series solutions to the time-fractional Schrödinger equations via the Caputo fractional operator using the Laplace residual power series technique. Furthermore, three important and interesting applications were given, tested, and compared with four well-known methods (Adomian decomposition, homotopy perturbation, homotopy analysis, and variational iteration methods) to show that the proposed technique was simple, accurate, efficient, and applicable. When there was a pattern between the terms of the series, we could obtain the exact solutions; otherwise, we provided the approximate series solutions. Finally, graphical results were presented and analyzed. Mathematica software was used to calculate numerical and symbolic quantities.
Citation: Ahmad El-Ajou, Rania Saadeh, Moawaih Akhu Dunia, Ahmad Qazza, Zeyad Al-Zhour. A new approach in handling one-dimensional time-fractional Schrödinger equations[J]. AIMS Mathematics, 2024, 9(5): 10536-10560. doi: 10.3934/math.2024515
[1] | Yanping Yang, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function. AIMS Mathematics, 2021, 6(11): 12260-12278. doi: 10.3934/math.2021710 |
[2] | Muhammad Bilal Khan, Pshtiwan Othman Mohammed, Muhammad Aslam Noor, Abdullah M. Alsharif, Khalida Inayat Noor . New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation. AIMS Mathematics, 2021, 6(10): 10964-10988. doi: 10.3934/math.2021637 |
[3] | Hongling Zhou, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . Hermite-Hadamard type inequalities for interval-valued exponential type pre-invex functions via Riemann-Liouville fractional integrals. AIMS Mathematics, 2022, 7(2): 2602-2617. doi: 10.3934/math.2022146 |
[4] | Fangfang Shi, Guoju Ye, Dafang Zhao, Wei Liu . Some integral inequalities for coordinated log-h-convex interval-valued functions. AIMS Mathematics, 2022, 7(1): 156-170. doi: 10.3934/math.2022009 |
[5] | Muhammad Bilal Khan, Gustavo Santos-García, Hüseyin Budak, Savin Treanțǎ, Mohamed S. Soliman . Some new versions of Jensen, Schur and Hermite-Hadamard type inequalities for (p,J)-convex fuzzy-interval-valued functions. AIMS Mathematics, 2023, 8(3): 7437-7470. doi: 10.3934/math.2023374 |
[6] | Manar A. Alqudah, Artion Kashuri, Pshtiwan Othman Mohammed, Muhammad Raees, Thabet Abdeljawad, Matloob Anwar, Y. S. Hamed . On modified convex interval valued functions and related inclusions via the interval valued generalized fractional integrals in extended interval space. AIMS Mathematics, 2021, 6(5): 4638-4663. doi: 10.3934/math.2021273 |
[7] | Muhammad Bilal Khan, Muhammad Aslam Noor, Thabet Abdeljawad, Bahaaeldin Abdalla, Ali Althobaiti . Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions. AIMS Mathematics, 2022, 7(1): 349-370. doi: 10.3934/math.2022024 |
[8] | Muhammad Bilal Khan, Savin Treanțǎ, Hleil Alrweili, Tareq Saeed, Mohamed S. Soliman . Some new Riemann-Liouville fractional integral inequalities for interval-valued mappings. AIMS Mathematics, 2022, 7(8): 15659-15679. doi: 10.3934/math.2022857 |
[9] | Zehao Sha, Guoju Ye, Dafang Zhao, Wei Liu . On interval-valued K-Riemann integral and Hermite-Hadamard type inequalities. AIMS Mathematics, 2021, 6(2): 1276-1295. doi: 10.3934/math.2021079 |
[10] | Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Kamsing Nonlaopon, Y. S. Hamed . Some new Jensen, Schur and Hermite-Hadamard inequalities for log convex fuzzy interval-valued functions. AIMS Mathematics, 2022, 7(3): 4338-4358. doi: 10.3934/math.2022241 |
Our aim of this paper was to present the accurate analytical approximate series solutions to the time-fractional Schrödinger equations via the Caputo fractional operator using the Laplace residual power series technique. Furthermore, three important and interesting applications were given, tested, and compared with four well-known methods (Adomian decomposition, homotopy perturbation, homotopy analysis, and variational iteration methods) to show that the proposed technique was simple, accurate, efficient, and applicable. When there was a pattern between the terms of the series, we could obtain the exact solutions; otherwise, we provided the approximate series solutions. Finally, graphical results were presented and analyzed. Mathematica software was used to calculate numerical and symbolic quantities.
In convex function theory, the classical Hermite-Hadamard inequality is one of the most well-known inequalities with geometrical interpretation, and it has a wide range of applications, see [1,2].
Let S:K→R+ be a convex function on a convex set K and ρ,ς∈K with ρ≠ς. Then,
S(ρ+ς2)≤1ς−ρ∫ςρS(ϖ)dϖ≤S(ρ)+S(ς)2. | (1) |
In [3], Fejér looked at the key extensions of HH-inequality which is known as Hermite-Hadamard-Fejér inequality (HH-Fejér inequality).
Let S:K→R+ be a convex function on a convex set K and ρ,ς ∈K with ρ≠ς. Then,
S(ρ+ς2)≤1∫ςρD(ϖ)dϖ∫ςρS(ϖ)D(ϖ)dϖ≤S(ρ)+S(ς)2∫ςρD(ϖ)dϖ. | (2) |
If D(ϖ)=1, then we obtain (1) from (2). We should remark that Hermite-Hadamard inequality is a refinement of the idea of convexity, and it can be simply deduced from Jensen's inequality. In recent years, the Hermite-Hadamard inequality for convex functions has gotten a lot of attention, and there have been a lot of improvements and generalizations examined. Sarikaya [4] proved the Hadamard type inequality for coordinated convex functions such that
Let G:Δ→R+ be a coordinate convex function on Δ=[ς,ρ]×[μ,ν]. If G is double fractional integrable, then following inequalities hold:
G(μ+ν2,ς+ρ2)≤Γ(α+1)4(ν−μ)α[Iαμ+G(ν,ς+ρ2)+Iαν−G(μ,ς+ρ2)]+Γ(β+1)4(ρ−ς)β[Iβς+G(μ+ν2,ρ)+Iβρ−G(μ+ν2,ς)]≤Γ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ς+G(ν,ρ)+Iα,βμ+,ρ−G(ν,ς)+Iα,βν−,ς+G(μ,ρ)+Iα,βν−,ρ−G(μ,ς)]≤Γ(α+1)8(ν−μ)α[Iαμ+G(ν,ς)GIαμ+G(ν,ρ)+Iαν−G(μ,ς)+Iαν−G(μ,ρ)]+Γ(β+1)4(ρ−ς)β[Iβς+G(μ,ρ)˜+Iβρ−G(ν,ς)+Iβς+G(μ,ρ)+Iβρ−G(ν,ς)]≤G(μ,ς)+G(ν,ς)+G(μ,ρ)+G(ν,ρ)4. | (3) |
If α=1, then we obtain the following Dragomir inequality [5] on coordinates:
G(μ+ν2,ς+ρ2) |
≤12[1ν−μ∫νμG(x,ς+ρ2)dx+1ρ−ς∫ρςG(μ+ν2,y)dy]≤1(ν−μ)(ρ−ς)∫νμ∫ρςG(x,y)dydx≤14(ν−μ)[∫νμG(x,ς)dx+∫νμG(x,ρ)dx]+14(ρ−ς)[∫ρςG(μ,y)dy+∫ρςG(ν,y)dy]≤G(μ,ς)+G(ν,ς)+G(μ,ρ)+G(ν,ρ)4. | (4) |
For more details related to inequalities, see [6,7,8,9] and reference therein.
Interval analysis, on the other hand, is a well-known example of set-valued analysis, which is the study of sets in the context of mathematical analysis and general topology. It was created as a way of dealing with the interval uncertainty that can be found in many mathematical or computer models of deterministic real-world phenomena. Archimede's method, which is used to calculate the circumference of a circle, is an old example of an interval enclosure. Moore [10], who is credited with being the first user of intervals in computational mathematics, published the first book on interval analysis in 1966. Following the publication of his book, a number of scientists began to research the theory and applications of interval arithmetic. Interval analysis is now a helpful technique in a variety of fields that are interested in ambiguous data because of its applicability. Computer graphics, experimental and computational physics, error analysis, robotics, and many more fields have applications.
Furthermore, in recent years, numerous major inequalities (Hermite-Hadamard, Ostrowski and others) have been addressed for interval-valued functions. Chalco-Cano et al. used the Hukuhara derivative for interval-valued functions to construct Ostrowski type inequalities for interval-valued functions in [11,12,13,14]. For interval-valued functions, Román-Flores et al. developed Minkowski and Beckenbach's inequality in [15]. For fuzzy interval-valued function, Khan et al. [16,17,18] derived some new versions of Hermite-Hadamard type inequalities and proved their validity with the help of non-trivial examples. Moreover, Khan et al. [19,20] discussed some novel types of Hermite-Hadamard type inequalities in fuzzy-interval fractional calculus and proved that many classical versions are special cases of these inequalities. Recently, Khan et al. [21] introduced the new class of convexity in fuzzy-interval calculus which is known as coordinated convex fuzzy-interval-valued functions and with the support of these classes, some Hermite-Hadamard type inequalities are obtained via newly defined fuzzy-interval double integrals. We encourage readers to [22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54] for other related results.
The following is an overview of the paper's structure. Section 2 recalls some preliminary notions and definitions. Moreover, some properties of introduced coordinated LR-convex IVF are also discussed. Section 3 presents some Hermite-Hadamard type inequalities for coordinated LR-convex IVF. With the help of this class, some fractional integral inequalities are also derived for the coordinated LR-convex IVF and for the product of two coordinated LR-convex IVFs. The fourth section, Conclusions and Future Work, brings us to a close.
Let R be the set of real numbers and RI be the space of all closed and bounded intervals of R, such that U∈RI is defined by
U=[U∗,U∗]={y∈R|U∗≤y≤U∗},(U∗,U∗∈R). | (5) |
If U∗=U∗, then U is said to be degenerate. If U∗≥0, then [U∗,U∗] is called positive interval. The set of all positive interval is denoted by R+I and defined as R+I={[U∗,U∗]:[U∗,U∗]∈RIandU∗≥0}.
Let ϱ∈R and ϱU be defined by
ϱ.U={[ϱU∗,ϱU∗]ifϱ>0,{0}ifϱ=0,[ϱU∗,ϱU∗]ifϱ<0. | (6) |
Then, the Minkowski difference D−U, addition U+D and U×D for U,D∈RI are defined by
[D∗,D∗]−[U∗,U∗]=[D∗−U∗,D∗−U∗],[D∗,D∗]+[U∗,U∗]=[D∗+U∗,D∗+U∗], | (7) |
and
[D∗,D∗]×[U∗,U∗]=[min{D∗U∗,D∗U∗,D∗U∗,D∗U∗},max{D∗U∗,D∗U∗,D∗U∗,D∗U∗}]. |
The inclusion "⊇" means that
U⊇D if and only if, [U∗,U∗]⊇[D∗,D∗], and if and only if
U∗≤D∗,D∗≤U∗. | (8) |
Remark 1. [36] (ⅰ) The relation "≤p" is defined on RI by
[D∗,D∗]≤p[U∗,U∗]ifandonlyifD∗≤U∗,D∗≤U∗, | (9) |
for all [D∗,D∗],[U∗,U∗]∈RI, and it is a pseudo order relation. The relation [D∗,D∗]≤p[U∗,U∗] coincident to [D∗,D∗]≤[U∗,U∗] on RI when it is "≤p"
(ⅱ) It can be easily seen that "≤p" looks like "left and right" on the real line R, so we call "≤p" is "left and right" (or "LR" order, in short).
For [D∗,D∗],[U∗,U∗]∈RI, the Hausdorff-Pompeiu distance between intervals [D∗,D∗] and [U∗,U∗] is defined by
d([D∗,D∗],[U∗,U∗])=max{|D∗−U∗|,|D∗−U∗|}. | (10) |
It is familiar fact that (RI,d) is a complete metric space.
Theorem 1. [10] If G:[μ,ν]⊂R→RI is an I-V-F given by (x) [G∗(x),G∗(x)], then G is Riemann integrable over [μ,ν] if and only if, G∗ and G∗ both are Riemann integrable over [μ,ν] such that
(IR)∫νμG(x)dx=[(R)∫νμG∗(x)dx,(R)∫νμG∗(x)dx]. | (11) |
The collection of all Riemann integrable real valued functions and Riemann integrable I-V-F is denoted by R[μ,ν] and TR[μ,ν], respectively.
Definition 1. [31,33] Let G:[μ,ν]→RI be interval-valued function and G∈TR[μ,ν]. Then interval Riemann-Liouville-type integrals of G are defined as
Iαμ+G(y)=1Γ(α)∫yμ(y−t)α−1G(t)dt(y>μ), | (12) |
Iαν−G(y)=1Γ(α)∫νy(t−y)α−1G(t)dt(y<ν), | (13) |
where α>0 and Γ is the gamma function.
Theorem 2. [20] Let G:[ς,ρ]→RI+ be a LR-convex I-V.F such that G(y)=[G∗(y),G∗(y)] for all y∈[ς,ρ]. If G∈L([ς,ρ],R+I), then
G(ς+ρ2)≤pΓ(α+1)2(ρ−ς)α[Iας+G(ρ)+Iαρ−G(ς)]≤pG(ς)+G(ρ)2. | (14) |
Theorem 3. [20] Let G,S:[ς,ρ]→R+I be two LR-convex I-V.Fs such that G(x)=[G∗(x),G∗(x)] and S(x)=[S∗(x),S∗(x)] for all x∈[ς,ρ]. If G×S∈L([ς,ρ],R+I) is fuzzy Riemann integrable, then
Γ(α+1)2(ρ−ς)α[Iας+G(ρ)×S(ρ)+Iαρ−G(ς)×S(ς)] |
≤p(12−α(α+1)(α+2))M(ς,ρ)+(α(α+1)(α+2))N(ς,ρ), | (15) |
and
G(ς+ρ2)×S(ς+ρ2) |
≤pΓ(α+1)4(ρ−ς)α[Iας+G(ρ)×S(ρ)+Iαρ−G(ς)×S(ς)] |
+12(12−α(α+1)(α+2))M(ς,ρ)+12(α(α+1)(α+2))N(ς,ρ), | (16) |
where M(ς,ρ)=G(ς)×S(ς)+G(ρ)×S(ρ), N(ς,ρ)=G(ς)×S(ρ)+G(ρ)×S(ς),
and M(ς,ρ)=[M∗(ς,ρ),M∗(ς,ρ)] and N(ς,ρ)=[N∗(ς,ρ),N∗(ς,ρ)].
Note that, the Theorem 1 is also true for interval double integrals. The collection of all double integrable I-V-F is denoted TOΔ, respectively.
Theorem 4. [35] Let Δ=[ς,ρ]×[μ,ν]. If G:Δ→RI is interval-valued doubl integrable (ID-integrable) on Δ. Then, we have
(ID)∫ρς∫νμG(x,y)dydx=(IR)∫ρς(IR)∫νμG(x,y)dydx. |
Definition 2. [36] Let G:Δ→R+I and G∈TOΔ. The interval Riemann-Liouville-type integrals Iα,βμ+,ς+,Iα,βμ+,ρ−, Iα,βν−,ς+,Iα,βν−,ρ− of G order α,β>0 are defined by
Iα,βμ+,ς+G(x,y)=1Γ(α)Γ(β)∫xμ∫yς(x−t)α−1(y−s)β−1G(t,s)dsdt(x>μ,y>ς), | (17) |
Iα,βμ+,ρ−G(x,y)=1Γ(α)Γ(β)∫xμ∫ρy(x−t)α−1(s−y)β−1G(t,s)dsdt(x>μ,y<ρ), | (18) |
Iα,βν−,ς+G(x,y)=1Γ(α)Γ(β)∫νx∫yς(t−x)α−1(y−s)β−1G(t,s)dsdt(x<ν,y>ς), | (19) |
Iα,βν−,ρ−G(x,y)=1Γ(α)Γ(β)∫νx∫ρy(t−x)α−1(s−y)β−1G(t,s)dsdt(x<ν,y<ρ). | (20) |
Definition 3. [38] The I-V.F G:Δ→R+I is said to be coordinated LR-convex I-V.F on Δ if
G(τμ+(1−τ)ν,sς+(1−s)ρ) |
≤pτsG(μ,ς)+τ(1−s)G(μ,ρ)+(1−τ)sG(ν,ς)+(1−τ)(1−s)G(ν,ρ), | (21) |
for all (μ,ν),(ς,ρ)∈Δ, and τ,s∈[0,1]. If inequality (21) is reversed, then G is called coordinate LR-concave I-V.F on Δ.
Lemma 1. [38] Let G:Δ→R+I be an coordinated I-V.F on Δ. Then, G is coordinated LR-convex I-V.F on Δ, if and only if there exist two coordinated LR-convex I-V.Fs Gx:[ς,ρ]→R+I, Gx(w)=G(x,w) and Gy:[μ,ν]→R+I, Gy(z)=G(z,y).
Theorem 5. [38] Let G:Δ→R+I be a I-V.F on Δ such that
G(x,ϖ)=[G∗(x,ϖ),G∗(x,ϖ)], | (22) |
for all (x,ϖ)∈Δ. Then, G is coordinated LR-convex I-V.F on Δ, if and only if, G∗(x,ϖ) and G∗(x,ϖ) are coordinated convex functions.
Example 1. We consider the I-V.Fs G:[0,1]×[0,1]→R+I defined by,
G(x)(σ)={σ2(6+ex)(6+eϖ),σ∈[0,2(6+ex)(6+eϖ)]4(6+ex)(6+eϖ)−σ2(6+ex)(6+eϖ),σ∈(2(6+ex)(6+eϖ),4(6+ex)(6+eϖ)]0,otherwise, |
Then, for each θ∈[0,1], we have G(x)=[2θ(6+ex)(6+eϖ),(4+2θ)(6+ex)(6+eϖ)]. Since end point functions G∗((x,ϖ),θ), G∗((x,ϖ),θ) are coordinate concave functions for each θ∈[0,1]. Hence S(x,ϖ) is coordinate LR-concave I-V.F.
From Lemma 1, we can easily note that each LR-convex I-V.F is coordinated LR-convex I-V.F. But the converse is not true.
Remark 2. If one takes G∗(x,ϖ)=G∗(x,ϖ), then G is known as coordinated function if G satisfies the coming inequality
G(τμ+(1−τ)ν,sς+(1−s)ρ) |
≤τsG(μ,ς)+τ(1−s)G(μ,ρ)+(1−τ)sG(ν,ς)+(1−τ)(1−s)G(ν,ρ), |
is valid which is defined by Dragomir [5]
Let one takes G∗(x,ϖ)≠G∗(x,ϖ), where G∗(x,ϖ) is affine function and G∗(x,ϖ) is a concave function. If coming inequality,
G(τμ+(1−τ)ν,sς+(1−s)ρ) |
⊇τsG(μ,ς)+τ(1−s)G(μ,ρ)+(1−τ)sG(ν,ς)+(1−τ)(1−s)G(ν,ρ), |
is valid, then G is named as coordinated IVF which is defined by Zhao et al. [37, Definition 2 and Example 2]
In this section, we shall continue with the following fractional HH-inequality for coordinated LR-convex I-V.Fs, and we also give fractional HH-Fejér inequality for coordinated LR-convex I-V.F through fuzzy order relation.
Theorem 6. Let G:Δ→R+I be a coordinate LR-convex I-V.F on Δ such that G(x,y)=[G∗(x,y),G∗(x,y)] for all (x,y)∈Δ. If G∈TOΔ, then following inequalities holds:
G(μ+ν2,ς+ρ2)≤pΓ(α+1)4(ν−μ)α[Iαμ+G(ν,ς+ρ2)+Iαν−G(μ,ς+ρ2)] |
+Γ(β+1)4(ρ−ς)β[Iβς+G(μ+ν2,ρ)+Iβρ−G(μ+ν2,ς)] |
≤pΓ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ς+G(ν,ρ)+Iα,βμ+,ρ−G(ν,ς)+Iα,βν−,ς+G(μ,ρ)+Iα,βν−,ρ−G(μ,ς)] |
≤pΓ(α+1)8(ν−μ)α[Iαμ+G(ν,ς)+Iαμ+G(ν,ρ)+Iαν−G(μ,ς)+Iαν−G(μ,ρ)] |
+Γ(β+1)4(ρ−ς)β[Iβς+G(μ,ρ)+Iβρ−G(ν,ς)+Iβς+G(μ,ρ)+Iβρ−G(ν,ς)] |
≤pG(μ,ς)+G(ν,ς)+G(μ,ρ)+G(ν,ρ)4. | (23) |
If G(x) coordinated LR-concave I-V.F, then
G(μ+ν2,ς+ρ2)≥pΓ(α+1)4(ν−μ)α[Iαμ+G(ν,ς+ρ2)+Iαν−G(μ,ς+ρ2)] |
+Γ(β+1)4(ρ−ς)β[Iβς+G(μ+ν2,ρ)+Iβρ−G(μ+ν2,ς)] |
≥pΓ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ς+G(ν,ρ)+Iα,βμ+,ρ−G(ν,ς)+Iα,βν−,ς+G(μ,ρ)+Iα,βν−,ρ−G(μ,ς)] |
≥pΓ(α+1)8(ν−μ)α[Iαμ+G(ν,ς)+Iαμ+G(ν,ρ)+Iαν−G(μ,ς)+Iαν−G(μ,ρ)] |
+Γ(β+1)4(ρ−ς)β[Iβς+G(μ,ρ)+Iβρ−G(ν,ς)+Iβς+G(μ,ρ)+Iβρ−G(ν,ς)] |
≥pG(μ,ς)+G(ν,ς)+G(μ,ρ)+G(ν,ρ)4. | (24) |
Proof. Let G:[μ,ν]→R+I be a coordinated LR-convex I-V.F. Then, by hypothesis, we have
4G(μ+ν2,ς+ρ2)≤pG(τμ+(1−τ)ν,τς+(1−τ)ρ)+G((1−τ)μ+τν,(1−τ)ς+τρ). |
By using Theorem 5, we have
4G∗(μ+ν2,ς+ρ2)≤G∗(τμ+(1−τ)ν,τς+(1−τ)ρ)+G∗((1−τ)μ+τν,(1−τ)ς+τρ),4G∗(μ+ν2,ς+ρ2)≤G∗(τμ+(1−τ)ν,τς+(1−τ)ρ)+G∗((1−τ)μ+τν,(1−τ)ς+τρ). |
By using Lemma 1, we have
2G∗(x,ς+ρ2)≤G∗(x,τς+(1−τ)ρ)+G∗(x,(1−τ)ς+τρ),2G∗(x,ς+ρ2)≤G∗(x,τς+(1−τ)ρ)+G∗(x,(1−τ)ς+τρ), | (25) |
and
2G∗(μ+ν2,y)≤G∗(τμ+(1−τ)ν,y)+G∗((1−τ)μ+tν,y),2G∗(μ+ν2,y)≤G∗(τμ+(1−τ)ν,y)+G∗((1−τ)μ+tν,y). | (26) |
From (25) and (26), we have
2[G∗(x,ς+ρ2),G∗(x,ς+ρ2)] |
≤p[G∗(x,τς+(1−τ)ρ),G∗(x,τς+(1−τ)ρ)] |
+[G∗(x,(1−τ)ς+τρ),G∗(x,(1−τ)ς+τρ)], |
and
2[G∗(μ+ν2,y),G∗(μ+ν2,y)] |
≤p[G∗(τμ+(1−τ)ν,y),G∗(τμ+(1−τ)ν,y)] |
+[G∗(τμ+(1−τ)ν,y),G∗(τμ+(1−τ)ν,y)], |
It follows that
G(x,ς+ρ2)≤pG(x,τς+(1−τ)ρ)+G(x,(1−τ)ς+τρ), | (27) |
and
G(μ+ν2,y)≤pG(τμ+(1−τ)ν,y)+G(τμ+(1−τ)ν,y). | (28) |
Since G(x,.) and G(.,y), both are coordinated LR-convex-IVFs, then from inequality (14), inequalities (27) and (28) we have
Gx(ς+ρ2)≤pΓ(β+1)2(ρ−ς)β[Iβς+Gx(ρ)+Iβρ−Gx(ς)]≤pGx(ς)+Gx(ρ)2. | (29) |
and
Gy(μ+ν2)≤pΓ(α+1)2(ν−μ)α[Iαμ+Gy(ν)+Iαν−Gy(μ)]≤pGy(μ)+Gy(ν)2 | (30) |
Since Gx(w)=G(x,w), the inequality (29) can be written as
G(x,ς+ρ2)≤pΓ(β+1)2(ρ−ς)β[Iας+G(x,ρ)+Iαρ−G(x,ς)]≤pG(x,ς)+G(x,ρ)2. | (31) |
That is
G(x,ς+ρ2)≤pβ2(ρ−ς)β[∫ρς(ρ−s)β−1G(x,s)ds+∫ρς(s−ς)β−1G(x,s)ds]≤pG(x,ς)+G(x,ρ)2. |
Multiplying double inequality (31) by α(ν−x)α−12(ν−μ)α and integrating with respect to x over [μ,ν], we have
α2(ν−μ)α∫νμG(x,ς+ρ2)(ν−x)α−1dx |
≤p∫νμ∫ρς(ν−x)α−1(ρ−s)β−1G(x,s)dsdx+∫νμ∫ρς(ν−x)α−1(s−ς)β−1G(x,s)dsdx |
≤pα4(ν−μ)α[∫νμ(ν−x)α−1G(x,ς)dx+∫νμ(ν−x)α−1G(x,ρ)dx]. | (32) |
Again multiplying double inequality (31) by α(x−μ)α−12(ν−μ)α and integrating with respect to x over [μ,ν], we have
α2(ν−μ)α∫νμG(x,ς+ρ2)(ν−x)α−1dx |
≤pαβ4(ν−μ)α(ρ−ς)β∫νμ∫ρς(x−μ)α−1(ρ−s)β−1G(x,s)dsdx |
+αβ4(ν−μ)α(ρ−ς)β∫νμ∫ρς(x−μ)α−1(s−ς)β−1G(x,s)dsdx |
≤pα4(ν−μ)α[∫νμ(x−μ)α−1G(x,ς)dx+∫νμ(x−μ)α−1G(x,d)dx]. | (33) |
From (32), we have
Γ(α+1)2(ν−μ)α[Iαμ+G(ν,ς+ρ2)] |
≤pΓ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ς+G(ν,ρ)+Iα,βν−,ς+G(ν,ς)] |
≤pΓ(α+1)4(ν−μ)α[Iαμ+G(ν,ς)+Iαμ+G(ν,ρ)]. | (34) |
From (33), we have
Γ(α+1)2(ν−μ)α[Iαν−G(μ,ς+ρ2)] |
≤pΓ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βν−,ς+G(μ,ρ)+Iα,βν−,ρ−G(μ,ς)] |
≤pΓ(α+1)4(ν−μ)α[Iαν−G(μ,ς)+Iαν−G(μ,ρ)]. | (35) |
Similarly, since Gy(z)=G(z,y) then, from (34) and (35), (30) we have
Γ(β+1)2(ρ−ς)β[Iβς+G(μ+ν2,ρ)] |
≤pΓ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ς+G(ν,ρ)+Iα,βν−,ς+G(μ,ρ)] |
≤pΓ(β+1)4(ρ−ς)β[Iβς+G(μ,ρ)+Iβς+G(ν,ρ)], | (36) |
and
Γ(β+1)2(ρ−ς)α[Iβρ−G(μ+ν2,ς)] |
≤pΓ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ρ−G(ν,ς)+Iα,βν−,ρ−G(μ,ς)] |
≤pΓ(β+1)4(ρ−ς)β[Iβρ−G(μ,ς)+Iβρ−G(ν,ς)]. | (37) |
After adding the inequalities (46), (35), (36) and (37), we will obtain as resultant second, third and fourth inequalities of (23).
Now, from left part of inequality (14), we have
G(μ+ν2,ς+ρ2)≤pΓ(β+1)2(ρ−ς)β[Iβς+G(μ+ν2,ρ)+Iβρ−G(μ+ν2,ς)], | (38) |
and
G(μ+ν2,ς+ρ2)≤pΓ(α+1)2(ν−μ)α[Iαμ+G(ν,ς+ρ2)+Iαν−G(μ,ς+ρ2)]. | (39) |
Summing the inequalities (38) and (39), we obtain the following inequality:
G(μ+ν2,ς+ρ2) |
≤pΓ(α+1)4(ν−μ)α[Iαμ+G(ν,ς+ρ2)+Iαν−G(μ,ς+ρ2)]+Γ(β+1)4(ρ−ς)β[Iβς+G(μ+ν2,ρ)+Iβρ−G(μ+ν2,ς)], | (40) |
this is the first inequality of (23).
Now, from right part of inequality (14), we have
Γ(β+1)2(ρ−ς)β[Iβς+G(μ,ρ)+Iβρ−G(μ,ς)]≤pG(μ,ς)+G(μ,ρ)2, | (41) |
Γ(β+1)2(ρ−ς)β[Iβς+G(ν,ρ)+Iβρ−G(ν,ς)]≤pG(ν,ς)+G(ν,ρ)2, | (42) |
Γ(α+1)2(ν−μ)α[Iαμ+G(ν,ς)+Iαν−G(μ,ς)]≤pG(μ,ς)+G(ν,ς)2, | (43) |
Γ(α+1)2(ν−μ)α[Iαμ+G(ν,ρ)+Iαν−G(μ,ρ)]≤pG(μ,ρ)+G(ν,ρ)2. | (44) |
Summing inequalities (41), (42), (43) and (44), and then taking multiplication of the resultant with 14, we have
Γ(α+1)8(ν−μ)α[Iαμ+G(ν,ς)+Iαν−G(μ,ς)+Iαμ+G(ν,ρ)+Iαν−G(μ,ρ)] |
+Γ(β+1)2(ρ−ς)β[Iβς+G(μ,ρ)+Iβρ−G(μ,ς)+Iβς+G(ν,ρ)+Iβρ−G(ν,ς)] |
≤pG(μ,ς)+G(μ,ρ)+G(ν,ς)+G(ν,ρ)4. | (45) |
This is last inequality of (23) and the result has been proven.
Remark 3. If one to take α=1 and β=1, then from (23), we achieve the coming inequality, see [38]:
G(μ+ν2,ς+ρ2) |
≤p12[1ν−μ∫νμG(x,ς+ρ2)dx+1ρ−ς∫ρςG(μ+ν2,y)dy]≤p1(ν−μ)(ρ−ς)∫νμ∫ρςG(x,y)dydx≤p14(ν−μ)[∫νμG(x,ς)dx+∫νμG(x,ρ)dx]+14(ρ−ς)[∫ρςG(μ,y)dy+∫ρςG(ν,y)dy] |
≤pG(μ,ς)+G(ν,ς)+G(μ,ρ)+G(ν,ρ)4. | (46) |
Let one takes G∗(x,y) is an affine function and G∗(x,y) is concave function. If G∗(x,y)≠G∗(x,y), then from Remark 2 and (24), we acquire the coming inequality, see [31]:
G(μ+ν2,ς+ρ2)⊇Γ(α+1)4(ν−μ)α[Iαμ+G(ν,ς+ρ2)+Iαν−G(μ,ς+ρ2)]+Γ(β+1)4(ρ−ς)β[Iβς+G(μ+ν2,ρ)+Iβρ−G(μ+ν2,ς)] |
⊇Γ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ς+G(ν,ρ)+Iα,βμ+,ρ−G(ν,ς)+Iα,βν−,ς+G(μ,ρ)+Iα,βν−,ρ−G(μ,ς)] |
⊇Γ(α+1)8(ν−μ)α[Iαμ+G(ν,ς)GIαμ+G(ν,ρ)+Iαν−G(μ,ς)+Iαν−G(μ,ρ)] |
+Γ(β+1)4(ρ−ς)β[Iβς+G(μ,ρ)˜+Iβρ−G(ν,ς)+Iβς+G(μ,ρ)+Iβρ−G(ν,ς)] |
⊇G(μ,ς)+G(ν,ς)+G(μ,ρ)+G(ν,ρ)4. | (47) |
Let one takes α=1 and β=1, G∗(x,y) is an affine function and G∗(x,y) is concave function. If G∗(x,y)≠G∗(x,y), then Remark 2 and from (24), we acquire the coming inequality, see [37]:
G(μ+ν2,ς+ρ2) |
⊇12[1ν−μ∫νμG(x,ς+ρ2)dx+1ρ−ς∫ρςG(μ+ν2,y)dy]⊇1(ν−μ)(ρ−ς)∫νμ∫ρςG(x,y)dydx |
⊇14(ν−μ)[∫νμG(x,ς)dx+∫νμG(x,ρ)dx]+14(ρ−ς)[∫ρςG(μ,y)dy+∫ρςG(ν,y)dy] |
⊇G(μ,ς)+G(ν,ς)+G(μ,ρ)+G(ν,ρ)4. | (48) |
Example 2. We consider the I-V-Fs G:[0,1]×[0,1]→R+I defined by,
G(x)=[2,6](6+ex)(6+ey). |
Since end point functions G∗(x,y), G∗(x,y) are convex functions on coordinate, then G(x,y) is convex I-V-F on coordinate. Then for α=1 and β=1, we have
G(μ+ν2,ς+ρ2)=[2(5+e12)2,6(6+e12)2], |
Γ(α+1)4(ν−μ)α[Iαμ+G(ν,ς+ρ2)+Iαν−G(μ,ς+ρ2)]+Γ(β+1)4(ρ−ς)β[Iβς+G(μ+ν2,ρ)+Iβρ−G(μ+ν2,ς)] |
=[4(6+e12)(5+e),12(6+e12)(5+e)], |
Γ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ς+G(ν,ρ)+Iα,βμ+,ρ−G(ν,ς)+Iα,βν−,ς+G(μ,ρ)+Iα,βν−,ρ−G(μ,ς)] |
=[2(5+e)2,6(5+e)2], |
Γ(α+1)8(ν−μ)α[Iαμ+G(ν,ς)GIαμ+G(ν,ρ)+Iαν−G(μ,ς)+Iαν−G(μ,ρ)] |
+Γ(β+1)4(ρ−ς)β[Iβς+G(μ,ρ)˜+Iβρ−G(ν,ς)+Iβς+G(μ,ρ)+Iβρ−G(ν,ς)] |
=[(5+e)(13+e),3(5+e)(13+e)] |
G(μ,ς)+G(ν,ς)+G(μ,ρ)+G(ν,ρ)4=[(6+e)(20+e)+492,6((6+e)(20+e)+49)2]. |
That is
[2(5+e12)2,6(6+e12)2]≤p[4(6+e12)(5+e),12(6+e12)(5+e)] |
≤p[2(5+e)2,6(5+e)2] |
≤p[(5+e)(13+e),3(5+e)(13+e)] |
≤p[(6+e)(20+e)+492,3((6+e)(20+e)+49)]. |
Hence, Theorem 3.1 has been verified
Next both results obtain Hermite-Hadamard type inequalities for the product of two coordinate LR-convex I-V.Fs
Theorem 7. Let G,S:Δ→R+I be a coordinate LR-convex I-V.Fs on Δ such that G(x,y)=[G∗(x,y),G∗(x,y)] and S(x,y)=[S∗(x,y),S∗(x,y)] for all (x,y)∈Δ. If G×S∈TOΔ, then following inequalities holds:
Γ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ς+G(ν,ρ)×S(ν,ρ)+Iα,βμ+,ρ−G(ν,ς)×S(ν,ς)+Iα,βν−,ς+G(μ,ρ)×S(μ,ρ)+Iα,βν−,ρ−G(μ,ς)×S(μ,ς)] |
≤p(12−α(α+1)(α+2))(12−β(β+1)(β+2))K(μ,ν,ς,ρ)+α(α+1)(α+2)(12−β(β+1)(β+2))L(μ,ν,ς,ρ) |
+(12−α(α+1)(α+2))β(β+1)(β+2)M(μ,ν,ς,ρ)+β(β+1)(β+2)α(α+1)(α+2)N(μ,ν,ς,ρ). | (49) |
If G and S both are coordinate LR-concave I-V.Fs on Δ, then above inequality can be written as
Γ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ς+G(ν,ρ)×S(ν,ρ)+Iα,βμ+,ρ−G(ν,ς)×S(ν,ς)+Iα,βν−,ς+G(μ,ρ)×S(μ,ρ)+Iα,βν−,ρ−G(μ,ς)×S(μ,ς)] |
≥p(12−α(α+1)(α+2))(12−β(β+1)(β+2))K(μ,ν,ς,ρ)+α(α+1)(α+2)(12−β(β+1)(β+2))L(μ,ν,ς,ρ) |
+(12−α(α+1)(α+2))β(β+1)(β+2)M(μ,ν,ς,ρ)+β(β+1)(β+2)α(α+1)(α+2)N(μ,ν,ς,ρ). | (50) |
Where
K(μ,ν,ς,ρ)=G(μ,ς)×S(μ,ς)+G(ν,ς)×S(ν,ς)+G(μ,ρ)×S(μ,ρ)+G(ν,ρ)×S(ν,ρ), |
L(μ,ν,ς,ρ)=G(μ,ς)×S(ν,ς)˜+G(ν,ρ)×S(μ,ρ)+G(ν,ς)×S(μ,ς)+G(μ,ρ)×S(ν,ρ), |
M(μ,ν,ς,ρ)=G(μ,ς)×S(μ,ρ)+G(ν,ς)×S(ν,ρ)+G(μ,ρ)×S(μ,ς)+G(ν,ρ)×S(ν,ς), |
N(μ,ν,ς,ρ)=G(μ,ς)×S(ν,ρ)+G(ν,ς)×S(μ,ρ)+G(μ,ρ)×S(ν,ς)+G(ν,ρ)×S(μ,ς). |
and K(μ,ν,ς,ρ), ˜L(μ,ν,ς,ρ), M(μ,ν,ς,ρ) and N(μ,ν,ς,ρ) are defined as follows:
K(μ,ν,ς,ρ)=[K∗(μ,ν,ς,ρ),K∗(μ,ν,ς,ρ)], |
L(μ,ν,ς,ρ)=[L∗(μ,ν,ς,ρ),L∗(μ,ν,ς,ρ)], |
M(μ,ν,ς,ρ)=[M∗(μ,ν,ς,ρ),M∗(μ,ν,ς,ρ)], |
N(μ,ν,ς,ρ)=[N∗(μ,ν,ς,ρ),N∗(μ,ν,ς,ρ)]. |
Proof. Let G and S both are coordinated LR-convex I-V.Fs on [μ,ν]×[ς,ρ]. Then
G(τμ+(1−τ)ν,sς+(1−s)ρ) |
≤pτsG(μ,ς)+τ(1−s)G(μ,ρ)+(1−τ)sG(ν,ς)+(1−τ)(1−s)G(ν,ρ), |
and
S(τμ+(1−τ)ν,sς+(1−s)ρ) |
≤pτsS(μ,ς)+τ(1−s)S(μ,ρ)+(1−τ)sS(ν,ς)+(1−τ)(1−s)S(ν,ρ). |
Since G and S both are coordinated LR-convex I-V.Fs, then by Lemma 1, there exist
Gx:[ς,ρ]→R+I,Gx(y)=G(x,y),Sx:[ς,ρ]→R+I,Sx(y)=S(x,y), |
Since Gx, and Sx are I-V.Fs, then by inequality (15), we have
Γ(β+1)2(ρ−ς)β[Iβς+Gx(ρ)×Sx(ρ)+Iβρ−Gx(ς)×Sx(ς)] |
≤p(12−β(β+1)(β+2))(Gx(ς)×Sx(ς)+Gx(ρ)×Sx(ρ)) |
+(β(β+1)(β+2))(Gx(ς)×Sx(ρ)+Gx(ρ)×Sx(ς)). |
That is
β2(ρ−ς)β[∫ρς(ρ−y)β−1G(x,y)×S(x,y)ρy+∫ρς(y−ς)β−1G(x,y)×S(x,y)ρy] |
≤p(12−β(β+1)(β+2))(G(x,ς)×S(x,ς)+G(x,ρ)×S(x,ρ)) |
+(β(β+1)(β+2))(G(x,ς)×S(x,ρ)+G(x,ρ)×S(x,ς)). | (51) |
Multiplying double inequality (51) by α(ν−x)α−12(ν−μ)α and integrating with respect to x over [μ,ν], we get
Γ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ς+G(ν,ρ)×S(ν,ρ)+Iα,βμ+,ρ−G(ν,ς)×S(ν,ς)] |
≤pΓ(α+1)2(ν−μ)α(12−β(β+1)(β+2))(Iαμ+G(ν,ς)×S(ν,ς)+Iαμ+G(ν,ρ)×S(ν,ρ)) |
+Γ(α+1)2(ν−μ)αβ(β+1)(β+2)(Iαμ+G(ν,ς)×S(ν,ρ)+Iαμ+G(ν,ρ)×S(ν,ς)). | (52) |
Again, multiplying double inequality (51) by α(x−μ)α−12(ν−μ)α and integrating with respect to x over [μ,ν], we gain
Γ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βν−,ς+G(μ,ρ)×S(μ,ρ)+Iα,βν−,ρ−G(μ,ς)×S(μ,ς)] |
≤pΓ(α+1)2(ν−μ)α(12−β(β+1)(β+2))(Iαν−G(μ,ς)×S(μ,ς)+Iαν−G(μ,ρ)×S(μ,ρ)) |
+Γ(α+1)2(ν−μ)αβ(β+1)(β+2)(Iαν−G(μ,ς)×S(μ,ρ)+Iαν−G(μ,ρ)×S(μ,ς)). | (53) |
Summing (52) and (53), we have
Γ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ς+G(ν,ρ)×S(ν,ρ)+Iα,βμ+,ρ−G(ν,ς)×S(ν,ς)+Iα,βν−,ς+G(μ,ρ)×S(μ,ρ)+Iα,βν−,ρ−G(μ,ς)×S(μ,ς)] |
≤pΓ(α+1)2(ν−μ)α(12−β(β+1)(β+2))(Iαμ+G(ν,ς)×S(ν,ς)+Iαν−G(μ,ς)×S(μ,ς)) |
+Γ(α+1)2(ν−μ)α(12−β(β+1)(β+2))(Iαμ+G(ν,ρ)×S(ν,ρ)+Iαν−G(μ,ρ)×S(μ,ρ)) |
+Γ(α+1)2(ν−μ)αβ(β+1)(β+2)(Iαμ+G(ν,ς)×S(ν,ρ)+Iαν−G(μ,ς)×S(μ,ρ)) |
+Γ(α+1)2(ν−μ)αβ(β+1)(β+2)(Iαμ+G(ν,ρ)×S(ν,ς)+Iαν−G(μ,ρ)×S(μ,ς)). | (54) |
Now, again with the help of integral inequality (15) for first two integrals on the right-hand side of (54), we have the following relation
Γ(α+1)2(ν−μ)α(Iαμ+G(ν,ς)×S(ν,ς)+Iαν−G(μ,ς)×S(μ,ς)) |
≤p(12−α(α+1)(α+2))(G(μ,ς)×S(μ,ς)+G(ν,ς)×S(ν,ς)) |
+(α(α+1)(α+2))(G(μ,ς)×S(ν,ς)+G(ν,ς)×S(μ,ς)). | (55) |
Γ(α+1)2(ν−μ)α(Iαμ+G(ν,ρ)×S(ν,ρ)+Iαν−G(μ,ρ)×S(μ,ρ)) |
≤p(12−α(α+1)(α+2))(G(μ,ρ)×S(μ,ρ)+G(ν,ρ)×S(ν,ρ)) |
+(α(α+1)(α+2))(G(μ,ρ)×S(ν,ρ)+G(ν,ρ)×S(μ,ρ)). | (56) |
Γ(α+1)2(ν−μ)α(Iαμ+G(ν,ς)×S(ν,ρ)+Iαν−G(μ,ς)×S(μ,ρ)) |
≤p(12−α(α+1)(α+2))(G(μ,ς)×S(μ,ρ)+G(ν,ς)×S(ν,ρ)) |
+(α(α+1)(α+2))(G(μ,ς)×S(ν,ρ)+G(ν,ς)×S(μ,ρ)). | (57) |
And
Γ(α+1)2(ν−μ)α(Iαμ+G(ν,ρ)×S(ν,ς)+Iαν−G(μ,ρ)×S(μ,ς)) |
≤p(12−α(α+1)(α+2))(G(μ,ρ)×S(μ,ς)+G(ν,ρ)×S(ν,ς)) |
+(α(α+1)(α+2))(G(μ,ρ)×S(ν,ς)+G(ν,ρ)×S(μ,ς)). | (58) |
From (55)–(58), inequality (54) we have
Γ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ς+G(ν,ρ)×S(ν,ρ)+Iα,βμ+,ρ−G(ν,ς)×S(ν,ς)+Iα,βν−,ς+G(μ,ρ)×S(μ,ρ)+Iα,βν−,ρ−G(μ,ς)×S(μ,ς)] |
≤p(12−α(α+1)(α+2))(12−β(β+1)(β+2))K(μ,ν,ς,ρ)+α(α+1)(α+2)(12−β(β+1)(β+2))L(μ,ν,ς,ρ) |
+(12−α(α+1)(α+2))β(β+1)(β+2)M(μ,ν,ς,ρ)+β(β+1)(β+2)α(α+1)(α+2)N(μ,ν,ς,ρ). |
Hence, the result has been proven.
Remark 4. If one to take α=1 and β=1, then from (49), we achieve the coming inequality, see [38]:
1(ν−μ)(ρ−ς)∫νμ∫ρςG(x,y)×S(x,y)dydx |
≤p19K(μ,ν,ς,ρ)+118[L(μ,ν,ς,ρ)+M(μ,ν,ς,ρ)]+136N(μ,ν,ς,ρ). | (59) |
Let one takes G∗(x,y) is an affine function and G∗(x,y) is concave function. If G∗(x,y)≠G∗(x,y), then by Remark 2 and (50), we acquire the coming inequality, see [36]:
Γ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ς+G(ν,ρ)×S(ν,ρ)+Iα,βμ+,ρ−G(ν,ς)×S(ν,ς)+Iα,βν−,ς+G(μ,ρ)×S(μ,ρ)+Iα,βν−,ρ−G(μ,ς)×S(μ,ς)] |
⊇(12−α(α+1)(α+2))(12−β(β+1)(β+2))K(μ,ν,ς,ρ)+α(α+1)(α+2)(12−β(β+1)(β+2))L(μ,ν,ς,ρ) |
+(12−α(α+1)(α+2))β(β+1)(β+2)M(μ,ν,ς,ρ)+β(β+1)(β+2)α(α+1)(α+2)N(μ,ν,ς,ρ). | (60) |
Let one takes G∗(x,y) is an affine function and G∗(x,y) is concave function. If G∗(x,y)≠G∗(x,y), then by Remark 2 and (50), we acquire the coming inequality, see [37]:
1(ν−μ)(ρ−ς)∫νμ∫ρςG(x,y)×S(x,y)dydx |
⊇19K(μ,ν,ς,ρ)+118[L(μ,ν,ς,ρ)+M(μ,ν,ς,ρ)]+136N(μ,ν,ς,ρ). | (61) |
If G∗(x,y)=G∗(x,y) and S∗(x,y)=S∗(x,y), then from (49), we acquire the coming inequality, see [39]:
Γ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ς+G(ν,ρ)×S(ν,ρ)+Iα,βμ+,ρ−G(ν,ς)×S(ν,ς)+Iα,βν−,ς+G(μ,ρ)×S(μ,ρ)+Iα,βν−,ρ−G(μ,ς)×S(μ,ς)] |
≤(12−α(α+1)(α+2))(12−β(β+1)(β+2))K(μ,ν,ς,ρ)+α(α+1)(α+2)(12−β(β+1)(β+2))L(μ,ν,ς,ρ) |
+(12−α(α+1)(α+2))β(β+1)(β+2)M(μ,ν,ς,ρ)+β(β+1)(β+2)α(α+1)(α+2)N(μ,ν,ς,ρ). | (62) |
Theorem 8. Let G,S:Δ→R+I be a coordinate LR-convex I-V.F on Δ such that G(x,y)=[G∗(x,y),G∗(x,y)] and S(x,y)=[S∗(x,y),S∗(x,y)] for all (x,y)∈Δ. If G×S∈TOΔ, then following inequalities holds:
4G(μ+ν2,ς+ρ2)×S(μ+ν2,ς+ρ2) |
≤pΓ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ς+G(ν,ρ)×S(ν,ρ)+Iα,βμ+,ρ−G(ν,ς)×S(ν,ς)+Iα,βν−,ς+G(μ,ρ)×S(μ,ρ)+Iα,βν−,ρ−G(μ,ς)×S(μ,ς)]+[α2(α+1)(α+2)+β(β+1)(β+2)(12−α(α+1)(α+2))]K(μ,ν,ς,ρ) |
+[12(12−α(α+1)(α+2))+α(α+1)(α+2)β(β+1)(β+2)]L(μ,ν,ς,ρ) |
+[12(12−β(β+1)(β+2))+α(α+1)(α+2)β(β+1)(β+2)]M(μ,ν,ς,ρ) |
+[14−α(α+1)(α+2)β(β+1)(β+2)]N(μ,ν,ς,ρ). | (63) |
If G and S both are coordinate LR-concave I-V.Fs on Δ, then above inequality can be written as
4G(μ+ν2,ς+ρ2)×S(μ+ν2,ς+ρ2)≥pΓ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ς+G(ν,ρ)×S(ν,ρ)+Iα,βμ+,ρ−G(ν,ς)×S(ν,ς)+Iα,βν−,ς+G(μ,ρ)×S(μ,ρ)+Iα,βν−,ρ−G(μ,ς)×S(μ,ς)]+[α2(α+1)(α+2)+β(β+1)(β+2)(12−α(α+1)(α+2))]K(μ,ν,ς,ρ) |
+[12(12−α(α+1)(α+2))+α(α+1)(α+2)β(β+1)(β+2)]L(μ,ν,ς,ρ)+[12(12−β(β+1)(β+2))+α(α+1)(α+2)β(β+1)(β+2)]M(μ,ν,ς,ρ)+[14−α(α+1)(α+2)β(β+1)(β+2)]N(μ,ν,ς,ρ). | (64) |
Where K(μ,ν,ς,ρ), L(μ,ν,ς,ρ), M(μ,ν,ς,ρ) and N(μ,ν,ς,ρ) are given in Theorem 7.
Proof. Since G,S:Δ→R+I be two LR-convex I-V.Fs, then from inequality (16), we have
2G(μ+ν2,ς+ρ2)×S(μ+ν2,ς+ρ2)≤pα2(ν−μ)α[∫νμ(ν−x)α−1G(x,ς+ρ2)×S(x,ς+ρ2)dx+∫νμ(x−μ)α−1G(x,ς+ρ2)×S(x,ς+ρ2)dx]+(α(α+1)(α+2))(G(μ,ς+ρ2)×S(μ,ς+ρ2)+G(ν,ς+ρ2)×S(ν,ς+ρ2))+(12−α(α+1)(α+2))(G(μ,ς+ρ2)×S(ν,ς+ρ2)+G(ν,ς+ρ2)×S(μ,ς+ρ2)), | (65) |
and
2G(μ+ν2,ς+ρ2)×S(μ+ν2,ς+ρ2)≤pβ2(ρ−ς)β[∫ρς(ρ−y)β−1G(μ+ν2,y)×S(μ+ν2,y)dy+∫ρς(y−ς)β−1G(μ+ν2,y)×S(μ+ν2,y)dy]+(β(β+1)(β+2))(G(μ+ν2,ς)×S(μ+ν2,ς)+G(μ+ν2,ρ)×S(μ+ν2,ρ))+(12−β(β+1)(β+2))(G(μ+ν2,ς)×S(μ+ν2,ρ)+G(μ+ν2,ρ)×S(μ+ν2,ς)), | (66) |
Adding (73) and (74), and then taking the multiplication of the resultant one by 2, we obtain
8G(μ+ν2,ς+ρ2)×S(μ+ν2,ς+ρ2)≤pα2(ν−μ)α[∫νμ2(ν−x)α−1G(x,ς+ρ2)×S(x,ς+ρ2)dx+∫νμ2(x−μ)α−1G(x,ς+ρ2)×S(x,ς+ρ2)dx]+β2(ρ−ς)β[∫ρς2(ρ−y)β−1G(μ+ν2,y)×S(μ+ν2,y)dy+∫ρς2(y−ς)β−1G(μ+ν2,y)×S(μ+ν2,y)dy]+(α(α+1)(α+2))(2G(μ,ς+ρ2)×S(μ,ς+ρ2)+2G(ν,ς+ρ2)×S(ν,ς+ρ2))+(12−α(α+1)(α+2))(2G(μ,ς+ρ2)×S(ν,ς+ρ2)+2G(ν,ς+ρ2)×S(μ,ς+ρ2))+(β(β+1)(β+2))(2G(μ+ν2,ς)×S(μ+ν2,ς)+2G(μ+ν2,ρ)×S(μ+ν2,ρ))+(12−β(β+1)(β+2))(2G(μ+ν2,ς)×S(μ+ν2,ρ)+2G(μ+ν2,ρ)×S(μ+ν2,ς)). | (67) |
Again, with the help of integral inequality (16) and Lemma 1 for each integral on the right-hand side of (67), we have
α2(ν−μ)α∫νμ2(ν−x)α−1G(x,ς+ρ2)×S(x,ς+ρ2)dx≤pαβ4(ν−μ)α(ρ−ς)β[∫νμ∫ρς(ν−x)α−1(ρ−y)β−1G(x,y)dydx+∫νμ∫ρς(ν−x)α−1(y−ς)β−1G(x,y)dydx]+β(β+1)(β+2)α2(ν−μ)α∫νμ(ν−x)α−1(G(x,ς)×S(x,ς)+G(x,ρ)×S(x,ρ))dx+(12−β(β+1)(β+2))α2(ν−μ)α∫νμ(ν−x)α−1(G(x,ς)×S(x,ρ)+G(x,ρ)×S(x,ς))dx,=Γ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ς+G(ν,ρ)×S(ν,ρ)+Iα,βμ+,ρ−G(ν,ς)×S(ν,ς)]+Γ(α+1)2(ν−μ)α(β(β+1)(β+2))(Iαμ+G(ν,ς)×S(ν,ς)+Iαμ+G(ν,ρ)×S(ν,ρ))+Γ(α+1)2(ν−μ)α(12−β(β+1)(β+2))(Iαμ+G(ν,ς)×S(ν,ρ)+Iαμ+G(ν,ρ)×S(ν,ς)). | (68) |
α2(ν−μ)α∫νμ2(x−μ)α−1G(x,ς+ρ2)×S(x,ς+ρ2)dx≤pαβ4(ν−μ)α(ρ−ς)β[∫νμ∫ρς(x−μ)α−1(ρ−y)β−1G(x,y)dydx+∫νμ∫ρς(x−μ)α−1(y−ς)β−1G(x,y)dydx]+β(β+1)(β+2)α2(ν−μ)α∫νμ(x−μ)α−1(G(x,ς)×S(x,ς)+G(x,ρ)×S(x,ρ))dx+(12−β(β+1)(β+2))α2(ν−μ)α∫νμ(x−μ)α−1(G(x,ς)×S(x,ρ)+G(x,ρ)×S(x,ς))dx,=Γ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βν−,ς+G(μ,ρ)×S(μ,ρ)+Iα,βν−,ρ−G(μ,ς)×S(μ,ς)]+Γ(α+1)2(ν−μ)α(β(β+1)(β+2))(Iαν−G(μ,ς)×S(μ,ς)+Iαν−G(μ,ρ)×S(μ,ρ))+Γ(α+1)2(ν−μ)α(12−β(β+1)(β+2))(Iαν−G(μ,ς)×S(μ,ρ)+Iαν−G(μ,ρ)×S(μ,ς)). | (69) |
β2(ρ−ς)β[∫ρς2(ρ−y)β−1G(μ+ν2,y)×S(μ+ν2,y)dy] |
≤pΓ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ς+G(ν,ρ)×S(ν,ρ)+Iα,βν−,ς+G(μ,ρ)×S(μ,ρ)]+Γ(β+1)2(ρ−ς)β(α(α+1)(α+2))(Iβς+G(μ,ρ)×S(μ,ρ)+Iβς+G(ν,ρ)×S(ν,ρ))+Γ(β+1)2(ρ−ς)β(12−α(α+1)(α+2))(Iβς+G(μ,ρ)×S(ν,ρ)+Iβς+G(ν,ρ)×S(ν,ρ)). | (70) |
β2(ρ−ς)β[∫ρς2(y−ς)β−1G(μ+ν2,y)×S(μ+ν2,y)dy] |
≤pΓ(α+1)Γ(β+1)4(ν−μ)α(ρ−ς)β[Iα,βμ+,ρ−G(ν,ς)×S(ν,ς)+Iα,βν−,ρ−G(ν,ς)×S(ν,ς)]+Γ(β+1)2(ρ−ς)β(α(α+1)(α+2))(Iβρ−G(μ,ς)×S(μ,ς)+Iβρ−G(ν,ς)×S(ν,ς))+Γ(β+1)2(ρ−ς)β(12−α(α+1)(α+2))(Iβρ−G(μ,ς)×S(ν,ς)+Iβρ−G(ν,ς)×S(ν,ς)). | (71) |
And
2G(μ+ν2,ς)×S(μ+ν2,ς)≤pΓ(α+1)2(ν−μ)α[Iαμ+G(ν,ς)×S(ν,ς)+Iαν−G(μ,ς)×S(μ,ς)]+α(α+1)(α+2)(G(μ,ς)×S(μ,ς)+G(ν,ς)×S(ν,ς))+(12−α(α+1)(α+2))(G(μ,ς)×S(ν,ς)+G(ν,ς)×S(μ,ς)), | (72) |
\begin{array}{l} 2\mathfrak{G}\left(\frac{\mu +\nu }{2}, \rho \right)\times \mathfrak{S}\left(\frac{\mu +\nu }{2}, \rho \right) \\ \;\;\;\;\;\;\;\; {\le }_{p}\frac{\mathit{\Gamma } \left(\alpha +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }}\left[{\mathcal{I}}_{{\mu }^{+}}^{\alpha }\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \rho \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \rho \right)\right] \\ \;\;\;\;\;\;\;\; +\frac{\alpha }{(\alpha +1)(\alpha +2)}\left(\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \rho \right)+\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \rho \right)\right) \\ \;\;\;\;\;\;\;\; +\left(\frac{1}{2}-\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)\left(\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\nu , \rho \right)+\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\mu , \rho \right)\right) , \end{array} | (73) |
\begin{array}{l} 2\mathfrak{G}\left(\frac{\mu +\nu }{2}, \varsigma \right)\times \mathfrak{S}\left(\frac{\mu +\nu }{2}, \rho \right) \\ \;\;\;\;\;\;\;\; {\le }_{p}\frac{\mathit{\Gamma } \left(\alpha +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }}\left[{\mathcal{I}}_{{\mu }^{+}}^{\alpha }\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\nu , \rho \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\mu , \rho \right)\right] \\ \;\;\;\;\;\;\;\; +\frac{\alpha }{(\alpha +1)(\alpha +2)}\left(\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\mu , \rho \right)+\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\nu , \rho \right)\right) \\ \;\;\;\;\;\;\;\; +\left(\frac{1}{2}-\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)\left(\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\nu , \rho \right)+\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\mu , \rho \right)\right) , \end{array} | (74) |
\begin{array}{l} 2\mathfrak{G}\left(\frac{\mu +\nu }{2}, \rho \right)\times \mathfrak{S}\left(\frac{\mu +\nu }{2}, \varsigma \right) \\ \;\;\;\;\;\;\;\; {\le }_{p}\frac{\mathit{\Gamma } \left(\alpha +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }}\left[{\mathcal{I}}_{{\mu }^{+}}^{\alpha }\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \varsigma \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \varsigma \right)\right] \end{array} |
\begin{array}{l} +\frac{\alpha }{(\alpha +1)(\alpha +2)}\left(\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \varsigma \right)+\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \varsigma \right)\right) \\ +\left(\frac{1}{2}-\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)\left(\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\nu , \varsigma \right)+\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\mu , \varsigma \right)\right) , \end{array} | (75) |
\begin{array}{l} 2\mathfrak{G}\left(\mu , \frac{\varsigma +\rho }{2}\right)\times \mathfrak{S}\left(\mu , \frac{\varsigma +\rho }{2}\right) \\ \;\;\;\;\;\;\;\; {\le }_{p}\frac{\mathit{\Gamma } \left(\beta +1\right)}{{2\left(\rho -\varsigma \right)}^{\beta }}\left[{\mathcal{I}}_{{\varsigma }^{+}}^{\beta }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \rho \right)+{\mathcal{I}}_{{\rho }^{-}}^{\beta }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \varsigma \right)\right] \\ \;\;\;\;\;\;\;\; +\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\left(\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\mu , \varsigma \right)+\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \rho \right)\right) \\ \;\;\;\;\;\;\;\; +\left(\frac{1}{2}-\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right)\left(\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\mu , \rho \right)+\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \varsigma \right)\right) , \end{array} | (76) |
\begin{array}{l} 2\mathfrak{G}\left(\nu , \frac{\varsigma +\rho }{2}\right)\times {\mathfrak{S}}_{\phi }\left(\nu , \frac{\varsigma +\rho }{2}\right) \\ \;\;\;\;\;\;\;\; {\le }_{p}\frac{\mathit{\Gamma } \left(\beta +1\right)}{{2\left(\rho -\varsigma \right)}^{\beta }}\left[{\mathcal{I}}_{{\varsigma }^{+}}^{\beta }\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \rho \right)+{\mathcal{I}}_{{\rho }^{-}}^{\beta }\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \varsigma \right)\right] \\ \;\;\;\;\;\;\;\; +\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\left(\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\nu , \varsigma \right)+\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \rho \right)\right) \\ \;\;\;\;\;\;\;\; +\left(\frac{1}{2}-\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right)\left(\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\nu , \rho \right)+\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \varsigma \right)\right) , \end{array} | (77) |
\begin{array}{l} 2\mathfrak{G}\left(\mu , \frac{\varsigma +\rho }{2}\right)\times \mathfrak{S}\left(\nu , \frac{\varsigma +\rho }{2}\right) \\ \;\;\;\;\;\;\;\; {\le }_{p}\frac{\mathit{\Gamma } \left(\beta +1\right)}{{2\left(\rho -\varsigma \right)}^{\beta }}\left[{\mathcal{I}}_{{\varsigma }^{+}}^{\beta }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\nu , \rho \right)+{\mathcal{I}}_{{\rho }^{-}}^{\beta }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\nu , \varsigma \right)\right] \\ \;\;\;\;\;\;\;\; +\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\left(\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\nu , \varsigma \right)+\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\nu , \rho \right)\right) \\ \;\;\;\;\;\;\;\; +\left(\frac{1}{2}-\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right)\left(\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\nu , \rho \right)+\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\nu , \varsigma \right)\right) , \end{array} | (78) |
and
\begin{array}{l} 2\mathfrak{G}\left(\nu , \frac{\varsigma +\rho }{2}\right)\times \mathfrak{S}\left(\mu , \frac{\varsigma +\rho }{2}\right) \\ \;\;\;\;\;\;\;\; {\le }_{p}\frac{\mathit{\Gamma } \left(\beta +1\right)}{{2\left(\rho -\varsigma \right)}^{\beta }}\left[{\mathcal{I}}_{{\varsigma }^{+}}^{\beta }\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\mu , \rho \right)+{\mathcal{I}}_{{\rho }^{-}}^{\beta }\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\mu , \varsigma \right)\right] \\ \;\;\;\;\;\;\;\; +\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\left(\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\mu , \varsigma \right)+\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\mu , \rho \right)\right) \\ \;\;\;\;\;\;\;\; +\left(\frac{1}{2}-\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right)\left(\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\mu , \rho \right)+\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\mu , \varsigma \right)\right) , \end{array} | (79) |
From inequalities (68) to (79), inequality (67) we have
\begin{array}{l} 8\mathfrak{G}\left(\frac{\mu +\nu }{2}, \frac{\varsigma +\rho }{2}\right)\times \mathfrak{S}\left(\frac{\mu +\nu }{2}, \frac{\varsigma +\rho }{2}\right) \\ \;\;\;\;\;\;\;\; {\le }_{p}\frac{\mathit{\Gamma } \left(\alpha +1\right)\mathit{\Gamma } \left(\beta +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }{\left(\rho -\varsigma \right)}^{\beta }}\left[\begin{array}{c}\begin{array}{c}{\mathcal{I}}_{{\mu }^{+}, {\varsigma }^{+}}^{\alpha , \beta }G\left(\nu , \rho \right)\times S\left(\nu , \rho \right)+{\mathcal{I}}_{{\mu }^{+}, {\rho }^{-}}^{\alpha , \beta }G\left(\nu , \varsigma \right)\times S\left(\nu , \varsigma \right)\end{array}\\ +{\mathcal{I}}_{{\nu }^{-}, {\varsigma }^{+}}^{\alpha , \beta }G\left(\mu , \rho \right)\times S\left(\mu , \rho \right)+{\mathcal{I}}_{{\nu }^{-}, {\rho }^{-}}^{\alpha , \beta }G\left(\mu , \varsigma \right)\times S\left(\mu , \varsigma \right)\end{array}\right] \\ \;\;\;\;\;\;\;\; +\left(\frac{2\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)\left[\begin{array}{c}\frac{\mathit{\Gamma } \left(\beta +1\right)}{{2\left(\rho -\varsigma \right)}^{\beta }}\left({\mathcal{I}}_{{\varsigma }^{+}}^{\beta }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \rho \right)+{\mathcal{I}}_{{\varsigma }^{+}}^{\beta }\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \rho \right)\right)\\ +\frac{\mathit{\Gamma } \left(\beta +1\right)}{{2\left(\rho -\varsigma \right)}^{\beta }}\left({\mathcal{I}}_{{\rho }^{-}}^{\beta }\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\mu , \varsigma \right)+{\mathcal{I}}_{{\rho }^{-}}^{\beta }\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\nu , \varsigma \right)\right)\end{array}\right] \\ \;\;\;\;\;\;\;\; +2\left(\frac{1}{2}-\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)\left[\begin{array}{c}\frac{\mathit{\Gamma } \left(\beta +1\right)}{{2\left(\rho -\varsigma \right)}^{\beta }}\left({\mathcal{I}}_{{\varsigma }^{+}}^{\beta }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\nu , \rho \right)+{\mathcal{I}}_{{\varsigma }^{+}}^{\beta }\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\mu , \rho \right)\right)\\ +\frac{\mathit{\Gamma } \left(\beta +1\right)}{{2\left(\rho -\varsigma \right)}^{\beta }}\left({\mathcal{I}}_{{\rho }^{-}}^{\beta }\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\nu , \varsigma \right)+{\mathcal{I}}_{{\rho }^{-}}^{\beta }\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\mu , \varsigma \right)\right)\end{array}\right] \\ \;\;\;\;\;\;\;\; +2\left(\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right)\left[\begin{array}{c}\frac{\mathit{\Gamma } \left(\alpha +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }}\left({\mathcal{I}}_{{\mu }^{+}}^{\alpha }\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\nu , \varsigma \right)+{\mathcal{I}}_{{\mu }^{+}}^{\alpha }\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \rho \right)\right)\\ +\frac{\mathit{\Gamma } \left(\alpha +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }}\left({\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\mu , \varsigma \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \rho \right)\right)\end{array}\right] \\ \;\;\;\;\;\;\;\; +2\left(\frac{1}{2}-\frac{\beta }{(\beta +1)(\beta +2)}\right)\left[\begin{array}{c}\frac{\mathit{\Gamma } \left(\alpha +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }}\left({\mathcal{I}}_{{\mu }^{+}}^{\alpha }\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\nu , \rho \right)+{\mathcal{I}}_{{\mu }^{+}}^{\alpha }\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \varsigma \right)\right)\\ +\frac{\mathit{\Gamma } \left(\alpha +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }}\left({\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\mu , \rho \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \varsigma \right)\right)\end{array}\right] \end{array} |
+\frac{2\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}K\left(\mu , \nu , \varsigma , \rho \right)++\left(\frac{1}{2}-\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)\frac{2\beta }{\left(\beta +1\right)\left(\beta +2\right)}L\left(\mu , \nu , \varsigma , \rho \right) |
\begin{array}{l}+\frac{2\alpha }{(\alpha +1)(\alpha +2)}\left(\frac{1}{2}-\frac{\beta }{(\beta +1)(\beta +2)}\right)\mathcal{M}\left(\mu , \nu , \varsigma , \rho \right) \\ +2\left(\frac{1}{2}-\frac{\alpha }{(\alpha +1)(\alpha +2)}\right)\left(\frac{1}{2}-\frac{\beta }{(\beta +1)(\beta +2)}\right)\mathcal{N}\left(\mu , \nu , \varsigma , \rho \right) . \end{array} | (80) |
Again, with the help of integral inequality (15) and Lemma 1, for each integral on the right-hand side of (80), we have
\begin{array}{l}\frac{\mathit{\Gamma } \left(\beta +1\right)}{{2\left(\rho -\varsigma \right)}^{\beta }}\left({\mathcal{I}}_{{\varsigma }^{+}}^{\beta }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \rho \right)+{\mathcal{I}}_{{\varsigma }^{+}}^{\beta }\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \rho \right)\right)\end{array} \\ \;\;\;\;\;\;\;\; +\frac{\mathit{\Gamma } \left(\beta +1\right)}{{2\left(\rho -\varsigma \right)}^{\beta }}\left({\mathcal{I}}_{{\rho }^{-}}^{\beta }\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\mu , \varsigma \right)+{\mathcal{I}}_{{\rho }^{-}}^{\beta }\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\nu , \varsigma \right)\right)\\ \;\;\;\;\;\;\;\; {\le }_{p}\left(\frac{1}{2}-\frac{\beta }{(\beta +1)(\beta +2)}\right)K\left(\mu , \nu , \varsigma , \rho \right)+\frac{\beta }{(\beta +1)(\beta +2)}\mathcal{M}\left(\mu , \nu , \varsigma , \rho \right) . | (81) |
\begin{array}{l}\frac{\mathit{\Gamma } \left(\beta +1\right)}{{2\left(\rho -\varsigma \right)}^{\beta }}\left({\mathcal{I}}_{{\varsigma }^{+}}^{\beta }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\nu , \rho \right)+{\mathcal{I}}_{{\varsigma }^{+}}^{\beta }\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\mu , \rho \right)\right)\end{array} \\ \;\;\;\;\;\;\;\; +\frac{\mathit{\Gamma } \left(\beta +1\right)}{{2\left(\rho -\varsigma \right)}^{\beta }}\left({\mathcal{I}}_{{\rho }^{-}}^{\beta }\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\nu , \varsigma \right)+{\mathcal{I}}_{{\rho }^{-}}^{\beta }\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\mu , \varsigma \right)\right) \\ \;\;\;\;\;\;\;\; {\le }_{p}\left(\frac{1}{2}-\frac{\beta }{(\beta +1)(\beta +2)}\right)L\left(\mu , \nu , \varsigma , \rho \right)+\frac{\beta }{(\beta +1)(\beta +2)}\mathcal{N}\left(\mu , \nu , \varsigma , \rho \right) . | (82) |
\begin{array}{l}\frac{\mathit{\Gamma } \left(\alpha +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }}\left({\mathcal{I}}_{{\mu }^{+}}^{\alpha }\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\nu , \varsigma \right)+{\mathcal{I}}_{{\mu }^{+}}^{\alpha }\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \rho \right)\right)\end{array} \\ \;\;\;\;\;\;\;\; +\frac{\mathit{\Gamma } \left(\alpha +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }}\left({\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\mu , \varsigma \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \rho \right)\right)\\ \;\;\;\;\;\;\;\; {\le }_{p}\left(\frac{1}{2}-\frac{\alpha }{(\alpha +1)(\alpha +2)}\right)K\left(\mu , \nu , \varsigma , \rho \right)+\frac{\alpha }{(\alpha +1)(\alpha +2)}L\left(\mu , \nu , \varsigma , \rho \right) . | (83) |
\begin{array}{l} \frac{\mathit{\Gamma } \left(\alpha +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }}\left({\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\mu , \rho \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \varsigma \right)\right) \\ \;\;\;\;\;\;\;\; +\frac{\mathit{\Gamma } \left(\alpha +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }}\left({\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\mu , \rho \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \varsigma \right)\right) \\ \;\;\;\;\;\;\;\; {\le }_{p}\left(\frac{1}{2}-\frac{\alpha }{(\alpha +1)(\alpha +2)}\right)\mathcal{M}\left(\mu , \nu , \varsigma , \rho \right)+\frac{\alpha }{(\alpha +1)(\alpha +2)}\mathcal{N}\left(\mu , \nu , \varsigma , \rho \right) . \end{array} | (84) |
From (77) to (84), (80) we have
\begin{array}{l} 4\mathfrak{G}\left(\frac{\mu +\nu }{2}, \frac{\varsigma +\rho }{2}\right)\times \mathfrak{S}\left(\frac{\mu +\nu }{2}, \frac{\varsigma +\rho }{2}\right) \\ \;\;\;\;\;\;\;\; {\le }_{p}\frac{\mathit{\Gamma } \left(\alpha +1\right)\mathit{\Gamma } \left(\beta +1\right)}{{4\left(\nu -\mu \right)}^{\alpha }{\left(\rho -\varsigma \right)}^{\beta }}\left[\begin{array}{c}{\mathcal{I}}_{{\mu }^{+}, {\varsigma }^{+}}^{\alpha , \beta }G\left(\nu , \rho \right)\times S\left(\nu , \rho \right)+{\mathcal{I}}_{{\mu }^{+}, {\rho }^{-}}^{\alpha , \beta }G\left(\nu , \varsigma \right)\times S\left(\nu , \varsigma \right)\\ +{\mathcal{I}}_{{\nu }^{-}, {\varsigma }^{+}}^{\alpha , \beta }G\left(\mu , \rho \right)\times S\left(\mu , \rho \right)+{\mathcal{I}}_{{\nu }^{-}, {\rho }^{-}}^{\alpha , \beta }G\left(\mu , \varsigma \right)\times S\left(\mu , \varsigma \right)\end{array}\right] \\ \;\;\;\;\;\;\;\; +\left[\frac{\alpha }{2\left(\alpha +1\right)\left(\alpha +2\right)}+\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\left(\frac{1}{2}-\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)\right]K\left(\mu , \nu , \varsigma , \rho \right) \\ \;\;\;\;\;\;\;\; +\left[\frac{1}{2}\left(\frac{1}{2}-\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)+\frac{\alpha }{(\alpha +1)(\alpha +2)}\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right]L\left(\mu , \nu , \varsigma , \rho \right) \\ \;\;\;\;\;\;\;\; +\left[\frac{1}{2}\left(\frac{1}{2}-\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right)+\frac{\alpha }{(\alpha +1)(\alpha +2)}\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right]\mathcal{M}\left(\mu , \nu , \varsigma , \rho \right) \\ \;\;\;\;\;\;\;\; +\left[\frac{1}{4}-\frac{\alpha }{(\alpha +1)(\alpha +2)}\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right]\mathcal{N}\left(\mu , \nu , \varsigma , \rho \right) . \end{array} | (85) |
This concludes the proof of Theorem 8 result has been proven.
Remark 5. If we take \alpha = 1 and \beta = 1 , then from (63), we achieve the coming inequality, see [38]:
\begin{array}{l} 4\mathfrak{G}\left(\frac{\mu +\nu }{2}, \frac{\varsigma +\rho }{2}\right)\times \mathfrak{S}\left(\frac{\mu +\nu }{2}, \frac{\varsigma +\rho }{2}\right) \\ \;\;\;\;\;\;\;\; {\le }_{p}\frac{1}{\left(\nu -\mu \right)\left(\rho -\varsigma \right)}{\int }_{\mu }^{\nu }{\int }_{\varsigma }^{\rho }\mathfrak{G}\left(\mathcal{x}, \mathit{y}\right)\times \mathfrak{S}\left(\mathcal{x}, \mathit{y}\right)d\mathit{y}d\mathcal{x}+\frac{5}{36}K\left(\mu , \nu , \varsigma , \rho \right) \\ \;\;\;\;\;\;\;\; +\frac{7}{36}\left[L\left(\mu , \nu , \varsigma , \rho \right)+\mathcal{M}\left(\mu , \nu , \varsigma , \rho \right)\right]+\frac{2}{9}\mathcal{N}\left(\mu , \nu , \varsigma , \rho \right). \end{array} | (86) |
Let one takes {\mathfrak{G}}_{\mathfrak{*}}\left(\mathcal{x}, \mathit{y}\right) is an affine function and {\mathfrak{G}}^{\mathfrak{*}}\left(\mathcal{x}, \mathit{y}\right) is convex function. If {\mathfrak{G}}_{\mathfrak{*}}\left(\mathcal{x}, \mathit{y}\right)\ne {\mathfrak{G}}^{\mathfrak{*}}\left(\mathcal{x}, \mathit{y}\right) , then from Remark 2 and (64), we acquire the coming inequality, see [37]:
\begin{array}{l} 4\mathfrak{G}\left(\frac{\mu +\nu }{2}, \frac{\varsigma +\rho }{2}\right)\times \mathfrak{S}\left(\frac{\mu +\nu }{2}, \frac{\varsigma +\rho }{2}\right) \\ \;\;\;\;\;\;\;\; \supseteq \frac{1}{\left(\nu -\mu \right)\left(\rho -\varsigma \right)}{\int }_{\mu }^{\nu }{\int }_{\varsigma }^{\rho }\mathfrak{G}\left(\mathcal{x}, \mathit{y}\right)\times \mathfrak{S}\left(\mathcal{x}, \mathit{y}\right)d\mathit{y}d\mathcal{x}+\frac{5}{36}K\left(\mu , \nu , \varsigma , \rho \right) \\ \;\;\;\;\;\;\;\; +\frac{7}{36}\left[L\left(\mu , \nu , \varsigma , \rho \right)+\mathcal{M}\left(\mu , \nu , \varsigma , \rho \right)\right]+\frac{2}{9}\mathcal{N}\left(\mu , \nu , \varsigma , \rho \right). \end{array} | (87) |
Let one takes {\mathfrak{G}}_{\mathfrak{*}}\left(\mathcal{x}, \mathit{y}\right) is an affine function and {\mathfrak{G}}^{\mathfrak{*}}\left(\mathcal{x}, \mathit{y}\right) is convex function. If {\mathfrak{G}}_{\mathfrak{*}}\left(\mathcal{x}, \mathit{y}\right)\ne {\mathfrak{G}}^{\mathfrak{*}}\left(\mathcal{x}, \mathit{y}\right) , then from Remark 2 and (64) we acquire the coming inequality, see [36]:
\begin{array}{l} 4\mathfrak{G}\left(\frac{\mu +\nu }{2}, \frac{\varsigma +\rho }{2}\right)\times \mathfrak{S}\left(\frac{\mu +\nu }{2}, \frac{\varsigma +\rho }{2}\right)\\ \;\;\;\;\;\;\;\; \supseteq \frac{\mathit{\Gamma } \left(\alpha +1\right)\mathit{\Gamma } \left(\beta +1\right)}{{4\left(\nu -\mu \right)}^{\alpha }{\left(\rho -\varsigma \right)}^{\beta }}\left[\begin{array}{c}{\mathcal{I}}_{{\mu }^{+}, {\varsigma }^{+}}^{\alpha , \beta }G\left(\nu , \rho \right)\times S\left(\nu , \rho \right)+{\mathcal{I}}_{{\mu }^{+}, {\rho }^{-}}^{\alpha , \beta }G\left(\nu , \varsigma \right)\times S\left(\nu , \varsigma \right)\\ +{\mathcal{I}}_{{\nu }^{-}, {\varsigma }^{+}}^{\alpha , \beta }G\left(\mu , \rho \right)\times S\left(\mu , \rho \right)+{\mathcal{I}}_{{\nu }^{-}, {\rho }^{-}}^{\alpha , \beta }G\left(\mu , \varsigma \right)\times S\left(\mu , \varsigma \right)\end{array}\right] \\ \;\;\;\;\;\;\;\; +\left[\frac{\alpha }{2\left(\alpha +1\right)\left(\alpha +2\right)}+\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\left(\frac{1}{2}-\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)\right]K\left(\mu , \nu , \varsigma , \rho \right) \\ \;\;\;\;\;\;\;\; +\left[\frac{1}{2}\left(\frac{1}{2}-\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)+\frac{\alpha }{(\alpha +1)(\alpha +2)}\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right]L\left(\mu , \nu , \varsigma , \rho \right) \\ \;\;\;\;\;\;\;\; +\left[\frac{1}{2}\left(\frac{1}{2}-\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right)+\frac{\alpha }{(\alpha +1)(\alpha +2)}\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right]\mathcal{M}\left(\mu , \nu , \varsigma , \rho \right) \\ \;\;\;\;\;\;\;\; +\left[\frac{1}{4}-\frac{\alpha }{(\alpha +1)(\alpha +2)}\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right]\mathcal{N}\left(\mu , \nu , \varsigma , \rho \right) . \end{array} | (88) |
If we take {\mathfrak{G}}_{\mathfrak{*}}\left(\mathcal{x}, \mathit{y}\right) = {\mathfrak{G}}^{\mathfrak{*}}\left(\mathcal{x}, \mathit{y}\right) and {\mathfrak{S}}_{\mathfrak{*}}\left(\mathcal{x}, \mathit{y}\right) = {\mathfrak{S}}^{\mathfrak{*}}\left(\mathcal{x}, \mathit{y}\right) , then from (63), we acquire the coming inequality, see [39]:
\begin{array}{l} 4\mathfrak{G}\left(\frac{\mu +\nu }{2}, \frac{\varsigma +\rho }{2}\right)\times \mathfrak{S}\left(\frac{\mu +\nu }{2}, \frac{\varsigma +\rho }{2}\right) \\ \;\;\;\;\;\;\;\; \le \frac{\mathit{\Gamma } \left(\alpha +1\right)\mathit{\Gamma } \left(\beta +1\right)}{{4\left(\nu -\mu \right)}^{\alpha }{\left(\rho -\varsigma \right)}^{\beta }}\left[\begin{array}{c}{\mathcal{I}}_{{\mu }^{+}, {\varsigma }^{+}}^{\alpha , \beta }G\left(\nu , \rho \right)\times S\left(\nu , \rho \right)+{\mathcal{I}}_{{\mu }^{+}, {\rho }^{-}}^{\alpha , \beta }G\left(\nu , \varsigma \right)\times S\left(\nu , \varsigma \right)\\ +{\mathcal{I}}_{{\nu }^{-}, {\varsigma }^{+}}^{\alpha , \beta }G\left(\mu , \rho \right)\times S\left(\mu , \rho \right)+{\mathcal{I}}_{{\nu }^{-}, {\rho }^{-}}^{\alpha , \beta }G\left(\mu , \varsigma \right)\times S\left(\mu , \varsigma \right)\end{array}\right] \\ \;\;\;\;\;\;\;\; +\left[\frac{\alpha }{2\left(\alpha +1\right)\left(\alpha +2\right)}+\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\left(\frac{1}{2}-\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)\right]K\left(\mu , \nu , \varsigma , \rho \right) \\ \;\;\;\;\;\;\;\; +\left[\frac{1}{2}\left(\frac{1}{2}-\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)+\frac{\alpha }{(\alpha +1)(\alpha +2)}\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right]L\left(\mu , \nu , \varsigma , \rho \right) \\ \;\;\;\;\;\;\;\; +\left[\frac{1}{2}\left(\frac{1}{2}-\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right)+\frac{\alpha }{(\alpha +1)(\alpha +2)}\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right]\mathcal{M}\left(\mu , \nu , \varsigma , \rho \right) \\ \;\;\;\;\;\;\;\; +\left[\frac{1}{4}-\frac{\alpha }{(\alpha +1)(\alpha +2)}\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right]\mathcal{N}\left(\mu , \nu , \varsigma , \rho \right) . \end{array} | (89) |
In this study, with the help of coordinated LR-convexity for interval-valued functions, several novel Hermite-Hadamard type inequalities are presented. It is also demonstrated that the conclusions reached in this study represent a possible extension of previously published equivalent results. Similar inequalities may be discovered in the future using various forms of convexities. This is a novel and intriguing topic, and future study will be able to find equivalent inequalities for various types of convexity and coordinated m-convexity by using different fractional integral operators.
The authors would like to thank the Rector, COMSATS University Islamabad, Islamabad, Pakistan, for providing excellent research. All authors read and approved the final manuscript. This work was funded by Taif University Researchers Supporting Project number (TURSP-2020/345), Taif University, Taif, Saudi Arabia.
The authors declare that they have no competing interests.
[1] |
G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results, Comput. Math. Appl., 51 (2006), 1367–1376. https://doi.org/10.1016/j.camwa.2006.02.001 doi: 10.1016/j.camwa.2006.02.001
![]() |
[2] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. |
[3] |
M. C. Caputo, D. F. M. Torres, Duality for the left and right fractional derivatives, Signal Process., 107 (2015), 265–271. https://doi.org/10.1016/j.sigpro.2014.09.026 doi: 10.1016/j.sigpro.2014.09.026
![]() |
[4] |
Y. Y. Gambo, F. Jarad, D. Baleanu, T. Abdeljawad, On Caputo modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2014 (2014), 1–12. https://doi.org/10.1186/1687-1847-2014-10 doi: 10.1186/1687-1847-2014-10
![]() |
[5] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[6] | S. Kazem, Exact solution of some linear fractional differential equations by Laplace transform, Int. J. Nonlinear Sci., 16 (2013), 3–11. |
[7] |
A. Burqan, M. Shqair, A. El-Ajou, Z. Al-Zhour, Analytical solutions to the coupled fractional neutron diffusion equations with delayed neutrons system using Laplace transform method, AIMS Math., 8 (2023), 19297–19312. https://doi.org/10.3934/math.2023984 doi: 10.3934/math.2023984
![]() |
[8] |
Y. Z. Hu, Y. Luo, Z. Y. Lu, Analytical solution of the linear fractional differential equation by Adomian decomposition method, J. Comput. Appl. Math., 215 (2008), 220–229. https://doi.org/10.1016/j.cam.2007.04.005 doi: 10.1016/j.cam.2007.04.005
![]() |
[9] | A. Bibi, A. Kamran, U. Hayat, S. T. Mohyud-Din, New iterative method for time-fractional Schrödinger equations, World J. Model. Simul., 9 (2013), 89–95. |
[10] |
A. Sadighi, D. D. Ganji, Analytic treatment of linear and nonlinear Schrödinger equations: a study with homotopy-perturbation and Adomian decomposition methods, Phys. Lett. A, 372 (2008), 465–469. https://doi.org/10.1016/j.physleta.2007.07.065 doi: 10.1016/j.physleta.2007.07.065
![]() |
[11] |
I. Podlubny, A. Chechkin, T. Skovranek, Y. Q. Chen, B. M. Vinagre, Matrix approach to discrete fractional calculus Ⅱ: Partial fractional differential equations, J. Comput. Phys., 228 (2009), 3137–3153. https://doi.org/10.1016/j.jcp.2009.01.014 doi: 10.1016/j.jcp.2009.01.014
![]() |
[12] |
A. Saadatmandi, M. Dehghan, A new operational matrix for solving fractional-order differential equations, Comput. Math. Appl., 59 (2010), 1326–1336. https://doi.org/10.1016/j.camwa.2009.07.006 doi: 10.1016/j.camwa.2009.07.006
![]() |
[13] |
X. J. Yang, J. A. T. Machado, H. M. Srivastava, A new numerical technique for solving the local fractional diffusion equation: two-dimensional extended differential transform approach, Appl. Math. Comput., 274 (2016), 143–151. https://doi.org/10.1016/j.amc.2015.10.072 doi: 10.1016/j.amc.2015.10.072
![]() |
[14] | F. Saba, S. Jabeen, S. T. Mohyud-Din, Homotopy analysis transform method for time-fractional Schrödinger equations, Int. J. Modern Math. Sci., 7 (2013), 26–40. |
[15] |
N. A. Khan, M. Jamil, A. Ara, Approximate solutions to time-fractional Schrödinger equation via homotopy analysis method, Int. Scholarly Res. Notices, 2012 (2012), 1–11. https://doi.org/10.5402/2012/197068 doi: 10.5402/2012/197068
![]() |
[16] |
A. K. Alomari, M. S. M. Noorani, R. Nazar, Explicit series solutions of some linear and nonlinear Schrödinger equations via the homotopy analysis method, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 1196–1207. https://doi.org/10.1016/j.cnsns.2008.01.008 doi: 10.1016/j.cnsns.2008.01.008
![]() |
[17] |
A. Yildirim, An algorithm for solving the fractional nonlinear Schrödinger equation by means of the homotopy perturbation method, Int. J. Nonlinear Sci. Numer. Simul., 10 (2009), 445–450. https://doi.org/10.1515/IJNSNS.2009.10.4.445 doi: 10.1515/IJNSNS.2009.10.4.445
![]() |
[18] |
S. Momani, Z. Odibat, Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations, Comput. Math. Appl., 54 (2007), 910–919. https://doi.org/10.1016/j.camwa.2006.12.037 doi: 10.1016/j.camwa.2006.12.037
![]() |
[19] |
B. J. Hong, D. C. Lu, Modified fractional variational iteration method for solving the generalized time-space fractional Schrödinger equation, Sci. World J., 2014 (2014), 1–6. https://doi.org/10.1155/2014/964643 doi: 10.1155/2014/964643
![]() |
[20] |
A. M. Wazwaz, A study on linear and nonlinear Schrodinger equations by the variational iteration method, Chaos Solitons Fract., 37 (2008), 1136–1142. https://doi.org/10.1016/j.chaos.2006.10.009 doi: 10.1016/j.chaos.2006.10.009
![]() |
[21] |
M. N. Oqielat, A. El-Ajou, Z. Al-Zhour, R. Alkhasawneh, H. Alrabaiah, Series solutions for nonlinear time-fractional Schrödinger equations: comparisons between conformable and Caputo derivatives, Alex. Eng. J., 59 (2020), 2101–2114. https://doi.org/10.1016/j.aej.2020.01.023 doi: 10.1016/j.aej.2020.01.023
![]() |
[22] |
A. El-Ajou, M. N. Oqielat, Z. Al-Zhour, S. Momani, A class of linear non-homogenous higher order matrix fractional differential equations: analytical solutions and new technique, Fract. Calc. Appl. Anal., 23 (2020), 356–377. https://doi.org/10.1515/fca-2020-0017 doi: 10.1515/fca-2020-0017
![]() |
[23] |
A. El-Ajou, Taylor's expansion for fractional matrix functions: theory and applications, J. Math. Comput. Sci., 21 (2020), 1–17. http://dx.doi.org/10.22436/jmcs.021.01.01 doi: 10.22436/jmcs.021.01.01
![]() |
[24] |
A. El-Ajou, M. Al-Smadi, M. N. Oqielat, S. Momani, S. Hadid, Smooth expansion to solve high-order linear conformable fractional PDEs via residual power series method: applications to physical and engineering equations, Ain Shams Eng. J., 11 (2020), 1243–1254. https://doi.org/10.1016/j.asej.2020.03.016 doi: 10.1016/j.asej.2020.03.016
![]() |
[25] |
A. Qazza, A. Burqan, R. Saadeh, Application of ARA-residual power series method in solving systems of fractional differential equations, Math. Probl. Eng., 2022 (2022), 1–17. https://doi.org/10.1155/2022/6939045 doi: 10.1155/2022/6939045
![]() |
[26] |
K. Shah, H. Naz, M. Sarwar, T. Abdeljawad, On spectral numerical method for variable-order partial differential equations, AIMS Math., 7 (2022), 10422–10438. http://dx.doi.org/10.3934/math.2022581 doi: 10.3934/math.2022581
![]() |
[27] |
K. Shah, M. Arfan, A. Ullah, Q. Al-Mdallal, K. J. Ansari, T. Abdeljawad, Computational study on the dynamics of fractional order differential equations with applications, Chaos Solitons Fract., 157 (2022), 111955. https://doi.org/10.1016/j.chaos.2022.111955 doi: 10.1016/j.chaos.2022.111955
![]() |
[28] |
K. Shah, T. Abdeljawad, A. Ali, Mathematical analysis of the Cauchy type dynamical system under piecewise equations with Caputo fractional derivative, Chaos Solitons Fract., 161 (2022), 112356. https://doi.org/10.1016/j.chaos.2022.112356 doi: 10.1016/j.chaos.2022.112356
![]() |
[29] |
S. Ali, A. Khan, K. Shah, M. A. Alqudah, T. Abdeljawad, Siraj-ul-Islam, On computational analysis of highly nonlinear model addressing real world applications, Results Phys., 36 (2022), 105431. https://doi.org/10.1016/j.rinp.2022.105431 doi: 10.1016/j.rinp.2022.105431
![]() |
[30] |
B. Ghanbari, D. Baleanu, New optical solutions of the fractional Gerdjikov-Ivanov equation with conformable derivative, Front. Phys., 8 (2020), 167. https://doi.org/10.3389/fphy.2020.00167 doi: 10.3389/fphy.2020.00167
![]() |
[31] |
B. Ghanbari, D. Baleanu, M. Al Qurashi, New exact solutions of the generalized Benjamin-Bona-Mahony equation, Symmetry, 11 (2019), 1–12. https://doi.org/10.3390/sym11010020 doi: 10.3390/sym11010020
![]() |
[32] |
B. Ghanbari, C. K. Kuo, New exact wave solutions of the variable-coefficient (1+1)-dimensional Benjamin-Bona-Mahony and (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov equations via the generalized exponential rational function method, Eur. Phys. J. Plus, 134 (2019), 334. https://doi.org/10.1140/epjp/i2019-12632-0 doi: 10.1140/epjp/i2019-12632-0
![]() |
[33] |
K. Shah, A. R. Seadawy, M. Arfan, Evaluation of one dimensional fuzzy fractional partial differential equations, Alex. Eng. J., 59 (2020), 3347–3353. https://doi.org/10.1016/j.aej.2020.05.003 doi: 10.1016/j.aej.2020.05.003
![]() |
[34] |
A. Mohebbi, M. Abbaszadeh, M. Dehghan, The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation arising in quantum mechanics, Eng. Anal. Bound. Elem., 37 (2013), 475–485. https://doi.org/10.1016/j.enganabound.2012.12.002 doi: 10.1016/j.enganabound.2012.12.002
![]() |
[35] |
T. Eriqat, A. El-Ajou, M. Oqielat, Z. Al-Zhour, S. Momani, A new attractive analytic approach for solutions of linear and nonlinear neutral fractional pantograph equations, Chaos Solitons Fract., 138 (2020), 109957. https://doi.org/10.1016/j.chaos.2020.109957 doi: 10.1016/j.chaos.2020.109957
![]() |
[36] |
A. El-Ajou, Adapting the Laplace transform to create solitary solutions for the nonlinear time-fractional dispersive PDEs via a new approach, Eur. Phys. J. Plus, 136 (2021), 229. https://doi.org/10.1140/epjp/s13360-020-01061-9 doi: 10.1140/epjp/s13360-020-01061-9
![]() |
[37] |
A. El-Ajou, Z. Al-Zhour, A vector series solution for a class of hyperbolic system of Caputo time-fractional partial differential equations with variable coefficients, Front. Phys., 9 (2021), 525250. https://doi.org/10.3389/fphy.2021.525250 doi: 10.3389/fphy.2021.525250
![]() |
[38] |
A. Burqan, A. El-Ajou, R. Saadeh, M. Al-Smadi, A new efficient technique using Laplace transforms and smooth expansions to construct a series solution to the time-fractional Navier-Stokes equations, Alex. Eng. J., 61 (2022), 1069–1077. https://doi.org/10.1016/j.aej.2021.07.020 doi: 10.1016/j.aej.2021.07.020
![]() |
[39] |
M. N. Oqielat, A. El-Ajou, Z. Al-Zhour, T. Eriqat, M. Al-Smadi, A new approach to solving fuzzy quadratic Riccati differential equations, Int. J. Fuzzy Logic Intell. Syst., 22 (2022), 23–47. https://doi.org/10.5391/IJFIS.2022.22.1.23 doi: 10.5391/IJFIS.2022.22.1.23
![]() |
[40] |
R. Saadeh, A. Burqan, A. El-Ajou, Reliable solutions to fractional Lane-Emden equations via Laplace transform and residual error function, Alex. Eng. J., 61 (2022), 10551–10562. https://doi.org/10.1016/j.aej.2022.04.004 doi: 10.1016/j.aej.2022.04.004
![]() |
[41] |
A. Qazza, R. Saadeh, On the analytical solution of fractional SIR epidemic model, Appl. Comput. Intell. Soft Comput., 2023 (2023), 1–16. https://doi.org/10.1155/2023/6973734 doi: 10.1155/2023/6973734
![]() |
[42] |
A. El-Ajou, H. Al-ghananeem, R. Saadeh, A. Qazza, M. N. Oqielat, A modern analytic method to solve singular and non-singular linear and non-linear differential equations, Front. Phys., 11 (2023), 271. https://doi.org/10.3389/fphy.2023.1167797 doi: 10.3389/fphy.2023.1167797
![]() |
[43] |
E. Salah, A. Qazza, R. Saadeh, A. El-Ajou, A hybrid analytical technique for solving multi-dimensional time-fractional Navier-Stokes system, AIMS Math., 8 (2023), 1713–1736. https://doi.org/10.3934/math.2023088 doi: 10.3934/math.2023088
![]() |
[44] |
E. Salah, R. Saadeh, A. Qazza, R. Hatamleh, Direct power series approach for solving nonlinear initial value problems, Axioms, 12 (2023), 1–21. https://doi.org/10.3390/axioms12020111 doi: 10.3390/axioms12020111
![]() |
[45] |
D. Baleanu, M. Inc, A. I. Aliyu, A. Yusuf, Dark optical solitons and conservation laws to the resonance nonlinear Schrödinger's equation with Kerr law nonlinearity, Optik, 147 (2017), 248–255. https://doi.org/10.1016/j.ijleo.2017.08.080 doi: 10.1016/j.ijleo.2017.08.080
![]() |
[46] |
A. Qazza, M. Abdoon, R. Saadeh, M. Berir, A new scheme for solving a fractional differential equation and a chaotic system, Eur. J. Pure Appl. Math., 16 (2023), 1128–1139. https://doi.org/10.29020/nybg.ejpam.v16i2.4769 doi: 10.29020/nybg.ejpam.v16i2.4769
![]() |
[47] |
R. Saadeh, M. A. Abdoon, A. Qazza, M. Berir, A numerical solution of generalized Caputo fractional initial value problems, Fractal Fract., 7 (2023), 1–12. https://doi.org/10.3390/fractalfract7040332 doi: 10.3390/fractalfract7040332
![]() |
[48] |
N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298–305. https://doi.org/10.1016/S0375-9601(00)00201-2 doi: 10.1016/S0375-9601(00)00201-2
![]() |
[49] |
N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 056108. https://doi.org/10.1103/PhysRevE.66.056108 doi: 10.1103/PhysRevE.66.056108
![]() |
[50] |
M. Naber, Time fractional Schrödinger equation, J. Math. Phys., 45 (2004), 3339–3352. https://doi.org/10.1063/1.1769611 doi: 10.1063/1.1769611
![]() |
[51] |
X. Y. Jiang, Time-space fractional Schrödinger like equation with a nonlocal term, Eur. Phys. J. Spec. Top., 193 (2011), 61–70. https://doi.org/10.1140/epjst/e2011-01381-7 doi: 10.1140/epjst/e2011-01381-7
![]() |
[52] | O. Abu Arqub, Application of residual power series method for the solution of time-fractional Schrödinger equations in one-dimensional space, Fund. Inform., 166 (2019), 87–110. |
[53] |
G. W. Wang, Q. Zhou, A. S. Alshormani, A. Biswas, Explicit optical dromions with Kerr law having fractional temporal evolution, Fractals, 31 (2023), 2350056. https://doi.org/10.1142/S0218348X23500561 doi: 10.1142/S0218348X23500561
![]() |
[54] |
G. W. Wang, A new (3+1)-dimensional Schrödinger equation: derivation, soliton solutions and conservation laws, Nonlinear Dyn., 104 (2021), 1595–1602. https://doi.org/10.1007/s11071-021-06359-6 doi: 10.1007/s11071-021-06359-6
![]() |
[55] |
R. Santana-Carrillo, J. M. V. Peto, G. H. Sun, S. H. Dong, Quantum information entropy for a hyperbolic double well potential in the fractional Schrödinger equation, Entropy, 25 (2023), 1–10. https://doi.org/10.3390/e25070988 doi: 10.3390/e25070988
![]() |
[56] |
A. Qazza, R. Hatamleh, The existence of a solution for semi-linear abstract differential equations with infinite B-chains of the characteristic sheaf, Int. J. Appl. Math., 31 (2018), 611–620. https://doi.org/10.12732/ijam.v31i5.7 doi: 10.12732/ijam.v31i5.7
![]() |
[57] |
J. W. Wang, X. X. Jiang, X. H. Yang, H. X. Zhang, A nonlinear compact method based on double reduction order scheme for the nonlocal fourth-order PDEs with Burgers' type nonlinearity, J. Appl. Math. Comput., 70 (2024), 489–511. https://doi.org/10.1007/s12190-023-01975-4 doi: 10.1007/s12190-023-01975-4
![]() |
[58] |
W. Xiao, X. H. Yang, Z. Y. Zhou, Pointwise-in-time α-robust error estimate of the ADI difference scheme for three-dimensional fractional subdiffusion equations with variable coefficients, Commun. Anal. Mech., 16 (2024), 53–70. https://doi.org/10.3934/cam.2024003 doi: 10.3934/cam.2024003
![]() |
[59] |
A. M. Qazza, R. M. Hatamleh, N. A. Alodat, About the solution stability of Volterra integral equation with Random kernel, Far East J. Math. Sci. (FJMS), 100 (2016), 671–680. https://doi.org/10.17654/ms100050671 doi: 10.17654/ms100050671
![]() |
[60] |
L. D. Zhao, Y. H. Chen, Comments on "A novel approach to approximate fractional derivative with uncertain conditions", Chaos Solitons Fract., 154 (2022), 111651. https://doi.org/10.1016/j.chaos.2021.111651 doi: 10.1016/j.chaos.2021.111651
![]() |
[61] |
L. D. Zhao, A note on "Cluster synchronization of fractional-order directed networks via intermittent pinning control", Phys. A, 561 (2021), 125150. https://doi.org/10.1016/j.physa.2020.125150 doi: 10.1016/j.physa.2020.125150
![]() |
[62] |
J. B. Hu, G. P. Lu, S. B. Zhang, L. D. Zhao, Lyapunov stability theorem about fractional system without and with delay, Commun. Nonlinear Sci. Numer. Simul., 20 (2015), 905–913. https://doi.org/10.1016/j.cnsns.2014.05.013 doi: 10.1016/j.cnsns.2014.05.013
![]() |
1. | Waqar Afzal, Khurram Shabbir, Thongchai Botmart, Generalized version of Jensen and Hermite-Hadamard inequalities for interval-valued (h_1, h_2) -Godunova-Levin functions, 2022, 7, 2473-6988, 19372, 10.3934/math.20221064 | |
2. | Muhammad Bilal Khan, Omar Mutab Alsalami, Savin Treanțǎ, Tareq Saeed, Kamsing Nonlaopon, New class of convex interval-valued functions and Riemann Liouville fractional integral inequalities, 2022, 7, 2473-6988, 15497, 10.3934/math.2022849 | |
3. | Miguel J. Vivas-Cortez, Hasan Kara, Hüseyin Budak, Muhammad Aamir Ali, Saowaluck Chasreechai, Generalized fractional Hermite-Hadamard type inclusions for co-ordinated convex interval-valued functions, 2022, 20, 2391-5455, 1887, 10.1515/math-2022-0477 | |
4. | Tareq Saeed, Eze R. Nwaeze, Muhammad Bilal Khan, Khalil Hadi Hakami, New Version of Fractional Pachpatte-Type Integral Inequalities via Coordinated ℏ-Convexity via Left and Right Order Relation, 2024, 8, 2504-3110, 125, 10.3390/fractalfract8030125 | |
5. | HAIYANG CHENG, DAFANG ZHAO, GUOHUI ZHAO, FRACTIONAL QUANTUM HERMITE–HADAMARD-TYPE INEQUALITIES FOR INTERVAL-VALUED FUNCTIONS, 2023, 31, 0218-348X, 10.1142/S0218348X23501049 | |
6. | Haiyang Cheng, Dafang Zhao, Guohui Zhao, Delfim F. M. Torres, New quantum integral inequalities for left and right log-ℏ-convex interval-valued functions, 2024, 31, 1072-947X, 381, 10.1515/gmj-2023-2088 |