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1. Introduction 

Fractional operators are concerned with the derivatives and integrals of non-integer orders, and 

there were many ancient and modern definitions of the fractional derivative and integral. Some of them 

have received attention from researchers because they have been used to represent many natural 
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phenomena in all sciences, such as the definition of Grünwald-Letnikov, Riemann-Liouville, and 

Caputo as well [1–5]. Since there are no exact analytical solutions for most nonlinear fractional 

differential equations, many analytic and numerical methods have been proposed to solve them. For 

example, the Laplace transform methodology [6,7], Adomian decomposition method [8–10], 

operational matrix method [11,12], partial differential transformation method [13], homotopy analysis 

method [14–16], homotopy perturbation method [10,17,18], variational iteration method [18–20], 

residual power series (RPS) technique [21–25], analytical spectral method [26], Adam’s-Bashforth 

numerical technique [27], Newton polynomials of interpolation [28], Haar wavelets method [29], 

analytical generalized exponential rational function method [30–32], Laplace transform with 

decomposition method [33], and meshless numerical technique [34]. 

Eriqat et al. [35] introduced the Laplace residual power series (LRPS) method to adapt the Laplace 

transform to solve the nonlinear fractional differential equations based on the RPS method. The LRPS 

method is a simple and effective analytical technique that is used to construct the series solutions of 

fractional differential equations by applying the Laplace transform and solving the obtained result 

using the concepts of the Laurent expansion and the limit at infinity. The inverse Laplace transform returns 

the solution to the original space and obtains the series solution to the target equation. El-Ajou [36] 

obtained the solitary solutions for the nonlinear time-fractional dispersive PDEs, El-Ajou and Al-

Zhour [37] created a vector series solution for a class of hyperbolic system of Caputo-time-fractional 

PDEs with variable coefficients, Burqan et al. [38] constructed the series solution to the time-fractional 

Navier-Stokes equations, Oqielat et al. [39] solved the fuzzy quadratic Riccati differential equations, 

and Saadeh et al. [40] introduced the reliable solutions to the fractional Lane-Emden equations via the 

LRPS approach. Moreover, several works on solving different types of fractional differential equations 

using the LRPS method can be found in the literature [41–44]. 

The Schrödinger equation [10,16,38,45] is a fundamental equation in quantum mechanics that 

describes how quantum systems, such as electrons or atoms, evolve in time. It is named after the 

Austrian physicist Erwin Schrödinger, who first proposed it in 1926. This equation is a partial 

differential equation (PDE) that relates the wave function (or state function) of a quantum system to 

its position, momentum, and energy, and it describes the wave-like nature of quantum particles and the 

probability of finding a particle in a specific location at a specific time. The wave function describes 

the probability amplitude of a particle, and it is a key concept in quantum mechanics. The Schrödinger 

equation is a key tool in understanding the behavior of quantum systems and is used to calculate 

various properties such as energy levels, transition probabilities, and wave functions. It plays a central 

role in many areas of physics, including quantum mechanics and quantum chemistry. Quantum 

mechanics with the Schrödinger equation is a subset of quantum theory whose primary flaw is that it 

is a non-relativistic theory. This theory explains the significant phenomena such as the quantization of 

energy state in hydrogen atoms. The indeterminacy principle can be derived from Schrödinger's 

quantum mechanics, which is of philosophical relevance [45,46]. Finally, for more details about the 

reasons and physical meaning of fractional calculus, kindly refer to the literature [47]. 

The fractional Schrödinger equation (FSE) [48–51] is a generalization of the conventional 

Schrödinger equation, which is derived from fractional quantum mechanics, according to the expansion 

using Feynman path integral from Brownian-like to Lévy-like quantum mechanical paths [48]. Instead of 

the first-order time derivative in the regular Schrödinger equation, the FSE incorporates an 𝛼 -

fractional-order time derivative. The fundamental theory behind the solution concept for time-FSE is 

considerable and intriguing, and it is a topic of current scientific, theoretical, and engineering studies 
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in the broad sense [49–51]. 

One of the most general forms of the one-dimensional FSE is the following form [52]: 

𝑖𝐷𝑡
𝛼𝜓(𝑥, 𝑡) + 𝛿𝜓𝑥𝑥(𝑥, 𝑡) + 𝛾|𝜓(𝑥, 𝑡)|

2𝜓(𝑥, 𝑡) + 𝜙(𝑥)𝜓(𝑥, 𝑡) = 0, 𝑥 ∈ ℝ, 𝑡 ≥ 𝑡0, 0 < 𝛼 ≤ 1, (1.1) 

subject to the initial condition: 

𝜓(𝑥, 𝑡0) = 𝜁(𝑥),          (1.2) 

where 𝑖2 = −1, 𝐷𝑡
𝛼 is the Caputo time-fractional derivative of order 𝛼, the constants 𝛿, 𝛾 ∈ ℝ, and |. | 

is the modulus. The multivariable function 𝜓 is the macroscopic wave function of the condensate, the 

single variable 𝜙(𝑥)  is the external trapping potential analytic function, and 𝜁(𝑥)  is an analytic 

displacement function. 

As is known to the research community, there is no single way to solve differential equations. 

Therefore, researchers' efforts focus on searching for new ways to solve various types of differential 

and non-differential equations. Researchers strive for these methods to provide speed, less effort, and 

accuracy, in addition to their ability to solve a wider range of equations. Problem (1.1) with (1.2) has 

been solved in several ways such as Adomian decomposition [10], homotopy perturbation [10], 

homotopy analysis [16], variational iteration [20], and RPS [21] methods. Each method has its 

advantages and disadvantages. They all arrived at the same solution, but each method had different 

advantages. 

We aim to adapt and test the LRPS method to generate exact and accurate approximate analytical 

solutions for the time-FSE of one dimension in the context of the initial value problem (IVP) (1.1) with (1.2). 

The purpose is to demonstrate that the LRPS method is a simple, efficient, and applicable way to solve 

the IVP (1.1) with (1.2), without requiring differentiation, linearization, or discretization like other 

methods. One of the advantages of this method is that it can adapt the Laplace transform to solve non-

linear equations. The solution is expressed as an infinite series that rapidly converges to the exact 

solution. The LRPS method requires only defining the LRPS function and taking the limit at infinity, 

which can be computed without computer programs. In cases where the Mathematica software is used, 

the method requires less computational time than other methods. The accuracy of the obtained 

solutions is tested by analyzing two types of errors: Absolute, and relative errors. To study the behavior 

of solutions by changing the order of the fractional derivatives in FSE and to estimate the region of 

convergence for the series solutions, graphical solutions in three dimensions are considered. 

Additionally, three important and interesting examples are given and discussed to show that the 

proposed method is accurate, efficient, and applicable. 

2. Basic results on fractional and Laplace operators 

This section reviews some basic concepts on fractional operators that are very important to get 

our results in other sections below. 

Definition 2.1. [2] The Caputo time-fractional derivative of order 𝛼 ∈ (𝑚 − 1,𝑚]  of the 

multivariable function 𝜓(𝑥, 𝑡) is defined as 

𝐷𝑡
𝛼𝜓(𝑥, 𝑡) = {

1

Γ(𝑛−𝛼)
∫ (𝑡 − 𝜉)𝑛−𝛼−1𝜕𝜉

𝑛𝜓(𝑥, 𝜉)𝑑𝜉
𝑡

0
, 𝑚 − 1 < 𝛼 < 𝑚, 

𝜕𝑡
𝑚𝜓(𝑥, 𝑡) =

𝜕𝑚

𝜕𝑡𝑚
𝜓(𝑥, 𝑡),                      𝛼 = 𝑚, 𝑚 ∈ 𝑁.

  (2.1) 
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where Γ(∙) is the Gamma function. 

Definition 2.2. [6] If the following improper integral 

Ψ(𝑥, 𝑠) = ∫  
∞

0
𝑒−𝑠𝑡𝜓(𝑥, 𝑡)𝑑𝑡        (2.2) 

exists for all 𝑠 in some a domain 𝐷 ⊆ ℂ, then Ψ(𝑥, 𝑠) is called the Laplace transform of 𝜓(𝑥, 𝑡), 

and denoted by ℒ[𝜓(𝑥, 𝑡)](𝑥, 𝑠).  The original function 𝜓(𝑥, 𝑡)  can be restored from the Laplace 

transform Ψ(𝑥, 𝑠) with the help of the following inverse Laplace transform: 

𝜓(𝑥, 𝑡) = ℒ−1[Ψ(𝑥, 𝑠)] =
1

2𝜋𝑖
∫  
𝑐+𝑖∞

𝑐−𝑖∞
𝑒𝑠𝑡Ψ(𝑥, 𝑠)𝑑𝑠, 𝑐 = Re(𝑠) > 𝑐0,    (2.3) 

where 𝑐0 lies in the right half plane of the absolute convergence of the Laplace integral. 

Here are some of the necessary properties of LT and its inverse that will be used in our work. 

Lemma 2.3. [36] Let 𝜓(𝑥, 𝑡) be a piecewise continuous function on 𝐼 × [0,∞) and of exponential 

order, and Ψ(𝑥, 𝑠) = ℒ[𝜓(𝑥, 𝑡)]. Then, we have 

(i) lim𝑠→∞  𝑠Ψ(𝑥, 𝑠) = 𝜓(𝑥, 0). 

(ii) ℒ[𝐷𝑡
𝛼𝜓(𝑥, 𝑡)] = 𝑠𝛼Ψ(𝑥, 𝑠) − ∑ 𝑠𝛼−𝑘−1 ∂𝑡

𝑘𝜓(𝑥, 0)𝑚−1
𝑘=0   , 𝑚 − 1 < 𝛼 < 𝑚. 

(iii) ℒ[𝐷𝑡
𝑛𝛼𝜓(𝑥, 𝑡)] = 𝑠𝑛𝛼Ψ(𝑥, 𝑠) − ∑ 𝑠(𝑛−𝑘)𝛼−1𝐷𝑡

𝑘𝛼𝜓(𝑥, 0)𝑚−1
𝑘=0 , 0 < 𝛼 < 1. 

Definition 2.4. [23] The 𝛼-power series about 𝑡0 is defined as follows: 

∑  ∞
𝑛=0 𝑓𝑛(𝑥)(𝑡 − 𝑡0)

𝑛𝛼 = 𝑓0(𝑥) + 𝑓1(𝑥)(𝑡 − 𝑡0)
𝛼 + 𝑓2(𝑥)(𝑡 − 𝑡0)

2𝛼 +⋯ , 𝛼 > 0, 𝑡 ≥ 𝑡0, (2.4) 

where the coefficients 𝑓𝑛(𝑥) are functions of 𝑥. 

Theorem 2.5. [23] Suppose that 𝜓(𝑥, 𝑡) has 𝛼-power series representation about 𝑡0 as follows: 

𝜓(𝑥, 𝑡) = ∑ 𝑓𝑛(𝑥)(𝑡 − 𝑡0)
𝑛𝛼∞

𝑛=0 , 0 ≤ 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑥 ∈ 𝐼, 𝑡0 ≤ 𝑡 < 𝑡0 + 𝑅.  (2.5) 

If 𝐷𝑡
𝑛𝛼𝜓(𝑥, 𝑡)  are continuous on 𝐼 × (𝑡0, 𝑡0 + 𝑅) , 𝑛 = 0,1,2,… , then the coefficients 𝑓𝑛(𝑥) 

are given as 

𝑓𝑛(𝑥) =
(𝐷𝑡

𝑛𝛼𝜓)(𝑥,𝑡0)

𝛤(𝑛𝛼+1)
, 𝑛 = 0,1,2,…,      (2.6) 

where 𝐷𝑡
𝑛𝛼 = 𝐷𝑡

𝛼 . 𝐷𝑡
𝛼 …𝐷𝑡

𝛼(𝑛-times). 

Definition 2.6. [36] The 𝛼- singular Laurent series about 𝑠 = 0 is defined as follows: 

∑  ∞
𝑛=0

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
=

𝑓0(𝑥)

𝑠
+
𝑓1(𝑥)

𝑠𝛼+1
+

𝑓2(𝑥)

𝑠2𝛼+1
+⋯ , 𝛼 > 0, 𝑠 > 0,    (2.7) 

where the coefficients 𝑓𝑛(𝑥) are functions of 𝑥. 

Theorem 2.7. [36] Suppose 𝜓(𝑥, 𝑡)  has a Laplace transform over 𝐼 × [0,∞) , such that 

ℒ[𝜓(x, t)] = Ψ(𝑥, 𝑠). Suppose Ψ(𝑥, 𝑠) has the following 𝛼- singular Laurent series representation: 

Ψ(𝑥, 𝑠) = ∑  ∞
𝑛=0

𝑓𝑛(𝑥)

𝑠𝑛𝛼+1
,   0 < 𝛼 ≤ 1,   𝑠 > 0.      (2.8) 

Then, 𝑓𝑛(𝑥) = (𝐷𝑡
𝑛𝛼𝜓)(𝑥, 0). 

Note that the inverse Laplace transform of the 𝛼-singular Laurent series in Theorem 2.6 has the 

following form: 
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𝜓(𝑥, 𝑡) = ∑  ∞
𝑛=0

(𝐷𝑡
𝑛𝛼𝜓)(𝑥,0)

Γ(𝑛𝛼+1)
𝑡𝑛𝛼 , 0 < 𝛼 ≤ 1, 𝑡 ≥ 0,     (2.9) 

which is the 𝛼-power series representation of 𝜓(𝑥, 𝑡) about 𝑡 = 0 that is given in Theorem 2.5. 

Theorem 2.8. [36] Let 𝜓(𝑥, 𝑡) be a piecewise continuous on 𝐼 × [0,∞) and of exponential order 

𝜆(𝑥) and let Ψ(𝑥, 𝑠) = ℒ[𝜓(𝑥, 𝑡)]can be written as the 𝛼- singular Laurent series in the Theorem 2.7. 

If |𝑠ℒ[𝐷𝑡
(𝑛+1)𝛼

𝜓(𝑥, 𝑡)]| ≤ Κ(𝑥) , on 𝐼 × (𝛿, 𝛾]  where 0 < 𝛼 ≤ 1 , then the remainder of the 𝛼 -

singular Laurent expansion in Eq (2.8) becomes 

|𝛺𝑛(𝑥, 𝑠)| ≤
𝛫(𝑥)

𝑠1+(𝑛+1)𝛼
, 𝑥 ∈ 𝐼, 0 ≤ 𝛿 < 𝑠 ≤ 𝛾.     (2.10) 

3. Constructing LRPS solutions to the FSE 

This section adopts the LRPS method for introducing and constructing a new analytical solution 

to the FSE. As we mentioned in Section 1, we transpose Eqs (1.1) and (1.2) to the Laplace space, and 

then we solve the obtained result using the 𝛼-Laurent series. To accomplish this idea, we rewrite the 

complex functions 𝜓(𝑥, 𝑡) and 𝜁(𝑥) in terms of the real and imaginary parts as follows: 

𝜓(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) + 𝑖𝑣(𝑥, 𝑡), 𝜁(𝑥) = 𝑓(𝑥) + 𝑖𝑔(𝑥),     (3.1) 

where 𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡) are multivariable real-valued analytic functions defined for each 𝑥 ∈ 𝐼 ⊆ ℝ , 

𝑡 ≥ 0, and 𝑓(𝑥), 𝑔(𝑥)are real-valued analytic functions defined for each 𝑥 ∈ 𝐼 ⊆ ℝ. 

In any case, Eq (1.1) can be rewritten as 

[𝐷𝑡
𝛼𝑣(𝑥, 𝑡) − 𝛿𝑢𝑥𝑥(𝑥, 𝑡) − 𝛾(𝑢

2(𝑥, 𝑡) + 𝑣2(𝑥, 𝑡))𝑢(𝑥, 𝑡) − 𝜙(𝑥)𝑢(𝑥, 𝑡)] 

−𝑖[𝐷𝑡
𝛼𝑢(𝑥, 𝑡) + 𝛿𝑣𝑥𝑥(𝑥, 𝑡) + 𝛾(𝑢

2(𝑥, 𝑡) + 𝑣2(𝑥, 𝑡))𝑣(𝑥, 𝑡) + 𝜙(𝑥)𝑣(𝑥, 𝑡)] = 0,  (3.2) 

and the initial conditions in Eq (1.2) are as follows: 

𝑖𝑢(𝑥, 0) + 𝑖𝑣(𝑥, 0) = 𝑓(𝑥) + 𝑖𝑔(𝑥),       (3.3) 

Based on that, the time FSE, Eq (1.1), can be transformed into an equivalent system of PDEs as 

follows using the results in (3.1)–(3.3): 

{
𝐷𝑡
𝛼𝑢(𝑥, 𝑡) + 𝛿𝑣𝑥𝑥(𝑥, 𝑡) + 𝛾(𝑢

2(𝑥, 𝑡) + 𝑣2(𝑥, 𝑡))𝑣(𝑥, 𝑡) + 𝜙(𝑥)𝑣(𝑥, 𝑡) = 0,

𝐷𝑡
𝛼𝑣(𝑥, 𝑡) − 𝛿𝑢𝑥𝑥(𝑥, 𝑡) − 𝛾(𝑢

2(𝑥, 𝑡) + 𝑣2(𝑥, 𝑡))𝑢(𝑥, 𝑡) − 𝜙(𝑥)𝑢(𝑥, 𝑡) = 0,
   (3.4) 

subject to the following initial conditions: 

𝑢(𝑥, 0) = 𝑓(𝑥), 𝑣(𝑥, 0) = 𝑔(𝑥).       (3.5) 

The solution of system (3.4), subject to the initial conditions (3.5), is the solution to Eqs (1.1) and (1.2) 

completely. Therefore, we will construct the LRPS solution for the system (3.4). The first step is to 

apply the Laplace transform to the system (3.4) to transfer it to Laplace space and utilize the conditions 

in (3.5), as follows: 
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{
 
 

 
 𝑈(𝑥, 𝑠) −

𝑓(𝑥)

𝑠
+

𝛿

𝑠𝛼
𝑉𝑥𝑥(𝑥, 𝑠) +

𝜙(𝑥)

𝑠𝛼
𝑉(𝑥, 𝑠) +

𝛾

𝑠𝛼
ℒ{(ℒ−1{𝑈(𝑥, 𝑠)})2(ℒ−1{𝑉(𝑥, 𝑠)})}

+
𝛾

𝑠𝛼
ℒ{(ℒ−1{𝑉(𝑥, 𝑠)})3} = 0,                                                                                                   

𝑉(𝑥, 𝑠) −
𝑔(𝑥)

𝑠
−

𝛿

𝑠𝛼
𝑈𝑥𝑥(𝑥, 𝑠) −

𝜙(𝑥)

𝑠𝛼
𝑈(𝑥, 𝑠) −

𝛾

𝑠𝛼
ℒ{(ℒ−1{𝑉(𝑥, 𝑠)})2(ℒ−1{𝑈(𝑥, 𝑠)})}

−
𝛾

𝑠𝛼
ℒ{(ℒ−1{𝑈(𝑥, 𝑠)})3} = 0,                                                                                                     

  (3.6) 

where 𝑈(𝑥, 𝑠) = ℒ{𝑢(𝑥, 𝑡)} and 𝑉(𝑥, 𝑠) = ℒ[𝑣(𝑥, 𝑡)]. 

In the next step, we assume the solution of the algebraic system (3.6), 𝑈(𝑥, 𝑠) and 𝑉(𝑥, 𝑠), has 

the following expansions: 

{
𝑈(𝑥, 𝑠) = ∑

𝑓𝑖(𝑥)

𝑠1+𝑖𝛼
∞
𝑖=0 ,   0 < 𝛼 ≤ 1,   𝑥 ∈ 𝐼,   𝑠 > 0,

𝑉(𝑥, 𝑠) = ∑
𝑔𝑖(𝑥)

𝑠1+𝑖𝛼
∞
𝑖=0 ,   0 < 𝛼 ≤ 1,   𝑥 ∈ 𝐼,   𝑠 > 0.

     (3.7) 

Theorem 2.7 provides the first coefficient of the system (3.7). So, the 𝑘th truncated series of the 

system (3.7) is given by 

{
𝑈𝑘(𝑥, 𝑠) =

𝑓(𝑥)

𝑠
+ ∑

𝑓𝑖(𝑥)

𝑠1+𝑖𝛼
𝑘
𝑖=1 ,   0 < 𝛼 ≤ 1,   𝑥 ∈ 𝐼,   𝑠 > 0,

𝑉𝑘(𝑥, 𝑠) =
𝑔(𝑥)

𝑠
+ ∑

𝑔𝑖(𝑥)

𝑠1+𝑖𝛼
𝑘
𝑖=1 ,   0 < 𝛼 ≤ 1,   𝑥 ∈ 𝐼,   𝑠 > 0.

    (3.8) 

The third step to constructing an LRPS solution is to define the so-called Laplace residual 

functions (LRFs) of the algebraic system (3.4) with (3.5) as follows: 

{
 
 

 
 𝐿𝑅𝑒𝑠1(𝑥, 𝑠) = 𝑈(𝑥, 𝑠) −

𝑓(𝑥)

𝑠
+

𝛿

𝑠𝛼
𝑉𝑥𝑥(𝑥, 𝑠) +

𝜙(𝑥)

𝑠𝛼
𝑉(𝑥, 𝑠)                                      

                             +
𝛾

𝑠𝛼
ℒ{(ℒ−1{𝑈(𝑥, 𝑠)})2(ℒ−1{𝑉(𝑥, 𝑠)})} +

𝛾

𝑠𝛼
ℒ{(ℒ−1{𝑉(𝑥, 𝑠)})3},

𝐿𝑅𝑒𝑠2(𝑥, 𝑠) = 𝑉(𝑥, 𝑠) −
𝑔(𝑥)

𝑠
−

𝛿

𝑠𝛼
𝑈𝑥𝑥(𝑥, 𝑠) −

𝜙(𝑥)

𝑠𝛼
𝑈(𝑥, 𝑠)                                     

                             −
𝛾

𝑠𝛼
ℒ{(ℒ−1{𝑉(𝑥, 𝑠)})2(ℒ−1{𝑈(𝑥, 𝑠)})} −

𝛾

𝑠𝛼
ℒ{(ℒ−1{𝑈(𝑥, 𝑠)})3},

  (3.9) 

then we can define the 𝑘th LRFs as follows: 

{
 
 

 
 𝐿𝑅𝑒𝑠𝑘

1(𝑥, 𝑠) = 𝑈𝑘(𝑥, 𝑠) −
𝑓(𝑥)

𝑠
+

𝛿

𝑠𝛼
(𝑉𝑘)𝑥𝑥(𝑥, 𝑠) +

𝜙(𝑥)

𝑠𝛼
𝑉𝑘(𝑥, 𝑠)                                  

                          +
𝛾

𝑠𝛼
ℒ{(ℒ−1{𝑈𝑘(𝑥, 𝑠)})

2(ℒ−1{𝑉𝑘(𝑥, 𝑠)})} +
𝛾

𝑠𝛼
ℒ{(ℒ−1{𝑉𝑘(𝑥, 𝑠)})

3},

𝐿𝑅𝑒𝑠𝑘
2(𝑥, 𝑠) = 𝑉𝑘(𝑥, 𝑠) −

𝑔(𝑥)

𝑠
−

𝛿

𝑠𝛼
(𝑈𝑘)𝑥𝑥(𝑥, 𝑠) −

𝜙(𝑥)

𝑠𝛼
𝑈𝑘(𝑥, 𝑠)                                  

                           −
𝛾

𝑠𝛼
ℒ{(ℒ−1{𝑉𝑘(𝑥, 𝑠)})

2(ℒ−1{𝑈𝑘(𝑥, 𝑠)})} −
𝛾

𝑠𝛼
ℒ{(ℒ−1{𝑈𝑘(𝑥, 𝑠)})

3}.

  (3.10) 

Without a doubt, it is clear that Lim𝑘→∞𝐿𝑅𝑒𝑠𝑘(𝑠) = 𝐿𝑅𝑒𝑠(𝑠) , 𝐿𝑅𝑒𝑠(𝑠) = 0 , and thus 

𝑠𝑘𝐿𝑅𝑒𝑠(𝑠) = 0  for 𝑠 > 0  and 𝑘 = 0,1,2,3,… . Therefore, Lim𝑠→∞(𝑠
𝑘𝐿𝑅𝑒𝑠(𝑠)) = 0 . Moreover, 

El-Ajou [29] proved that 

lim
𝑠→∞

𝑠𝑘𝛼+1𝐿𝑅𝑒𝑠𝑘(𝑠) = 0,   𝛼 > 0,   𝑘 = 1,2,3, …      (3.11) 

Fact (3.11) is considered the essential tool for finding the unknown coefficients of the expansions 

in the system (3.7). So, for determining the first unknown coefficient of the system (3.7), substitute the 
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1st truncated series of the system (3.8) that is given by 

𝑈1(𝑥, 𝑠) =
𝑓(𝑥)

𝑠
+
𝑓1(𝑥)

𝑠1+𝛼
, 𝑉1(𝑥, 𝑠) =

𝑔(𝑥)

𝑠
+
𝑔1(𝑥)

𝑠1+𝛼
, 

into the 1st LRF to obtain 

{
 
 
 
 
 
 

 
 
 
 
 
 𝐿𝑅𝑒𝑠1

1(𝑥, 𝑠) =
𝑓(𝑥)

𝑠
+
𝑓1(𝑥)

𝑠1+𝛼
−
𝑓(𝑥)

𝑠
+

𝛿

𝑠𝛼
(
𝑔′′(𝑥)

𝑠
+
𝑔1
′′(𝑥)

𝑠1+𝛼
) +

𝜙(𝑥)

𝑠𝛼
(
𝑔(𝑥)

𝑠
+
𝑔1(𝑥)

𝑠1+𝛼
)

      +
𝛾

𝑠𝛼
ℒ {(ℒ−1 {

𝑓(𝑥)

𝑠
+
𝑓1(𝑥)

𝑠1+𝛼
})
2

ℒ−1 {
𝑔(𝑥)

𝑠
+
𝑔1(𝑥)

𝑠1+𝛼
}}

+
𝛾

𝑠𝛼
ℒ {(ℒ−1 {

𝑔(𝑥)

𝑠
+
𝑔1(𝑥)

𝑠1+𝛼
})
3

},                           

𝐿𝑅𝑒𝑠1
2(𝑥, 𝑠) =

𝑔(𝑥)

𝑠
+
𝑔1(𝑥)

𝑠1+𝛼
−
𝑔(𝑥)

𝑠
−

𝛿

𝑠𝛼
(
𝑓′′(𝑥)

𝑠
+
𝑓1
′′(𝑥)

𝑠1+𝛼
) −

𝜙(𝑥)

𝑠𝛼
(
𝑓(𝑥)

𝑠
+
𝑓1(𝑥)

𝑠1+𝛼
)

        −
𝛾

𝑠𝛼
ℒ {(ℒ−1 {

𝑔(𝑥)

𝑠
+
𝑔1(𝑥)

𝑠1+𝛼
})
2

ℒ−1 {
𝑓(𝑥)

𝑠
+
𝑓1(𝑥)

𝑠1+𝛼
}}

−
𝛾

𝑠𝛼
ℒ {(ℒ−1 {

𝑓(𝑥)

𝑠
+
𝑓1(𝑥)

𝑠1+𝛼
})
3

}.                          

   (3.12) 

By running the Laplace transforms in the system (3.12) and multiplying both sides by 𝑠𝛼+1, one 

can get 

{
 
 
 
 
 

 
 
 
 
 𝑠

𝛼+1𝐿𝑅𝑒𝑠1
1(𝑥, 𝑠) = 𝑓1(𝑥) + 𝛿𝑔

′′(𝑥) + 𝛿
𝑔′′(𝑥)

𝑠𝛼
+ 𝜙(𝑥)𝑔(𝑥) +

𝜙(𝑥)𝑔1(𝑥)

𝑠𝛼
+ 𝛾𝑓2(𝑥)𝑔(𝑥)

       +𝛾
𝑓2(𝑥)𝑔1(𝑥)

𝑠𝛼
+ 2𝛾

𝑓1(𝑥)𝑓(𝑥)𝑔0(𝑥)

𝑠𝛼−1
+ 2𝛾

𝑓1(𝑥)𝑓(𝑥)𝑔1(𝑥)

Γ(1+2𝛼)𝑠2𝛼
     

+⋯+ 𝛾
𝑔1
2(𝑥)𝑔(𝑥)

Γ(1+2𝛼)𝑠2𝛼
+ 𝛾

𝑔1
3(𝑥)Γ(1+3𝛼)

Γ2(1+2𝛼)Γ(1+𝛼)𝑠2𝛼
,          

𝑠𝛼+1𝐿𝑅𝑒𝑠1
2(𝑥, 𝑠) = 𝑔1(𝑥) − 𝛿𝑓

′′(𝑥) − 𝛿
𝑓′′(𝑥)

𝑠𝛼
− 𝜙(𝑥)𝑓(𝑥) −

𝜙(𝑥)𝑓1(𝑥)

𝑠𝛼
− 𝛾𝑔2(𝑥)𝑓(𝑥)

     −𝛾
𝑓1(𝑥)𝑔

2(𝑥)

𝑠𝛼
− 2𝛾

𝑔1(𝑥)𝑔(𝑥)𝑓(𝑥)

𝑠𝛼−1
− 2𝛾

𝑔1(𝑥)𝑔(𝑥)𝑓1(𝑥)

𝛤(1+2𝛼)𝑠2𝛼

−⋯− 𝛾
𝑓1
2(𝑥)𝑓(𝑥)

Γ(1+2𝛼)𝑠2𝛼
− 𝛾

𝑓1
3(𝑥)Γ(1+3𝛼)

Γ2(1+2𝛼)Γ(1+𝛼)𝑠2𝛼
.         

 (3.13) 

Taking the limit of both sides of the system (3.13) as 𝑠 → ∞ and employing the fact in the system (3.11), 

we obtain the following algebraic system: 

{
𝑓1(𝑥) + 𝛿𝑔

′′(𝑥) + 𝜙(𝑥)𝑔(𝑥) + 𝛾𝑓2(𝑥)𝑔(𝑥) + 𝛾𝑔3(𝑥) = 0,

𝑔1(𝑥) − 𝛿𝑓
′′(𝑥) − 𝜙(𝑥)𝑓(𝑥) − 𝛾𝑔2(𝑥)𝑓(𝑥) − 𝛾𝑓3(𝑥) = 0.

    (3.14) 

Solving the resulting algebraic system (3.14) for 𝑓1(𝑥) and 𝑔1(𝑥) gives the form of the first 

unknown coefficients of the system (3.7) as functions of 𝑥 as 

{
𝑓1(𝑥) = −(𝛿𝑔

′′(𝑥) + 𝜙(𝑥)𝑔(𝑥) + 𝛾𝑓2(𝑥)𝑔(𝑥) + 𝛾𝑔3(𝑥)),

𝑔1(𝑥) = 𝛿𝑓
′′(𝑥) + 𝜙(𝑥)𝑓(𝑥) + 𝛾𝑔2(𝑥)𝑓(𝑥) + 𝛾𝑓3(𝑥).       

    (3.15) 

Similarly, to find the value of the second unknown coefficients 𝑈2(𝑥, 𝑠) and 𝑉2(𝑥, 𝑠), substitute 
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the 2nd truncated series 𝑈2(𝑥, 𝑠) =
𝑓(𝑥)

𝑠
+
𝑓1(𝑥)

𝑠1+𝛼
+

𝑓2(𝑥)

𝑠1+2𝛼
 and 𝑉2(𝑥, 𝑠) =

𝑔(𝑥)

𝑠
+
𝑔1(𝑥)

𝑠1+𝛼
+

𝑔2(𝑥)

𝑠1+2𝛼
 into the 

2nd LRF, 𝐿𝑅𝑒𝑠2
1(𝑥, s), and 𝐿𝑅𝑒𝑠2

2(𝑥, 𝑠) to get 

𝐿𝑅𝑒𝑠2
1(𝑥, 𝑠) =

𝑓1(𝑥)

𝑠1+𝛼
+
𝑓2(𝑥)

𝑠1+2𝛼
+
𝛿

𝑠𝛼
(
𝑔′′(𝑥)

𝑠
+
𝑔1
′′(𝑥)

𝑠1+𝛼
+
𝑔2
′′(𝑥)

𝑠1+2𝛼
) +

𝜙(𝑥)

𝑠𝛼
(
𝑔(𝑥)

𝑠
+
𝑔1(𝑥)

𝑠1+𝛼
+
𝑔2(𝑥)

𝑠1+2𝛼
) 

+
𝛾

𝑠𝛼
ℒ {(ℒ−1{

𝑔(𝑥)

𝑠
+
𝑔1(𝑥)

𝑠1+𝛼
+
𝑔2(𝑥)

𝑠1+2𝛼
})

3

} 

+
𝛾

𝑠𝛼
ℒ {(ℒ−1{

𝑓(𝑥)

𝑠
+
𝑓1(𝑥)

𝑠1+𝛼
+

𝑓2(𝑥)

𝑠1+2𝛼
})
2

ℒ−1 {
𝑔(𝑥)

𝑠
+
𝑔1(𝑥)

𝑠1+𝛼
+

𝑔2(𝑥)

𝑠1+2𝛼
}},    (3.16) 

𝐿𝑅𝑒𝑠2
2(𝑥, 𝑠) =

𝑔1(𝑥)

𝑠1+𝛼
+
𝑔2(𝑥)

𝑠1+2𝛼
−
𝛿

𝑠𝛼
(
𝑓′′(𝑥)

𝑠
+
𝑓1
′′(𝑥)

𝑠1+𝛼
+
𝑓2
′′(𝑥)

𝑠1+2𝛼
) −

𝜙(𝑥)

𝑠𝛼
(
𝑓(𝑥)

𝑠
+
𝑓1(𝑥)

𝑠1+𝛼
+
𝑓2(𝑥)

𝑠1+2𝛼
) 

−
𝛾

𝑠𝛼
ℒ {(ℒ−1 {

𝑓(𝑥)

𝑠
+
𝑓1(𝑥)

𝑠1+𝛼
+
𝑓2(𝑥)

𝑠1+2𝛼
})

3

} 

−
𝛾

𝑠𝛼
ℒ {(ℒ−1 {

𝑔(𝑥)

𝑠
+
𝑔1(𝑥)

𝑠1+𝛼
+

𝑔2(𝑥)

𝑠1+2𝛼
})
2

ℒ−1 {
𝑓(𝑥)

𝑠
+
𝑓1(𝑥)

𝑠1+𝛼
+

𝑓2(𝑥)

𝑠1+2𝛼
}}.    (3.17) 

Running the transforms in the system (3.16) and (3.17) and multiplying both sides by 𝑠2𝛼+1 gives 

{
 
 

 
 
𝑠2𝛼+1𝐿𝑅𝑒𝑠2

1(𝑥, 𝑠) = 𝑓2(𝑥) + 𝛿𝑔1
′′(𝑥) + 𝜙(𝑥)𝑔1(𝑥) + 𝛾𝑓

2(𝑥)𝑔1(𝑥) + 2𝛾𝑓1(𝑥)𝑓(𝑥)𝑔(𝑥)

                        +3𝛾𝑔2(𝑥)𝑔1(𝑥) + 𝛿
𝑔2
′′(𝑥)

𝑠𝛼
+
𝜙(𝑥)𝑔2(𝑥)

𝑠𝛼
+⋯+ 𝛾

𝑔2
3(𝑥)Γ(1+6𝛼)

Γ3(1+2𝛼)𝑠5𝛼
,

𝑠2𝛼+1𝐿𝑅𝑒𝑠2
2(𝑥, 𝑠) = 𝑔2(𝑥) − 𝛿𝑓1

′′(𝑥) − 𝜙(𝑥)𝑓1(𝑥) − 𝛾𝑔
2(𝑥)𝑓1(𝑥) − 2𝛾𝑔1(𝑥)𝑔(𝑥)𝑓(𝑥)

                       −3𝛾𝑓2(𝑥)𝑓1(𝑥) − 𝛿
𝑓2
′′(𝑥)

𝑠𝛼
−
𝜙(𝑥)𝑓2(𝑥)

𝑠𝛼
−⋯− 𝛾

𝑓2
3(𝑥)Γ(1+6𝛼)

Γ3(1+2𝛼)𝑠5𝛼
.

  (3.18) 

Computing the limit as 𝑠 goes to infinity for both sides of the system (3.18) and using the facts 

in the system (3.11), we get 

{
𝑓2(𝑥) = −(𝛿𝑔1

′′(𝑥) + 𝜙(𝑥)𝑔1(𝑥) + 𝛾𝑓
2(𝑥)𝑔1(𝑥) + 2𝛾𝑓1(𝑥)𝑓(𝑥)𝑔(𝑥)+3𝛾𝑔

2(𝑥)𝑔1(𝑥)),

𝑔2(𝑥) = 𝛿𝑓1
′′(𝑥) + 𝜙(𝑥)𝑓1(𝑥) + 𝛾𝑔

2(𝑥)𝑓1(𝑥) + 2𝛾𝑔1(𝑥)𝑔(𝑥)𝑓(𝑥) + 3𝛾𝑓
2(𝑥)𝑓1(𝑥).       

   (3.19) 

The third unknown coefficients 𝑈3(𝑥, 𝑠), and 𝑉3(𝑥, 𝑠) can be determined by substituting the 3rd 

truncated series 𝑈3(𝑥, 𝑠) =
𝑓(𝑥)

𝑠
+
𝑓1(𝑥)

𝑠1+𝛼
+

𝑓2(𝑥)

𝑠1+2𝛼
+

𝑓3(𝑥)

𝑠1+3𝛼
  and 𝑉3(𝑥, 𝑠) =

𝑔(𝑥)

𝑠
+
𝑔1(𝑥)

𝑠1+𝛼
+

𝑔2(𝑥)

𝑠1+2𝛼
+

𝑔3(𝑥)

𝑠1+3𝛼
 , 

into the 3rd LRF, 𝐿𝑅𝑒𝑠3
1(𝑥, 𝑠) and 𝐿𝑅𝑒𝑠3

2(𝑥, 𝑠) to get the following functions: 

{
 
 
 
 

 
 
 
 𝐿𝑅𝑒𝑠3

1(𝑥, 𝑠) =
𝑓1(𝑥)

𝑠1+𝛼
+

𝑓2(𝑥)

𝑠1+2𝛼
+

𝑓3(𝑥)

𝑠1+3𝛼
+

𝛿

𝑠𝛼
(
𝑔′′(𝑥)

𝑠
+
𝑔1
′′(𝑥)

𝑠1+𝛼
+
𝑔2
′′(𝑥)

𝑠1+2𝛼
+
𝑔3
′′(𝑥)

𝑠1+3𝛼
)            

                       +
𝜙(𝑥)

𝑠𝛼
(
𝑔(𝑥)

𝑠
+
𝑔1(𝑥)

𝑠1+𝛼
+

𝑔2(𝑥)

𝑠1+2𝛼
+

𝑔3(𝑥)

𝑠1+3𝛼
) +

𝛾

𝑠𝛼
ℒ{(ℒ−1{𝑉3(𝑥, 𝑠)})

3}

+
𝛾

𝑠𝛼
ℒ{(ℒ−1{𝑈3(𝑥, 𝑠)})

2ℒ−1{𝑉3(𝑥, 𝑠)}},                 

𝐿𝑅𝑒𝑠3
2(𝑥, 𝑠) =

𝑔1(𝑥)

𝑠1+𝛼
+

𝑔2(𝑥)

𝑠1+2𝛼
+

𝑔3(𝑥)

𝑠1+3𝛼
−

𝛿

𝑠𝛼
(
𝑓′′(𝑥)

𝑠
+
𝑓1
′′(𝑥)

𝑠1+𝛼
+
𝑓2
′′(𝑥)

𝑠1+2𝛼
+
𝑓3
′′(𝑥)

𝑠1+3𝛼
)           

                         −
𝜙(𝑥)

𝑠𝛼
(
𝑓(𝑥)

𝑠
+
𝑓1(𝑥)

𝑠1+𝛼
+

𝑓2(𝑥)

𝑠1+2𝛼
+

𝑓3(𝑥)

𝑠1+3𝛼
) −

𝛾

𝑠𝛼
ℒ{(ℒ−1{𝑈3(𝑥, 𝑠)})

3}

−
𝛾

𝑠𝛼
ℒ{(ℒ−1{𝑉3(𝑥, 𝑠)})

2ℒ−1{𝑈3(𝑥, 𝑠)}}.               

  (3.20) 
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Again, by multiplying both sides of the system (3.20) by 𝑠3𝛼+1 and computing the limit as 𝑠 

goes to infinity by utilizing the facts (3.11), we can get the following: 

{
 
 
 
 

 
 
 
 
𝑓3(𝑥) = −(𝛿𝑔2

′′(𝑥) + 𝜙(𝑥)𝑔2(𝑥) + 𝛾𝑓
2(𝑥)𝑔2(𝑥)                                     

     +𝛾𝑔(𝑥)(2𝑓(𝑥)𝑓2(𝑥) + 3𝑔(𝑥)𝑔2(𝑥))                                

            +𝛾(2𝑓(𝑥)𝑓1(𝑥)𝑔1(𝑥) + 3𝑔(𝑥)(𝑓1
2(𝑥) + 𝑔1

2(𝑥)))
Γ(1+2𝛼)

Γ2(1+𝛼)
) ,

𝑔3(𝑥) = 𝛿𝑓2
′′(𝑥) + 𝜙(𝑥)𝑓2(𝑥) + 𝛾𝑔

2(𝑥)𝑓2(𝑥)                                         

          +𝛾𝑓(𝑥)(2𝑔(𝑥)𝑔2(𝑥) + 3𝑓(𝑥)𝑓2(𝑥))                                    

              +𝛾 (2𝑔(𝑥)𝑔1(𝑥)𝑓1(𝑥) + 𝑓(𝑥)(𝑔1
2(𝑥) + 3𝑓1

2(𝑥)))
Γ(1+2𝛼)

Γ2(1+𝛼)
.

   (3.21) 

Therefore, by using the obtained coefficients of the series in (3.7), the solution of the system (3.6), 

can be expressed in an 𝛼-Laurent series form as 

𝑈(𝑥, 𝑠) =∑
𝑓𝑖(𝑥)

𝑠1+𝑖𝛼

∞

𝑖=0

=
𝑓(𝑥)

𝑠
−
(𝛿𝑔′′(𝑥) + 𝜙(𝑥)𝑔(𝑥) + 𝛾𝑓2(𝑥)𝑔(𝑥) + 𝛾𝑔3(𝑥))

𝑠1+𝛼
     

                            −
(𝛿𝑔1

′′(𝑥) + 𝜙(𝑥)𝑔1(𝑥) + 𝛾𝑓
2(𝑥)𝑔1(𝑥) + 2𝛾𝑓1(𝑥)𝑓(𝑥)𝑔(𝑥) + 3𝛾𝑔

2(𝑥)𝑔1(𝑥))

𝑠1+2𝛼

− (𝛿𝑔2
′′(𝑥) + 𝜙(𝑥)𝑔2(𝑥) + 𝛾𝑓

2(𝑥)𝑔2(𝑥) + 𝛾𝑔(𝑥)(2𝑓(𝑥)𝑓2(𝑥) + 3𝑔(𝑥)𝑔2(𝑥))

+ 𝛾(2𝑓(𝑥)𝑓1(𝑥)𝑔1(𝑥) + 3𝑔(𝑥)(𝑓1
2(𝑥) + 𝑔1

2(𝑥)))
Γ(1 + 2𝛼)

Γ2(1 + 𝛼)
)

1

𝑠1+3𝛼
+⋯, 

𝑉(𝑥, 𝑠) =∑
𝑔𝑖(𝑥)

𝑠1+𝑖𝛼

∞

𝑖=0

=
𝑔(𝑥)

𝑠
+
𝛿𝑓′′(𝑥) + 𝜙(𝑥)𝑓(𝑥) + 𝛾𝑔2(𝑥)𝑓(𝑥) + 𝛾𝑓3(𝑥)

𝑠1+𝛼
          

                            +
(𝛿𝑓1

′′(𝑥) + 𝜙(𝑥)𝑓1(𝑥) + 𝛾𝑔
2(𝑥)𝑓1(𝑥) + 2𝛾𝑔1(𝑥)𝑔(𝑥)𝑓(𝑥) + 3𝛾𝑓

2(𝑥)𝑓1(𝑥))

𝑠1+2𝛼

+ (𝛿𝑓2
′′(𝑥) + 𝜙(𝑥)𝑓2(𝑥) + 𝛾𝑔

2(𝑥)𝑓2(𝑥) + 𝛾𝑓(𝑥)(2𝑔(𝑥)𝑔2(𝑥) + 3𝑓(𝑥)𝑓2(𝑥))

+ 𝛾 (2𝑔(𝑥)𝑔1(𝑥)𝑓1(𝑥) + 3𝑓(𝑥)(𝑔1
2(𝑥) + 𝑓1

2(𝑥)))
Γ(1 + 2𝛼)

Γ2(1 + 𝛼)
)

1

𝑠1+3𝛼
+⋯. 

Applying the inverse Laplace transform gives the approximate LRPS solution to system (3.4) 

with (3.5) in the following series form: 

𝑢(𝑥, 𝑡) = 𝑓(𝑥) −
(𝛿𝑔′′(𝑥)+𝜙(𝑥)𝑔(𝑥)+𝛾𝑓2(𝑥)𝑔(𝑥)+𝛾𝑔3(𝑥))

Γ(1+𝛼)
𝑡𝛼         (3.22) 

−
(𝛿𝑔1

′′(𝑥) + 𝜙(𝑥)𝑔1(𝑥) + 𝛾𝑓
2(𝑥)𝑔1(𝑥) + 2𝛾𝑓1(𝑥)𝑓(𝑥)𝑔(𝑥) + 3𝛾𝑔

2(𝑥)𝑔1(𝑥))

Γ(1 + 2𝛼)
𝑡2𝛼 

−(𝛿𝑔2
′′(𝑥) + 𝜙(𝑥)𝑔2(𝑥) + 𝛾𝑓

2(𝑥)𝑔2(𝑥) + 𝛾𝑔(𝑥)(2𝑓(𝑥)𝑓2(𝑥) + 3𝑔(𝑥)𝑔2(𝑥)) +

𝛾 (2𝑓(𝑥)𝑓1(𝑥)𝑔1(𝑥) + 3𝑔(𝑥)(𝑓1
2(𝑥) + 𝑔1

2(𝑥)))
Γ(1+2𝛼)

Γ2(1+𝛼)
)

𝑡3𝛼

Γ(1+3𝛼)
−⋯,    
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𝑣(𝑥, 𝑡) =
𝑔(𝑥)

𝑠
+

𝛿𝑓′′(𝑥)+𝜙(𝑥)𝑓(𝑥)+𝛾𝑔2(𝑥)𝑓(𝑥)+𝛾𝑓3(𝑥)

Γ(1+𝛼)
𝑡𝛼          (3.23) 

+
(𝛿𝑓1

′′(𝑥) + 𝜙(𝑥)𝑓1(𝑥) + 𝛾𝑔
2(𝑥)𝑓1(𝑥) + 2𝛾𝑔1(𝑥)𝑔(𝑥)𝑓(𝑥) + 3𝛾𝑓

2(𝑥)𝑓1(𝑥))

Γ(1 + 2𝛼)
𝑡2𝛼 

+(𝛿𝑓2
′′(𝑥) + 𝜙(𝑥)𝑓2(𝑥) + 𝛾𝑔

2(𝑥)𝑓2(𝑥) + 𝛾𝑓(𝑥)(2𝑔(𝑥)𝑔2(𝑥) + 3𝑓(𝑥)𝑓2(𝑥)) +

𝛾 (2𝑔(𝑥)𝑔1(𝑥)𝑓1(𝑥) + 3𝑓(𝑥)(𝑔1
2(𝑥) + 𝑓1

2(𝑥)))
Γ(1+2𝛼)

Γ2(1+𝛼)
)

𝑡3𝛼

Γ(1+3𝛼)
+⋯.    

4. Some applications 

In this section, three attractive problems are given and solved to explain that the LRPS algorithm 

is efficient, simple, and accurate. Mathematica software was used to perform all the symbolic and 

numerical calculations. 

Application 4.1. Consider the following one-dimensional linear time-FSE: 

𝑖𝐷𝑡
𝛼𝜓(𝑥, 𝑡) − 𝜓𝑥𝑥(𝑥, 𝑡) = 0, 𝑥 ∈ ℝ, 𝑡 ≥ 0, 0 < 𝛼 ≤ 1.     (4.1) 

subject to the constraint: 

𝜓(𝑥, 0) = 𝑒3𝑖𝑥.          (4.2) 

The time-FSE in Eq (4.1) can be transformed into an equivalent system of fractional PDEs as 

follows: 

{
𝐷𝑡
𝛼𝑢(𝑥, 𝑡) + 𝑣𝑥𝑥(𝑥, 𝑡) = 0,

𝐷𝑡
𝛼𝑣(𝑥, 𝑡) − 𝑢𝑥𝑥(𝑥, 𝑡) = 0,

        (4.3) 

subject to the following constraints: 

𝑢(𝑥, 0) = cos(3𝑥) , 𝑣(𝑥, 0) = sin(3𝑥).      (4.4) 

By comparing system (4.3) with (4.4) and system (3.4) with (3.5), we find that 𝛿 = 1, 𝛾 = 0, 

𝜙(𝑥) = 0, 𝑓(𝑥) = cos 3𝑥, and 𝑔(𝑥) = sin 3𝑥. Therefore, we can determine the fourth approximate 

LRPS solution of system (4.3) with (4.4) according to the results in Eqs (3.22) and (3.23). However, 

to further illustrate the proposed method, we will use the procedures performed in the previous section 

to arrive at the LRPS solution. The first step for this is to apply the Laplace transform to Eq (4.3) to 

transfer it to the Laplace space, and using conditions (4.4), one can obtain 

{
𝑈(𝑥, 𝑠) −

cos(3𝑥)

𝑠
−

1

𝑠𝛼
𝑉𝑥𝑥(𝑥, 𝑠) = 0,

𝑉(𝑥, 𝑠) −
sin(3𝑥)

𝑠
+

1

𝑠𝛼
𝑈𝑥𝑥(𝑥, 𝑠) = 0.

       (4.5) 

Suppose the solution of the algebraic system (4.5), 𝑈(𝑥, 𝑠) and 𝑉(𝑥, 𝑠), has 𝛼-Laurent series 

as in Eq (3.7), and using the conditions in (4.4), the 𝑘th truncated series of 𝛼-Laurent series will have 

the following expression: 

{
𝑈𝑘(𝑥, 𝑠) =

cos(3𝑥)

𝑠
+ ∑

𝑓𝑖(𝑥)

𝑠1+𝑖𝛼
𝑘
𝑖=1 , 0 < 𝛼 ≤ 1, 𝑥 ∈ 𝐼, 𝑠 > 0,

𝑉𝑘(𝑥, 𝑠) =
sin(3𝑥)

𝑠
+ ∑

𝑔𝑖(𝑥)

𝑠1+𝑖𝛼
𝑘
𝑖=1 , 0 < 𝛼 ≤ 1, 𝑥 ∈ 𝐼, 𝑠 > 0.

    (4.6) 
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So, the 𝑘th LRFs of the system (4.5) are defined as 

{
𝐿𝑅𝑒𝑠𝑘

1(𝑥, 𝑠) = 𝑈𝑘(𝑥, 𝑠) −
cos(3𝑥)

𝑠
−

1

𝑠𝛼
(𝑉𝑘)𝑥𝑥(𝑥, 𝑠),

𝐿𝑅𝑒𝑠𝑘
2(𝑥, 𝑠) = 𝑉𝑘(𝑥, 𝑠) −

sin(3𝑥)

𝑠
+

1

𝑠𝛼
(𝑈𝑘)𝑥𝑥(𝑥, 𝑠).

     (4.7) 

Now, to determine the first unknown coefficient of Eq (4.6), replace the 1st truncated series given by 

𝑈1(𝑥, 𝑠) =
cos(3𝑥)

𝑠
+
𝑓1(𝑥)

𝑠1+𝛼
, 𝑉1(𝑥, 𝑠) =

sin(3𝑥)

𝑠
+
𝑔1(𝑥)

𝑠1+𝛼
,     (4.8) 

into the 1st LRFs to get 

{
𝐿𝑅𝑒𝑠1

1(𝑥, 𝑠) =
cos(3𝑥)

𝑠
+
𝑓1(𝑥)

𝑠1+𝛼
−
cos(3𝑥)

𝑠
−

1

𝑠𝛼
(
−9sin(3𝑥)

𝑠
+
𝑔1
′′(𝑥)

𝑠1+𝛼
) ,

𝐿𝑅𝑒𝑠1
2(𝑥, 𝑠) =

sin(3𝑥)

𝑠
+
𝑔1(𝑥)

𝑠1+𝛼
−
sin(3𝑥)

𝑠
+

1

𝑠𝛼
(
−9cos(3𝑥)

𝑠
+
𝑓1
′′(𝑥)

𝑠1+𝛼
) .

    (4.9) 

Multiply both sides of Eq (4.9) by 𝑠𝛼+1 and taking the limit of both sides as 𝑠 → ∞, and 

considering the fact in Eq (3.11), then we have 

𝑓1(𝑥) = −9sin(3𝑥) ,     𝑔1(𝑥) = 9cos(3𝑥).       (4.10) 

Similarly, to find the value of the second unknown coefficients of the expansions of 

𝑈(𝑥, 𝑠)  and  𝑉(𝑥, 𝑠) , substitute the 2nd truncated series,  𝑈2(𝑥, 𝑠) =
cos(3𝑥)

𝑠
−
9sin(3𝑥)

𝑠1+𝛼
+

𝑓2(𝑥)

𝑠1+2𝛼
  and 

𝑉2(𝑥, 𝑠) =
sin(3𝑥)

𝑠
+
9cos(3𝑥)

𝑠1+𝛼
+

𝑔2(𝑥)

𝑠1+2𝛼
 , into the 2nd LRFs, 𝐿𝑅𝑒𝑠2

1(𝑥, 𝑠)  and  𝐿𝑅𝑒𝑠2
2(𝑥, 𝑠) , to get the 

following: 

{
𝐿𝑅𝑒𝑠2

1(𝑥, 𝑠) =
−9sin(3𝑥)

𝑠1+𝛼
+

𝑓2(𝑥)

𝑠1+2𝛼
−

1

𝑠𝛼
(
−9sin(3𝑥)

𝑠
−
81cos(3𝑥)

𝑠1+𝛼
+
𝑔2
′′(𝑥)

𝑠1+2𝛼
) ,

𝐿𝑅𝑒𝑠2
2(𝑥, 𝑠) =

9cos(3𝑥)

𝑠1+𝛼
+

𝑔2(𝑥)

𝑠1+2𝛼
+

𝛿

𝑠𝛼
(
−9cos(3𝑥)

𝑠
+
81sin(3𝑥)

𝑠1+𝛼
+
𝑓2
′′(𝑥)

𝑠1+2𝛼
) .

   (4.11) 

Employing fact (3.11) after multiplying both sides of Eq (4.12) by 𝑠1+2𝛼and taking the limit as 𝑠 

goes to infinity gives the values of the following coefficients: 

𝑓2(𝑥) = −81cos(3𝑥),    𝑔2(𝑥) = −81sin(3𝑥).     (4.12) 

By applying the same procedure for 𝑘 = 3  and 𝑘 = 4  and taking into account the forms of 

𝑓0(𝑥), 𝑓1(𝑥), 𝑓2(𝑥)  and 𝑔0(𝑥), 𝑔1(𝑥), 𝑔2(𝑥) , we can determine the values of the coefficients 

following: 

𝑓3(𝑥) = 729 sin(3𝑥),         𝑔3(𝑥) = −729 cos(3𝑥), 

𝑓4(𝑥) = 6561 cos(3𝑥),        𝑔4(𝑥) = 6561 sin(3𝑥).      (4.13) 

So, the 4th approximate solution of system (4.5) can be expressed as 
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{
𝑈4(𝑥, 𝑠) =

cos(3𝑥)

𝑠
−
9sin(3𝑥)

𝑠1+𝛼
−
81cos(3𝑥)

𝑠1+2𝛼
+
729 sin(3𝑥)

𝑠1+3𝛼
+
6561 cos(3𝑥)

𝑠1+4𝛼
,

𝑉4(𝑥, 𝑠) =
sin(3𝑥)

𝑠
+
9cos(3𝑥)

𝑠1+𝛼
−
81sin(3𝑥)

𝑠1+2𝛼
−
729 cos(3𝑥)

𝑠1+3𝛼
+
6561 sin(3𝑥)

𝑠1+4𝛼
.
   (4.14) 

Applying the inverse Laplace transform on Eq (4.14) gives the 4th approximate LRPS solution to 

the system (4.3) with (4.4) in the following series form: 

{
𝑢4(𝑥, 𝑡) = cos(3𝑥) −

9sin(3𝑥)

Γ(1+𝛼)
𝑡𝛼 −

(9)2cos(3𝑥)

Γ(1+2𝛼)
𝑡2𝛼 +

(9)3 sin(3𝑥)

Γ(1+3𝛼)
𝑡3𝛼 +

(9)4 cos(3𝑥)

Γ(1+4𝛼)
𝑡4𝛼 ,

𝑣4(𝑥, 𝑡) = sin(3𝑥) +
9cos(3𝑥)

Γ(1+𝛼)
𝑡𝛼 −

(9)2sin(3𝑥)

Γ(1+2𝛼)
𝑡2𝛼 −

(9)3 cos(3𝑥)

Γ(1+2𝛼)
𝑡3𝛼 +

(9)4 sin(3𝑥)

Γ(1+4𝛼)
𝑡4𝛼 .

 (4.15) 

Consequently, the components of LRPS solutions are obtained as much as we like. Checking the pattern 

of the coefficients, we can write the exact solution of 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡) in series form as follows: 

𝑢(𝑥, 𝑡) = cos 3𝑥 ∑ (
(−1)𝑘(9)2𝑘𝑡2𝑘𝛼

Γ(1+2𝑘𝛼)
)∞

𝑘=0 + sin 3𝑥 ∑ (
(−1)𝑘+1(9)(2𝑘+1)𝑡(2𝑘+1)𝛼

Γ(1+(2𝑘+1)𝛼)
)∞

𝑘=0 ,   (4.16) 

𝑣(𝑥, 𝑡) = sin 3𝑥 ∑ (
(−1)𝑘(9)2𝑘𝑡2𝑘𝛼

Γ(1+2𝑘𝛼)
)∞

𝑘=0 + cos 3𝑥 ∑ (
(−1)𝑘(9)(2𝑘+1)𝑡(2𝑘+1)𝛼

Γ(1+(2𝑘+1)𝛼)
)∞

𝑘=0 .   (4.17) 

One can verify that the expansion of the exact solution can be separated and collected using Euler's 

formula for complex numbers to discover that the approximate solution of system (4.1) with (4.2) has a 

general pattern that exactly coincides with the series form of the solution as follows: 

𝜓(𝑥, 𝑡) = 𝑒3𝑖𝑥 ∑ (−9𝑖)𝑛
𝑡𝑛𝛼

𝛤(1+𝑛𝛼)
∞
𝑛=0 .      (4.18) 

Also, we mention here that Eq (4.18) can be expressed in a term of Mittag-Leffler function as 

follows: 

𝜓(𝑥, 𝑡) = 𝑒3𝑖𝑥𝐸𝛼(−9𝑖𝑡
𝛼).       (4.19) 

It should be noted that the results obtained in Eqs (4.16) and (4.17) agree with the outcomes 

obtained by the RPS method [52]. Moreover, when 𝛼 = 1, we get the following solution to the system (4.1) 

with (4.2): 

𝜓(𝑥, 𝑡) = 𝑒3𝑖(𝑥+3𝑡),        (4.20) 

which coincides with the solutions obtained by the Adomian decomposition technique [10], the 

homotopy perturbation method [10], the homotopy analysis method [16], and the variational iteration 

method [20]. 

To review some numerical results of the solution obtained in Eq (4.18), and to test the accuracy 

of the approximate solution of the method used, we use two types of error, namely, absolute error and 

relative error, which are defined respectively, as follows: 

𝐴𝑏𝑠. 𝐸𝑟𝑟 (𝑥, 𝑡) = |𝜑(𝑥, 𝑡) − 𝜑𝑘(𝑥, 𝑡)|,      (4.21) 

where 𝜑(𝑥, 𝑡) is the exact solution and 𝜑𝑘(𝑥, 𝑡) is an approximate solution of order 𝑘. Sometimes 

the exact solution may not be available, so we can replace it with an approximation of a higher order 

than 𝑘 such as 𝜑2𝑘(𝑥, 𝑡). 

Tables 1 and 2 display some numerical results for the solution of Application 4.1 given in Eqs (4.16) 
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and (4.17) at 𝛼 = 1 , and the corresponding absolute and relative errors. The results indicate the 

accuracy of the 10th approximate LRPS solutions obtained. The tables show that the convergent region 

is ℝ × [0,0.4] when 𝛼 = 1. 

Table 1. Numerical comparisons between the exact value of 𝑢(𝑥, 𝑡)  and the 10th-

approximation of 𝑢(𝑥, 𝑡) at 𝛼 = 1. 

𝑥 𝑡 𝑢10(𝑥, 𝑡) 𝑢(𝑥, 𝑡) Re. Err. Abs. Err. 

0 
 

0.62161 0.62161 9.4433 × 10−10 5.8701 × 10−10 

2.5 0.1 −0.519289 −0.519289 14. 51896 × 10−9 75.39531 × 10−10 

5  −0.981618 −0.981618 4.72682 × 10−9 4.63993 × 10−9 

0 
 

−0.227204 −0.227202 10.44299 × 10−6 23.72669 × 10−7 

2.5 0.2 −0.992241 −0.992225 1.573828 × 10−5 15.615924 × 10−6 

5  −0.460687 −0.460679 1.834986 × 10−5 8.45339 × 10−6 

0 
 

−0.904373 −0.904072 3.33126 × 10−4 30.11701 × 10−5 

2.5 0.3 −0.715617 −0.714266 1.892477 × 10−3 13. 5173 × 10−4 

5  0.408257 0.408893 1.555287 × 10−3 6.35945 × 10−4 

0 
 

−0.905983 −0.896758 1.028624 × 10−2 9.22427 × 10−3 

2.5 0.4 0.0725272 0.104236 0.30420 × 10−2 3.31708 × 10−2 

5  0.956264 0.969022 1.3166 × 10−2 1.2759 × 10−2 

Table 2. Numerical comparisons between the exact value of 𝑣(𝑥, 𝑡)  and the 10th-

approximation of 𝑣(𝑥, 𝑡) at 𝛼 = 1. 

𝑥 𝑡 𝑣10(𝑥, 𝑡) 𝑣(𝑥, 𝑡) Re. Err. Abs. Err. 

0 
 

0.783327 0.783327 9.984278 × 10−9 7.820954 × 10−9 

2.5 0.1 0.854599 0.854599 2.527978 × 10−9 2.160407 × 10−9 

5  −0.190859 −0.190859 3.313032 × 10−8 6.323206 × 10−9 

0 
 

0.97386 0.973848 1.619482 × 10−5 1.577129 × 10−5 

2.5 0.2 0.124550 0.124454 2.604426 × 10−5 3.241323 × 10−6 

5  −0.887517 −0.887567 1.523736 × 10−5 1.352417 × 10−5 

0 
 

0.428710 0.427380 3.111474 × 10−3 1.329781 × 10−3 

2.5 0.3 −0.699696 −0.699875 2.549767 × 10−4 1.784517 × 10−4 

5  −0.913789 −0.912582 1.321597 × 10−3 1.206066 × 10−3 

0 
 

−0.412125 −0.442520 6.868819 × 10−2 3.039593 × 10−2 

2.5 0.4 −0.992669 −0.994553 1.894255 × 10−3 1.883936 × 10−3 

5  −0.276064 −0.246974 1.177852 × 10−1 2.908985 × 10−2 

Figure 1 shows the surface graph of the 10th approximate LRPS solutions, 𝑢10(𝑥, 𝑡)  and 

𝑣10(𝑥, 𝑡) of the system (4.1) with (4.2) at different values of 𝛼 that are given in Eqs (4.16) and (4.17) 

in addition the exact solution when 𝛼 = 1. The graphs illustrate the behavior of the solutions at 𝛼 =

1, 𝛼 = 0.9, and 𝛼 = 0.8. Figure 1 illustrates the agreement between the 10th approximate solution 

and the exact solution for 𝛼 = 1, while all graphs depict the consistency of the behavior of the 

solutions at different values of 𝛼. 
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Figure 1. The surface graphs of the exact solution of 𝒖(𝒙, 𝒕)  and 𝒗(𝒙, 𝒕) at 𝜶 = 𝟏, 

and the 10th approximations, 𝒖𝟏𝟎(𝒙, 𝒕) and 𝒗𝟏𝟎(𝒙, 𝒕), at different values of 𝜶. 

Application 4.2. Consider the following one-dimensional nonlinear time-FSE: 

𝑖𝐷𝑡
𝛼𝜓(𝑥, 𝑡) + 𝜓𝑥𝑥(𝑥, 𝑡) + 2|𝜓(𝑥, 𝑡)|

2𝜓(𝑥, 𝑡) = 0, 𝑥 ∈ ℝ, 𝑡 ≥ 0, 0 < 𝛼 ≤ 1,  (4.22) 

subject to the constraint: 

𝜓(𝑥, 0) = 𝑒𝑖𝑥.          (4.23) 

The time-FSE in Eq (4.22) can be transformed into an equivalent system of PDEs as follows: 

{
𝐷𝑡
𝛼𝑢(𝑥, 𝑡) + 𝑣𝑥𝑥(𝑥, 𝑡) + 2(𝑢

2(𝑥, 𝑡) + 𝑣2(𝑥, 𝑡))𝑣(𝑥, 𝑡) = 0,

𝐷𝑡
𝛼𝑣(𝑥, 𝑡) − 𝑢𝑥𝑥(𝑥, 𝑡) − 2(𝑢

2(𝑥, 𝑡) + 𝑣2(𝑥, 𝑡))𝑢(𝑥, 𝑡) = 0,
    (4.24) 

subject to the following constraints: 

𝑢(𝑥, 𝑡; 𝛼 = 1) 
𝑣(𝑥, 𝑡; 𝛼 = 1) 

𝑢10(𝑥, 𝑡; 𝛼 = 1)  

𝑣10(𝑥, 𝑡; 𝛼 = 1)  

𝑢10(𝑥, 𝑡; 𝛼 = 0.9)  

𝑣10(𝑥, 𝑡; 𝛼 = 0.9)    𝑢10(𝑥, 𝑡; 𝛼 = 0.8)  
  𝑣10(𝑥, 𝑡; 𝛼 = 0.8)  

𝑥 
𝑥 

𝑥 𝑥 

𝑡 

 

𝑡 

 

𝑡

 

𝑡 
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𝑢(𝑥, 0) = cos(𝑥) , 𝑣(𝑥, 0) = sin(𝑥),      (4.25) 

where 𝜓(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) + 𝑖𝑣(𝑥, 𝑡). 

According to the LRPS approach, the Laplace transform of the system (4.24) with (4.25) into a 

Laplace space will lead to the following system: 

{
  
 

  
 𝑈(𝑥, 𝑠) −

cos(𝑥)

𝑠
+

1

𝑠𝛼
𝑉𝑥𝑥(𝑥, 𝑠) +

2

𝑠𝛼
ℒ{(ℒ−1{𝑈(𝑥, 𝑠)})2(ℒ−1{𝑉(𝑥, 𝑠)})}

+
2

𝑠𝛼
ℒ{(ℒ−1{𝑉(𝑥, 𝑠)})3} = 0,                                                                         

𝑉(𝑥, 𝑠) −
sin(𝑥)

𝑠
−

1

𝑠𝛼
𝑈𝑥𝑥(𝑥, 𝑠) −

2

𝑠𝛼
ℒ{(ℒ−1{𝑉(𝑥, 𝑠)})2(ℒ−1{𝑈(𝑥, 𝑠)})}

−
2

𝑠𝛼
ℒ{(ℒ−1{𝑈(𝑥, 𝑠)})3} = 0.                                                                        

  (4.26) 

The series solution to the system (4.26) in the new space assumed to be of the form: 

{
𝑈(𝑥, 𝑠) =

cos(𝑥)

𝑠
+ ∑

𝑓𝑖(𝑥)

𝑠1+𝑖𝛼
∞
𝑖=1 , 0 < 𝛼 ≤ 1, 𝑥 ∈ 𝐼, 𝑠 > 0,

𝑉(𝑥, 𝑠) =
sin(𝑥)

𝑠
+ ∑

𝑔𝑖(𝑥)

𝑠1+𝑖𝛼
∞
𝑖=1 , 0 < 𝛼 ≤ 1, 𝑥 ∈ 𝐼, 𝑠 > 0.

     (4.27) 

By comparing the standard form of FSE (1.1) with Eq (4.22), we find that 𝛿 = 1, 𝛾 = 2, and 

𝜙 (𝑥) = 0. So, according to the results in (3.15), (3.19), and (3.21), the first few coefficients of the 

series (4.27) have the following form: 

𝑓1(𝑥) = −sin(𝑥),   𝑔1(𝑥) = cos(𝑥), 

𝑓2(𝑥) = −cos(𝑥),     𝑔2(𝑥) = −sin(𝑥),       (4.28) 

𝑓3(𝑥) = (5 − 2
Γ(1 + 2𝛼)

Γ2(1 + 𝛼)
) sin(𝑥),   𝑔3(𝑥) = −(5 − 2

𝛤(1 + 2𝛼)

𝛤(1 + 𝛼)2
) cos(𝑥). 

Calculating an additional coefficient of the expansions in (4.27) utilizing the LRPS approach used 

in Section 3, we get 

{
𝑓4(𝑥) = (5 −

2𝛤(1+2𝛼)

𝛤(1+𝛼)2
+

4𝛤(1+3𝛼)

𝛤(1+𝛼)𝛤(1+2𝛼)
−
2𝛤(1+3𝛼)

𝛤(1+𝛼)3
) cos(𝑥) ,

𝑔4(𝑥) = (5 −
2𝛤(1+2𝛼)

𝛤(1+𝛼)2
+

4𝛤(1+3𝛼)

𝛤(1+𝛼)𝛤(1+2𝛼)
−
2𝛤(1+3𝛼)

𝛤(1+𝛼)3
) sin(𝑥) .

   (4.29) 

So, the 4th approximate solution of system (4.27) can be expressed as follows: 

𝑈4(𝑥, 𝑠) =
cos(𝑥)

𝑠
−
sin(𝑥)

𝑠1+𝛼
−
cos(𝑥)

𝑠1+2𝛼
+ (5 − 2

Γ(1 + 2𝛼)

Γ2(1 + 𝛼)
)
sin(𝑥)

𝑠1+3𝛼
 

+(5 −
2𝛤(1 + 2𝛼)

𝛤(1 + 𝛼)2
+

4𝛤(1 + 3𝛼)

𝛤(1 + 𝛼)𝛤(1 + 2𝛼)
−
2𝛤(1 + 3𝛼)

𝛤(1 + 𝛼)3
)
cos(𝑥)

𝑠1+3𝛼
, 
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𝑉4(𝑥, 𝑠) =
sin(𝑥)

𝑠
+
cos(𝑥)

𝑠1+𝛼
−
sin(𝑥)

𝑠1+2𝛼
− (5 − 2

Γ(1 + 2𝛼)

Γ2(1 + 𝛼)
)
cos(𝑥)

𝑠1+3𝛼
 

+(5 −
2𝛤(1 + 2𝛼)

𝛤(1 + 𝛼)2
+

4𝛤(1 + 3𝛼)

𝛤(1 + 𝛼)𝛤(1 + 2𝛼)
−
2𝛤(1 + 3𝛼)

𝛤(1 + 𝛼)3
)
sin(𝑥)

𝑠1+3𝛼
. 

Therefore, based on the results in Eqs (3.22) and (3.23), the 4th approximate LRPS solution to 

the system (4.24) with (4.25) is given by 

      𝑢4(𝑥, 𝑡) = cos(𝑥) −
sin(𝑥) 𝑡𝛼

Γ(1 + 𝛼)
−
cos(𝑥) 𝑡2𝛼

Γ(1 + 2𝛼)
+ (5 − 2

Γ(1 + 2𝛼)

Γ2(1 + 𝛼)
)
sin(𝑥) 𝑡3𝛼

Γ(1 + 3𝛼)

+ (5 −
2𝛤(1 + 2𝛼)

𝛤(1 + 𝛼)2
+

4𝛤(1 + 3𝛼)

𝛤(1 + 𝛼)𝛤(1 + 2𝛼)
−
2𝛤(1 + 3𝛼)

𝛤(1 + 𝛼)3
)
cos(𝑥) 𝑡4𝛼

Γ(1 + 4𝛼)
, 

(4.30) 

      𝑣4(𝑥, 𝑡) = sin(𝑥) +
cos(𝑥) 𝑡𝛼

Γ(1 + 𝛼)
−
sin(𝑥) 𝑡2𝛼

Γ(1 + 2𝛼)
− (5 − 2

𝛤(1 + 2𝛼)

𝛤(1 + 𝛼)2
)
cos(𝑥) 𝑡3𝛼

Γ(1 + 2𝛼)

+ (5 −
2𝛤(1 + 2𝛼)

𝛤(1 + 𝛼)2
+

4𝛤(1 + 3𝛼)

𝛤(1 + 𝛼)𝛤(1 + 2𝛼)
−
2𝛤(1 + 3𝛼)

𝛤(1 + 𝛼)3
)
sin(𝑥) 𝑡4𝛼

Γ(1 + 4𝛼)
. 

(4.31) 

With a little bit of focus and scrutiny, one can get the general pattern of the series solution in Eqs (4.30) 

and (4.31). Using Euler's formula, we can write the solution to FSE in Eq (4.22) in the following infinite 

series form: 

𝜓(𝑥, 𝑡) = 𝑒𝑖𝑥 (1 + 𝑖
𝑡𝛼

𝛤(1 + 𝛼)
+ 𝑖2

𝑡2𝛼

𝛤(1 + 2𝛼)
+ 𝑖3 (5 − 2

𝛤(1 + 2𝛼)

𝛤(1 + 𝛼)2
)

𝑡3𝛼

𝛤(1 + 3𝛼)

+ 𝑖4 (5 −
2𝛤(1 + 2𝛼)

𝛤(1 + 𝛼)2
+

4𝛤(1 + 3𝛼)

𝛤(1 + 𝛼)𝛤(1 + 2𝛼)
−
2𝛤(1 + 3𝛼)

𝛤(1 + 𝛼)3
)

𝑡4𝛼

𝛤(1 + 4𝛼)

+⋯). 

(4.32)  

It should be noted that the results obtained in Eq (4.32) are in complete agreement with the results 

obtained by the RPS method [44]. Moreover, when 𝛼 = 1, the closed form of the exact solution to the 

IVP (4.22) with (4.23) is 𝜓(𝑥, 𝑡) = 𝑒𝑖(𝑥+𝑡) , which coincides with the solutions obtained by the 

Adomian decomposition technique [10], and the variational iteration method [20]. Figure 2 shows the 

surface graphs of the 4th approximate LRPS solutions, 𝑢4(𝑥, 𝑡) and 𝑣4(𝑥, 𝑡), of the IVP (4.22) with (4.23) 

at different values of 𝛼 that are given in Eqs (4.30) and (4.31) in addition the exact solution when 

𝛼 = 1. The graphs illustrate the behavior of the solutions at 𝛼 = 1, 𝛼 = 0.9, and 𝛼 = 0.8. 

Figure 2 illustrates the agreement between the 4th approximate solution and the exact solution at 

𝛼 = 1, while all graphs depict the consistency of the behavior of the solutions at different values of 𝛼. 
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Figure 2. The surface graphs of the exact solution of 𝒖(𝒙, 𝒕)  and 𝒗(𝒙, 𝒕) at 𝜶 = 𝟏, 

and the 4th approximations, 𝒖𝟒(𝒙, 𝒕) and 𝒗𝟒(𝒙, 𝒕), at different values of 𝜶. 

In the following example, we will deal with another form of the FSE that differs from the 

expression of Eq (1.1) by replacing the exponent of the modulus with the number 4 instead of 2; thus 

we will need to reconstruct the solution in detail to determine the coefficients of the series solution. 

Application 4.3. Consider the following one-dimensional nonlinear time-FSE: 

𝑖𝐷𝑡
𝛼𝜓(𝑥, 𝑡) + 𝜓𝑥𝑥(𝑥, 𝑡) + 2|𝜓(𝑥, 𝑡)|

4𝜓(𝑥, 𝑡) = 0, 𝑥 ∈ ℝ, 𝑡 ≥ 0, 0 < 𝛼 ≤ 1,   (4.33) 

subject to the constraint: 

𝜓(𝑥, 0) = (6 sech2(4𝑥))
1

4.       (4.34) 

The time-FSE (4.33) can be reformulated into an equivalent system of PDEs as follows: 

𝑢(𝑥, 𝑡; 𝛼 = 1) 𝑣(𝑥, 𝑡; 𝛼 = 1) 
𝑢4(𝑥, 𝑡; 𝛼 = 1)  

𝑣4(𝑥, 𝑡; 𝛼 = 1) 

𝑢4(𝑥, 𝑡; 𝛼 = 0.9) 
𝑣4(𝑥, 𝑡; 𝛼 = 0.9) 𝑢4(𝑥, 𝑡; 𝛼 = 0.8) 

𝑣4(𝑥, 𝑡; 𝛼 = 0.8) 

𝑥 𝑥 

𝑥 
𝑥 

𝑡 

 

𝑡 

 

𝑡

 

𝑡 
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{
𝐷𝑡
𝛼𝑢(𝑥, 𝑡) + 𝑣𝑥𝑥(𝑥, 𝑡) + 2(𝑢

4(𝑥, 𝑡) + 2𝑢2(𝑥, 𝑡)𝑣2(𝑥, 𝑡) + 𝑣4(𝑥, 𝑡))𝑣(𝑥, 𝑡) = 0,

𝐷𝑡
𝛼𝑣(𝑥, 𝑡) − 𝑢𝑥𝑥(𝑥, 𝑡) − 2(𝑢

4(𝑥, 𝑡) + 2𝑢2(𝑥, 𝑡)𝑣2(𝑥, 𝑡) + 𝑣4(𝑥, 𝑡))𝑢(𝑥, 𝑡) = 0,
  (4.35) 

subject to the following constraints: 

{𝑓(𝑥) = 𝑢(𝑥, 0) = (6 sech
2(4𝑥))

1

4,

𝑔(𝑥) = 𝑣(𝑥, 0) = 0,                         
      (4.36) 

where 𝜓(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) + 𝑖𝑣(𝑥, 𝑡). 

Following the same steps as the previous two examples, the corresponding system of the system (4.35) 

with (4.36) in Laplace space will be as follows: 

{
 
 
 
 

 
 
 
 𝑈(𝑥, 𝑠) −

(6 sech2(4𝑥))
1
4

𝑠
+

1

𝑠𝛼
𝑉𝑥𝑥(𝑥, 𝑠)                                                                                    

+
2

𝑠𝛼
ℒ{(ℒ−1{𝑈(𝑥, 𝑠)})4ℒ−1{𝑉(𝑥, 𝑠)} + 2(ℒ−1{𝑈(𝑥, 𝑠)})2(ℒ−1{𝑉(𝑥, 𝑠)})3}             

+
2

𝑠𝛼
ℒ{(ℒ−1{𝑉(𝑥, 𝑠)})5} = 0,                                                                                               

𝑉(𝑥, 𝑠) −
1

𝑠𝛼
𝑈𝑥𝑥(𝑥, 𝑠)                                                                                                             

−
2

𝑠𝛼
ℒ{(ℒ−1{𝑉(𝑥, 𝑠)})4ℒ−1{𝑈(𝑥, 𝑠)} + 2(ℒ−1{𝑉(𝑥, 𝑠)})2(ℒ−1{𝑈(𝑥, 𝑠)})3}             

−
2

𝑠𝛼
ℒ{(ℒ−1{𝑈(𝑥, 𝑠)})5} = 0,                                                                                               

 (4.37) 

and so, the 𝑘th LRFs of Eq (4.37) will be as follows: 

{
 
 
 
 

 
 
 
 𝐿𝑅𝑒𝑠𝑘

1(𝑥, 𝑠) = 𝑈𝑘(𝑥, 𝑠) −
(6 sech2(4𝑥))

1
4

𝑠
+

1

𝑠𝛼
(𝑉𝑘)𝑥𝑥(𝑥, 𝑠)                                                         

+
2

𝑠𝛼
ℒ{(ℒ−1{𝑈𝑘(𝑥, 𝑠)})

4ℒ−1{𝑉𝑘(𝑥, 𝑠)}                                   

              +2(ℒ−1{𝑈𝑘(𝑥, 𝑠)})
2(ℒ−1{𝑉𝑘(𝑥, 𝑠)})

3} +
2

𝑠𝛼
ℒ{(ℒ−1{𝑉𝑘(𝑥, 𝑠)})

5},

𝐿𝑅𝑒𝑠𝑘
2(𝑥, 𝑠) = 𝑉𝑘(𝑥, 𝑠) −

1

𝑠𝛼
(𝑈𝑘)𝑥𝑥(𝑥, 𝑠) −

2

𝑠𝛼
ℒ{(ℒ−1{𝑉𝑘(𝑥, 𝑠)})

4ℒ−1{𝑈𝑘(𝑥, 𝑠)}            

              +2(ℒ−1{𝑉𝑘(𝑥, 𝑠)})
2(ℒ−1{𝑈𝑘(𝑥, 𝑠)})

3} −
2

𝑠𝛼
ℒ{(ℒ−1{𝑈𝑘(𝑥, 𝑠)})

5},

 (4.38) 

where 𝑈𝑘  and 𝑉𝑘  are the 𝑘 th truncated series of the expansion (3.7) that are assumed, as the 

approach of the LRPS method, to be a solution to the system (4.37). 

Solving the system 

{
lim
𝑠→∞

𝑠𝑘𝛼+1𝐿𝑅𝑒𝑠𝑘
1(𝑥, 𝑠) = 0, 𝑘 = 0,1,2,… ,

lim
𝑠→∞

𝑠𝑘𝛼+1𝐿𝑅𝑒𝑠𝑘
2(𝑥, 𝑠) = 0, 𝑘 = 0,1,2,… ,

       (4.39) 

recursively, yields the following first few coefficients of the series solution (3.7): 

𝑔0(𝑥) = 0, 𝑓0(𝑥) = (6 sech
2(4𝑥))

1
4, 

𝑓1(𝑥) = 0, 𝑔1(𝑥) = 4(6 sech
2(4𝑥))

1
4, 

𝑔2(𝑥) = 0, 𝑓2(𝑥) = −(4)
2(6 sech2(4𝑥))

1
4, 
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𝑓3(𝑥) = 0,   𝑔3(𝑥) = −(4)
3(6 sech2(4𝑥))

1
4 (25 + cosh(8𝑥) −

12𝛤(1 + 2𝛼)

𝛤(1 + 𝛼)2
)
sech2(4𝑥)

2
, 

𝑔4(𝑥) = 0, 

𝑓4(𝑥) = (4)
4(6 sech2(4𝑥))

1
4 (601 + 12

𝛤(1 + 3𝛼)

𝛤(1 + 𝛼)3
(
2𝛤(1 + 𝛼)2

𝛤(1 + 2𝛼)
− 1)                               

+ cosh(8𝑥)−768 sech2(4𝑥) +
12𝛤(1 + 2𝛼)

𝛤(1 + 𝛼)2
(32 sech2(4𝑥) − 25))

sech2(4𝑥)

2
. 

So, the 4th approximate solution of the system (4.37) will be as 

    𝑈4(𝑥, 𝑠) =
(6 sech2(4𝑥))

1
4

𝑠
−
(4)2(6 sech2(4𝑥))

1 4⁄

𝑠1+2𝛼

+
(4)4(6 sech2(4𝑥))

1
4

𝑠1+4𝛼
(601 + 12

𝛤(1 + 3𝛼)

𝛤(1 + 𝛼)3
(
2𝛤(1 + 𝛼)2

𝛤(1 + 2𝛼)
− 1)

+ cosh(8𝑥)−768 sech2(4𝑥) +
12𝛤(1 + 2𝛼)

𝛤(1 + 𝛼)2
(32 sech2(4𝑥)

− 25))
sech2(4𝑥)

2
, 

(4.40) 

        𝑉4(𝑥, 𝑠) =
4(6 sech2(4𝑥))

1
4

𝑠1+𝛼

−
(4)3(6 sech2(4𝑥))

1
4

𝑠1+3𝛼
(25 + cosh(8𝑥) −

12𝛤(1 + 2𝛼)

𝛤(1 + 𝛼)2
)
sech2(4𝑥)

2
. 

(4.41) 

Applying the inverse Laplace transform on Eqs (4.40) and (4.41), and combining the two resultant 

formulas as the real and imaginary parts of a complex function yields the 4th approximate LRPS of 

the FSE in the following form: 

𝜓(𝑥, 𝑡) = (6 sech2(4𝑥))
1
4 (1 + 4𝑖

𝑡𝛼

𝛤(1 + 𝛼)
+ (4𝑖)2

𝑡2𝛼

𝛤(1 + 2𝛼)

+ (4𝑖)3 (25 + cosh(8𝑥) −
12𝛤(1 + 2𝛼)

𝛤(1 + 𝛼)2
)
sech2(4𝑥)

2

𝑡3𝛼

𝛤(1 + 3𝛼)
) 

+(4𝑖)4(6 sech2(4𝑥))
1
4 (601 + 12

𝛤(1 + 3𝛼)

𝛤(1 + 𝛼)3
(
2𝛤(1 + 𝛼)2

𝛤(1 + 2𝛼)
− 1) + cosh(8𝑥) 

−768 sech2(4𝑥)+
12𝛤(1+2𝛼)

𝛤(1+𝛼)2
(32 sech2(4𝑥) − 25))

sech2(4𝑥)

2

𝑡4𝛼

𝛤(1+4𝛼)
.   (4.42) 

It should be noted that the results obtained in Eq (4.42) are in complete agreement with the results 

obtained by the RPS method [52]. Further, when 𝛼 = 1, we obtain the following solution for the IVP (4.33) 
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and (4.34): 

𝜓(𝑥, 𝑡) = (6 sech2(4𝑥))
1

4𝑒4𝑖𝑡 ,        (4.43) 

which agrees with the results obtained by the variational iteration method [20]. 

5. Conclusions 

In this paper, we have presented a new method for solving fractional Schrödinger equations, 

called the LRPS method. This method is powerful and efficient and can be used to find analytical 

solutions in the form of a fast-converging series. The coefficients of the series are usually easily 

computed, and the method can be applied to both linear and nonlinear equations. It is shown that the 

LRPS method is very effective and can produce approximate solutions that are indistinguishable from 

the exact solutions. The major advantages of the LRPS method are: 

• It can be used to solve nonlinear equations, while other methods are limited to linear equations. 

• It simplifies the processing of fractional differential equations by converting them to algebraic 

equations. 

• The iterators can be computed easily using the concept of limit at infinity. 

• It does not require modeling assumptions such as linearization, perturbation, or discretization. 

It is shown that the LRPS method is a valuable tool for solving fractional Schrödinger equations. 

We have demonstrated its effectiveness in this paper, and we believe that it can be applied to a wide 

range of problems [53–55]. In future work, we plan to apply the LRPS method to other fractional 

differential equations [56–60], such as the space-time fractional Schrödinger equations and systems of 

fractional Schrödinger equations. We also plan to modify the method to construct solutions to fractional 

differential equations with other concepts of fractional derivatives [61,62]. 
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