Research article Special Issues

A new approach in handling one-dimensional time-fractional Schrödinger equations

  • Received: 22 November 2023 Revised: 01 February 2024 Accepted: 07 February 2024 Published: 18 March 2024
  • MSC : 32A05, 35R11, 41A58

  • Our aim of this paper was to present the accurate analytical approximate series solutions to the time-fractional Schrödinger equations via the Caputo fractional operator using the Laplace residual power series technique. Furthermore, three important and interesting applications were given, tested, and compared with four well-known methods (Adomian decomposition, homotopy perturbation, homotopy analysis, and variational iteration methods) to show that the proposed technique was simple, accurate, efficient, and applicable. When there was a pattern between the terms of the series, we could obtain the exact solutions; otherwise, we provided the approximate series solutions. Finally, graphical results were presented and analyzed. Mathematica software was used to calculate numerical and symbolic quantities.

    Citation: Ahmad El-Ajou, Rania Saadeh, Moawaih Akhu Dunia, Ahmad Qazza, Zeyad Al-Zhour. A new approach in handling one-dimensional time-fractional Schrödinger equations[J]. AIMS Mathematics, 2024, 9(5): 10536-10560. doi: 10.3934/math.2024515

    Related Papers:

  • Our aim of this paper was to present the accurate analytical approximate series solutions to the time-fractional Schrödinger equations via the Caputo fractional operator using the Laplace residual power series technique. Furthermore, three important and interesting applications were given, tested, and compared with four well-known methods (Adomian decomposition, homotopy perturbation, homotopy analysis, and variational iteration methods) to show that the proposed technique was simple, accurate, efficient, and applicable. When there was a pattern between the terms of the series, we could obtain the exact solutions; otherwise, we provided the approximate series solutions. Finally, graphical results were presented and analyzed. Mathematica software was used to calculate numerical and symbolic quantities.



    加载中


    [1] G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results, Comput. Math. Appl., 51 (2006), 1367–1376. https://doi.org/10.1016/j.camwa.2006.02.001 doi: 10.1016/j.camwa.2006.02.001
    [2] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85.
    [3] M. C. Caputo, D. F. M. Torres, Duality for the left and right fractional derivatives, Signal Process., 107 (2015), 265–271. https://doi.org/10.1016/j.sigpro.2014.09.026 doi: 10.1016/j.sigpro.2014.09.026
    [4] Y. Y. Gambo, F. Jarad, D. Baleanu, T. Abdeljawad, On Caputo modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2014 (2014), 1–12. https://doi.org/10.1186/1687-1847-2014-10 doi: 10.1186/1687-1847-2014-10
    [5] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [6] S. Kazem, Exact solution of some linear fractional differential equations by Laplace transform, Int. J. Nonlinear Sci., 16 (2013), 3–11.
    [7] A. Burqan, M. Shqair, A. El-Ajou, Z. Al-Zhour, Analytical solutions to the coupled fractional neutron diffusion equations with delayed neutrons system using Laplace transform method, AIMS Math., 8 (2023), 19297–19312. https://doi.org/10.3934/math.2023984 doi: 10.3934/math.2023984
    [8] Y. Z. Hu, Y. Luo, Z. Y. Lu, Analytical solution of the linear fractional differential equation by Adomian decomposition method, J. Comput. Appl. Math., 215 (2008), 220–229. https://doi.org/10.1016/j.cam.2007.04.005 doi: 10.1016/j.cam.2007.04.005
    [9] A. Bibi, A. Kamran, U. Hayat, S. T. Mohyud-Din, New iterative method for time-fractional Schrödinger equations, World J. Model. Simul., 9 (2013), 89–95.
    [10] A. Sadighi, D. D. Ganji, Analytic treatment of linear and nonlinear Schrödinger equations: a study with homotopy-perturbation and Adomian decomposition methods, Phys. Lett. A, 372 (2008), 465–469. https://doi.org/10.1016/j.physleta.2007.07.065 doi: 10.1016/j.physleta.2007.07.065
    [11] I. Podlubny, A. Chechkin, T. Skovranek, Y. Q. Chen, B. M. Vinagre, Matrix approach to discrete fractional calculus Ⅱ: Partial fractional differential equations, J. Comput. Phys., 228 (2009), 3137–3153. https://doi.org/10.1016/j.jcp.2009.01.014 doi: 10.1016/j.jcp.2009.01.014
    [12] A. Saadatmandi, M. Dehghan, A new operational matrix for solving fractional-order differential equations, Comput. Math. Appl., 59 (2010), 1326–1336. https://doi.org/10.1016/j.camwa.2009.07.006 doi: 10.1016/j.camwa.2009.07.006
    [13] X. J. Yang, J. A. T. Machado, H. M. Srivastava, A new numerical technique for solving the local fractional diffusion equation: two-dimensional extended differential transform approach, Appl. Math. Comput., 274 (2016), 143–151. https://doi.org/10.1016/j.amc.2015.10.072 doi: 10.1016/j.amc.2015.10.072
    [14] F. Saba, S. Jabeen, S. T. Mohyud-Din, Homotopy analysis transform method for time-fractional Schrödinger equations, Int. J. Modern Math. Sci., 7 (2013), 26–40.
    [15] N. A. Khan, M. Jamil, A. Ara, Approximate solutions to time-fractional Schrödinger equation via homotopy analysis method, Int. Scholarly Res. Notices, 2012 (2012), 1–11. https://doi.org/10.5402/2012/197068 doi: 10.5402/2012/197068
    [16] A. K. Alomari, M. S. M. Noorani, R. Nazar, Explicit series solutions of some linear and nonlinear Schrödinger equations via the homotopy analysis method, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 1196–1207. https://doi.org/10.1016/j.cnsns.2008.01.008 doi: 10.1016/j.cnsns.2008.01.008
    [17] A. Yildirim, An algorithm for solving the fractional nonlinear Schrödinger equation by means of the homotopy perturbation method, Int. J. Nonlinear Sci. Numer. Simul., 10 (2009), 445–450. https://doi.org/10.1515/IJNSNS.2009.10.4.445 doi: 10.1515/IJNSNS.2009.10.4.445
    [18] S. Momani, Z. Odibat, Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations, Comput. Math. Appl., 54 (2007), 910–919. https://doi.org/10.1016/j.camwa.2006.12.037 doi: 10.1016/j.camwa.2006.12.037
    [19] B. J. Hong, D. C. Lu, Modified fractional variational iteration method for solving the generalized time-space fractional Schrödinger equation, Sci. World J., 2014 (2014), 1–6. https://doi.org/10.1155/2014/964643 doi: 10.1155/2014/964643
    [20] A. M. Wazwaz, A study on linear and nonlinear Schrodinger equations by the variational iteration method, Chaos Solitons Fract., 37 (2008), 1136–1142. https://doi.org/10.1016/j.chaos.2006.10.009 doi: 10.1016/j.chaos.2006.10.009
    [21] M. N. Oqielat, A. El-Ajou, Z. Al-Zhour, R. Alkhasawneh, H. Alrabaiah, Series solutions for nonlinear time-fractional Schrödinger equations: comparisons between conformable and Caputo derivatives, Alex. Eng. J., 59 (2020), 2101–2114. https://doi.org/10.1016/j.aej.2020.01.023 doi: 10.1016/j.aej.2020.01.023
    [22] A. El-Ajou, M. N. Oqielat, Z. Al-Zhour, S. Momani, A class of linear non-homogenous higher order matrix fractional differential equations: analytical solutions and new technique, Fract. Calc. Appl. Anal., 23 (2020), 356–377. https://doi.org/10.1515/fca-2020-0017 doi: 10.1515/fca-2020-0017
    [23] A. El-Ajou, Taylor's expansion for fractional matrix functions: theory and applications, J. Math. Comput. Sci., 21 (2020), 1–17. http://dx.doi.org/10.22436/jmcs.021.01.01 doi: 10.22436/jmcs.021.01.01
    [24] A. El-Ajou, M. Al-Smadi, M. N. Oqielat, S. Momani, S. Hadid, Smooth expansion to solve high-order linear conformable fractional PDEs via residual power series method: applications to physical and engineering equations, Ain Shams Eng. J., 11 (2020), 1243–1254. https://doi.org/10.1016/j.asej.2020.03.016 doi: 10.1016/j.asej.2020.03.016
    [25] A. Qazza, A. Burqan, R. Saadeh, Application of ARA-residual power series method in solving systems of fractional differential equations, Math. Probl. Eng., 2022 (2022), 1–17. https://doi.org/10.1155/2022/6939045 doi: 10.1155/2022/6939045
    [26] K. Shah, H. Naz, M. Sarwar, T. Abdeljawad, On spectral numerical method for variable-order partial differential equations, AIMS Math., 7 (2022), 10422–10438. http://dx.doi.org/10.3934/math.2022581 doi: 10.3934/math.2022581
    [27] K. Shah, M. Arfan, A. Ullah, Q. Al-Mdallal, K. J. Ansari, T. Abdeljawad, Computational study on the dynamics of fractional order differential equations with applications, Chaos Solitons Fract., 157 (2022), 111955. https://doi.org/10.1016/j.chaos.2022.111955 doi: 10.1016/j.chaos.2022.111955
    [28] K. Shah, T. Abdeljawad, A. Ali, Mathematical analysis of the Cauchy type dynamical system under piecewise equations with Caputo fractional derivative, Chaos Solitons Fract., 161 (2022), 112356. https://doi.org/10.1016/j.chaos.2022.112356 doi: 10.1016/j.chaos.2022.112356
    [29] S. Ali, A. Khan, K. Shah, M. A. Alqudah, T. Abdeljawad, Siraj-ul-Islam, On computational analysis of highly nonlinear model addressing real world applications, Results Phys., 36 (2022), 105431. https://doi.org/10.1016/j.rinp.2022.105431 doi: 10.1016/j.rinp.2022.105431
    [30] B. Ghanbari, D. Baleanu, New optical solutions of the fractional Gerdjikov-Ivanov equation with conformable derivative, Front. Phys., 8 (2020), 167. https://doi.org/10.3389/fphy.2020.00167 doi: 10.3389/fphy.2020.00167
    [31] B. Ghanbari, D. Baleanu, M. Al Qurashi, New exact solutions of the generalized Benjamin-Bona-Mahony equation, Symmetry, 11 (2019), 1–12. https://doi.org/10.3390/sym11010020 doi: 10.3390/sym11010020
    [32] B. Ghanbari, C. K. Kuo, New exact wave solutions of the variable-coefficient (1+1)-dimensional Benjamin-Bona-Mahony and (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov equations via the generalized exponential rational function method, Eur. Phys. J. Plus, 134 (2019), 334. https://doi.org/10.1140/epjp/i2019-12632-0 doi: 10.1140/epjp/i2019-12632-0
    [33] K. Shah, A. R. Seadawy, M. Arfan, Evaluation of one dimensional fuzzy fractional partial differential equations, Alex. Eng. J., 59 (2020), 3347–3353. https://doi.org/10.1016/j.aej.2020.05.003 doi: 10.1016/j.aej.2020.05.003
    [34] A. Mohebbi, M. Abbaszadeh, M. Dehghan, The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation arising in quantum mechanics, Eng. Anal. Bound. Elem., 37 (2013), 475–485. https://doi.org/10.1016/j.enganabound.2012.12.002 doi: 10.1016/j.enganabound.2012.12.002
    [35] T. Eriqat, A. El-Ajou, M. Oqielat, Z. Al-Zhour, S. Momani, A new attractive analytic approach for solutions of linear and nonlinear neutral fractional pantograph equations, Chaos Solitons Fract., 138 (2020), 109957. https://doi.org/10.1016/j.chaos.2020.109957 doi: 10.1016/j.chaos.2020.109957
    [36] A. El-Ajou, Adapting the Laplace transform to create solitary solutions for the nonlinear time-fractional dispersive PDEs via a new approach, Eur. Phys. J. Plus, 136 (2021), 229. https://doi.org/10.1140/epjp/s13360-020-01061-9 doi: 10.1140/epjp/s13360-020-01061-9
    [37] A. El-Ajou, Z. Al-Zhour, A vector series solution for a class of hyperbolic system of Caputo time-fractional partial differential equations with variable coefficients, Front. Phys., 9 (2021), 525250. https://doi.org/10.3389/fphy.2021.525250 doi: 10.3389/fphy.2021.525250
    [38] A. Burqan, A. El-Ajou, R. Saadeh, M. Al-Smadi, A new efficient technique using Laplace transforms and smooth expansions to construct a series solution to the time-fractional Navier-Stokes equations, Alex. Eng. J., 61 (2022), 1069–1077. https://doi.org/10.1016/j.aej.2021.07.020 doi: 10.1016/j.aej.2021.07.020
    [39] M. N. Oqielat, A. El-Ajou, Z. Al-Zhour, T. Eriqat, M. Al-Smadi, A new approach to solving fuzzy quadratic Riccati differential equations, Int. J. Fuzzy Logic Intell. Syst., 22 (2022), 23–47. https://doi.org/10.5391/IJFIS.2022.22.1.23 doi: 10.5391/IJFIS.2022.22.1.23
    [40] R. Saadeh, A. Burqan, A. El-Ajou, Reliable solutions to fractional Lane-Emden equations via Laplace transform and residual error function, Alex. Eng. J., 61 (2022), 10551–10562. https://doi.org/10.1016/j.aej.2022.04.004 doi: 10.1016/j.aej.2022.04.004
    [41] A. Qazza, R. Saadeh, On the analytical solution of fractional SIR epidemic model, Appl. Comput. Intell. Soft Comput., 2023 (2023), 1–16. https://doi.org/10.1155/2023/6973734 doi: 10.1155/2023/6973734
    [42] A. El-Ajou, H. Al-ghananeem, R. Saadeh, A. Qazza, M. N. Oqielat, A modern analytic method to solve singular and non-singular linear and non-linear differential equations, Front. Phys., 11 (2023), 271. https://doi.org/10.3389/fphy.2023.1167797 doi: 10.3389/fphy.2023.1167797
    [43] E. Salah, A. Qazza, R. Saadeh, A. El-Ajou, A hybrid analytical technique for solving multi-dimensional time-fractional Navier-Stokes system, AIMS Math., 8 (2023), 1713–1736. https://doi.org/10.3934/math.2023088 doi: 10.3934/math.2023088
    [44] E. Salah, R. Saadeh, A. Qazza, R. Hatamleh, Direct power series approach for solving nonlinear initial value problems, Axioms, 12 (2023), 1–21. https://doi.org/10.3390/axioms12020111 doi: 10.3390/axioms12020111
    [45] D. Baleanu, M. Inc, A. I. Aliyu, A. Yusuf, Dark optical solitons and conservation laws to the resonance nonlinear Schrödinger's equation with Kerr law nonlinearity, Optik, 147 (2017), 248–255. https://doi.org/10.1016/j.ijleo.2017.08.080 doi: 10.1016/j.ijleo.2017.08.080
    [46] A. Qazza, M. Abdoon, R. Saadeh, M. Berir, A new scheme for solving a fractional differential equation and a chaotic system, Eur. J. Pure Appl. Math., 16 (2023), 1128–1139. https://doi.org/10.29020/nybg.ejpam.v16i2.4769 doi: 10.29020/nybg.ejpam.v16i2.4769
    [47] R. Saadeh, M. A. Abdoon, A. Qazza, M. Berir, A numerical solution of generalized Caputo fractional initial value problems, Fractal Fract., 7 (2023), 1–12. https://doi.org/10.3390/fractalfract7040332 doi: 10.3390/fractalfract7040332
    [48] N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298–305. https://doi.org/10.1016/S0375-9601(00)00201-2 doi: 10.1016/S0375-9601(00)00201-2
    [49] N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 056108. https://doi.org/10.1103/PhysRevE.66.056108 doi: 10.1103/PhysRevE.66.056108
    [50] M. Naber, Time fractional Schrödinger equation, J. Math. Phys., 45 (2004), 3339–3352. https://doi.org/10.1063/1.1769611 doi: 10.1063/1.1769611
    [51] X. Y. Jiang, Time-space fractional Schrödinger like equation with a nonlocal term, Eur. Phys. J. Spec. Top., 193 (2011), 61–70. https://doi.org/10.1140/epjst/e2011-01381-7 doi: 10.1140/epjst/e2011-01381-7
    [52] O. Abu Arqub, Application of residual power series method for the solution of time-fractional Schrödinger equations in one-dimensional space, Fund. Inform., 166 (2019), 87–110.
    [53] G. W. Wang, Q. Zhou, A. S. Alshormani, A. Biswas, Explicit optical dromions with Kerr law having fractional temporal evolution, Fractals, 31 (2023), 2350056. https://doi.org/10.1142/S0218348X23500561 doi: 10.1142/S0218348X23500561
    [54] G. W. Wang, A new (3+1)-dimensional Schrödinger equation: derivation, soliton solutions and conservation laws, Nonlinear Dyn., 104 (2021), 1595–1602. https://doi.org/10.1007/s11071-021-06359-6 doi: 10.1007/s11071-021-06359-6
    [55] R. Santana-Carrillo, J. M. V. Peto, G. H. Sun, S. H. Dong, Quantum information entropy for a hyperbolic double well potential in the fractional Schrödinger equation, Entropy, 25 (2023), 1–10. https://doi.org/10.3390/e25070988 doi: 10.3390/e25070988
    [56] A. Qazza, R. Hatamleh, The existence of a solution for semi-linear abstract differential equations with infinite B-chains of the characteristic sheaf, Int. J. Appl. Math., 31 (2018), 611–620. https://doi.org/10.12732/ijam.v31i5.7 doi: 10.12732/ijam.v31i5.7
    [57] J. W. Wang, X. X. Jiang, X. H. Yang, H. X. Zhang, A nonlinear compact method based on double reduction order scheme for the nonlocal fourth-order PDEs with Burgers' type nonlinearity, J. Appl. Math. Comput., 70 (2024), 489–511. https://doi.org/10.1007/s12190-023-01975-4 doi: 10.1007/s12190-023-01975-4
    [58] W. Xiao, X. H. Yang, Z. Y. Zhou, Pointwise-in-time α-robust error estimate of the ADI difference scheme for three-dimensional fractional subdiffusion equations with variable coefficients, Commun. Anal. Mech., 16 (2024), 53–70. https://doi.org/10.3934/cam.2024003 doi: 10.3934/cam.2024003
    [59] A. M. Qazza, R. M. Hatamleh, N. A. Alodat, About the solution stability of Volterra integral equation with Random kernel, Far East J. Math. Sci. (FJMS), 100 (2016), 671–680. https://doi.org/10.17654/ms100050671 doi: 10.17654/ms100050671
    [60] L. D. Zhao, Y. H. Chen, Comments on "A novel approach to approximate fractional derivative with uncertain conditions", Chaos Solitons Fract., 154 (2022), 111651. https://doi.org/10.1016/j.chaos.2021.111651 doi: 10.1016/j.chaos.2021.111651
    [61] L. D. Zhao, A note on "Cluster synchronization of fractional-order directed networks via intermittent pinning control", Phys. A, 561 (2021), 125150. https://doi.org/10.1016/j.physa.2020.125150 doi: 10.1016/j.physa.2020.125150
    [62] J. B. Hu, G. P. Lu, S. B. Zhang, L. D. Zhao, Lyapunov stability theorem about fractional system without and with delay, Commun. Nonlinear Sci. Numer. Simul., 20 (2015), 905–913. https://doi.org/10.1016/j.cnsns.2014.05.013 doi: 10.1016/j.cnsns.2014.05.013
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(722) PDF downloads(85) Cited by(3)

Article outline

Figures and Tables

Figures(2)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog