
http://www.aimspress.com/journal/Math

AIMS Mathematics, 8(7): 15383–15410.
DOI:10.3934/math.2023786
Received: 22 March 2023
Revised: 16 April 2023
Accepted: 20 April 2023
Published: 26 April 2023

Research article

Optimal investment and reinsurance for the insurer and reinsurer with the
joint exponential utility under the CEV model

Ling Chen1, Xiang Hu2 and Mi Chen1,∗

1 School of Mathematics and Statistics & FJKLMAA, Fujian Normal University, Fuzhou 350117,
China

2 School of Finance, Zhongnan University of Economics and Law, Nanhu Road, Wuhan 430073,
China

* Correspondence: Email: chenmi0610@163.com.

Abstract: This paper considers the problem of optimal investment-reinsurance for the insurer and
reinsurer under the constant elasticity of variance (CEV) model. It is assumed that the net claims
process is approximated by a diffusion process, both the insurer and reinsurer can invest in risk-free
assets and risky assets. We use the variance premium principle to calculate the premiums of the insurer
and reinsurer, and the reinsurance proportion is constrained by the net profit condition. Our objective is
to maximize the joint exponential utility of the insurer and reinsurer’s terminal wealth for a fixed time.
By solving the HJB equation, we obtain the explicit expressions of the optimal investment-reinsurance
strategy and value function. We find that the optimal reinsurance strategy can be divided into many
cases and is related to the risk aversion coefficient of the insurer and reinsurer, but independent of
the price of risky assets. Furthermore, we give the proof of the verification theorem. Finally, we
demonstrate a numerical analysis to explain the results.
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1. Introduction

In recent decades, the insurance industry has developed rapidly and played an extremely important
role in the financial market. Stochastic control theory is widely used in insurance related business.
Scholars have done a lot of research on optimal investment, optimal reinsurance, optimal dividend
and so on for various risk models. For example, Browne [1] assumed that the risky stock price
follows a geometric Brownian motion (GBM) and presented the optimal investment strategy under

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2023786


15384

the two criteria of maximizing the expected utility of wealth at terminal time and minimizing the ruin
probability. Cox et al. [2] proposed the CEV Model which is an extension of the GBM model, and they
gave the solutions of the limit diffusion case and the one-stage form of several alternative jump and
diffusion processes. Asmussen and Taksar [3] studied the optimal dividend problem under restricted
and unrestricted dividend rates, they found that the optimal dividend strategy in the unrestricted case
is singular. Taksar [4] considered the optimal reinsurance and dividend problem for an insurance
company, and gave the explicit expressions for the optimal strategies and value function. Bai and
Guo [5] studied the optimal investment and reinsurance strategy with no-short selling under the criteria
of maximizing terminal wealth utility and minimizing the ruin probability. Sun et al. [6] studied the
optimal reinsurance and investment strategy for an insurer with two dependent classes of insurance
business and no-shorting constraint. Gu et al. [7] studied the optimal excess-of-loss reinsurance and
investment problem under the CEV model, they found that the parameters of risky asset price have no
effect on the optimal reinsurance, and the optimal value function with reinsurance is larger than that
without reinsurance under exponential utility. Recently, Cao et al. [8] studied the optimal reinsurance
problem when the insurer has mean-variance risk preference and the total claim process is a compound
dynamic contagion process. Jiang et al. [9] studied the optimal investment reinsurance strategy with
premium control, which modeled the claim arrival rate as a function of t and expressed the claim
arrival rate as a decreasing bounded concave function of the safety loading. Xu et al. [10] investigated
the optimal investment and dividend problem for an insurer under a Markov regime switching market
with high gain tax. Zhang et al. [11] studied the optimal excess-of-loss reinsurance and investment
with thinning dependent risks under Heston model. Sun et al. [12] considered an optimal asset-liability
management problem for an insurer under the mean-variance criterion, which financial market consists
of one risk-free asset and n risky assets with the risk premium relying on an affine diffusion factor
process. Chen et al. [13] presented the optimal excess-of-loss reinsurance and dividends strategy for
the model with thinning-dependence structure.

The expected value premium principle is commonly used as the reinsurance premium principle due
to its simplicity and popularity in practice. However, the variance of the risk with the same expectation
is not necessarily the same, so the fluctuation of claims need to be taken into account in stipulating
premiums. In recent years, the variance or mean-variance premium principle has gained more and
more attention in the literature. For example, Kaluszka ( [14, 15]) studied several optimal reinsurance
problem under the mean-variance premium principle. Under the criterion of maximizing the expected
exponential utility, Liang et al. [16] considered the optimal proportional reinsurance strategy in a
risk model with dependent risks and variance premium principle. Zhang et al. [17] assumed that
the reinsurance premium is calculated by generalized mean-variance principle, and they obtained
the optimal investment-reinsurance strategy under the criteria of maximizing the expected utility of
terminal wealth and minimizing the ruin probability. Liang et al. [18] derived the explicit expression
of reinsurance strategy for minimizing the ruin probability in a diffusion approximation model where
the reinsurance premium is given by mean-variance premium principle.

Most of the existing literature only considered the optimization problem from the insurer’s point of
view. However, there is always an interest relationship between the insurer and the reinsurer in reality,
so the reinsurer can not be ignored. And both of the insurer and reinsurer want to maximize their own
interests, so it is necessary to maintain a good dynamic balance between the insurer and reinsurer at
the same time. From Borch [19], we know that the two companies should negotiate to maximize their
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common interests and they have to reach a compromise. Kaishev [20] derived the expectation formula
of the common survival profit of the insurer and reinsurer in a fixed time. Kaishev and Dimitrova [21]
obtained the optimal division of total premium income to maximize the joint survival probability in
the case of fixed retention level, ceiling and continuous claim size. Furthermore, Cai et al. [22] studied
the joint survival and profit probability of insurer and reinsurer under the expectation criterion. For
maximizing the expected product of exponential utilities, Li et al. [23] studied the optimal proportional
reinsurance-investment strategy. They made a further study in Li et al. [24] and reconsidered the time-
consistent investment strategy of the insurer that can be decomposed into two parts under the CEV
model. Zhao et al. [25] also considered the common interests of insurers and reinsurers. In order to
maximize the joint survival probability, Zhang et al. [26] obtained the optimal quota-share reinsurance
under five criteria. Bai et al. [27] presented the optimal investment and proportional reinsurance under
the optimization criterion of maximizing the expectation of the weighted sum of the wealth process of
insurers and reinsurers in discrete time.

In this paper, adopting the idea of Huang et al. [28], we choose the joint exponential utility instead
of the product exponential utility in Li et al. [23], which can better reflect the concavity properties of
exponential utility function, i.e., Ux > 0,Uxx < 0. Under the criterion of maximizing the terminal
joint exponential utility, we study the optimal investment-reinsurance strategies for both insurer and
reinsurer under the constant elasticity of variance (CEV) model. Besides, we present the explicit
expression of the value function, and give the proof of the verification theorem which is not considered
in Li et al. [23]. Compared with Li et al. [23] and Huang et al. [28], we use the variance premium
criterion to calculate the premiums of the insurer and reinsurer, and the reinsurance proportion in
this paper is constrained by the net profit condition. Moreover, we consider the price of risky assets
conforms to the CEV Model which will be more general than the GBM model to solve the HJB
equation and give the proof of verification theorem.

To the best of our knowledge, there are only a few literature on the utility maximization of the joint
terminal wealth of the insurer and reinsurer. In this paper, we mainly study the optimal investment-
reinsurance problem of insurers and reinsurers under the joint exponential utility. We assume that the
claims process conforms to a diffusion approximation process, and the premium of the insurer and
reinsurer are stipulated by the variance premium principle. Furthermore, both the insurer and reinsurer
are allowed to invest in risk-free assets and risky assets, and the price of the risky assets are described
by the CEV model. We permit borrowing and short selling, but limit the proportional reinsurance
under the net profit condition. Then, we obtain the HJB equation under the optimization criterion
of maximizing the terminal joint exponential utility. By solving the HJB equation, we obtain the
optimal investment-reinsurance strategies, and present the proof of the verification theorem. Finally,
we demonstrate a numerical analysis and explain the results for better understanding in the economic
sense.

The remainder of this paper proceeds as follows. In Section 2, we introduce our model in three
aspects. In Section 3, we describe the HJB equation under the objective of maximizing the joint
exponential utility of terminal wealth and present the optimal strategy and value function along with
a verification theorem. In Section 4, we demonstrate numerical simulations to illustrate our results.
Section 5 concludes the whole paper. And Appendix contains the proof of all the theorems and lemma.
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2. Model formulation

In this paper, we assume that (Ω,F ,P) be a complete probability space equipped with a filtration
(Ft)0≤t≤T , T is a positive constant representing the fixed terminal time. In addition, we assumed that
continuous investment is allowed and all securities are infinitely divisible, and the claim process can
be approximated by a diffusion process.

2.1. Surplus process

Firstly, we consider that the insurer have no investment, and the surplus process R(t) is given by

dR(t) = cdt − dC(t) = cdt − d
N(t)∑
i=1

Zi,

where c is the premium rate, N(t) is a homogeneous Poission process with intensity λ > 0, representing
the number of claims up to time t. The claim sizes Zi is a sequence of i.i.d. (independent and identically
distributed) nonnegative random variables. In addition, N(t) and Zi are mutually independent. Here,
premium rate c = λE(Z1) + α1λE(Z2

1) is obtained under the variance premium principle, and α1 > 0
is the safety loading of the insurer. Furthermore, we denote the first two moments of Z1 as E(Z1) = µ,
E(Z2

1) = µ2. Refer to Grandell [29], the net claims process can be approximated by a diffusion process
C̃(t):

C̃(t) = adt − σ0dW (0)
t ,

where a = λµ, σ0 =
√
λµ2 are positive constants, W (0)

t is a standard Brownian motion on the complete
probability space (Ω,F , P). Then the surplus process of the insurer becomes

dR̃(t) = cdt − dC̃(t) = λα1µ2dt + σ0dW (0)
t .

2.2. Reinsurance and investment

Note that typically we allow the insurer to continuously reinsure part of the claim to reducing the
underlying claims risk. Let q(t) be the reinsurance retention level at time t, usually called the risk
exposure, 1 − q(t) represents the proportional reinsurance level. Then, the surplus process of the
reinsurer can be described by

dR2(t) = c2dt − [1 − q(t)]dC̃(t) = λα2[1 − q(t)]2µ2dt + [1 − q(t)]σ0dW (0)
t ,

where c2 = λµ[1−q(t)]+α2λµ2[1 − q(t)]2 is obtained by the variance premium principle. Furthermore,
we assume that α2 > α1 which means the reinsurance is non-cheap. Then, the surplus process of the
insurer R1(t) becomes

dR1(t) = dR̃(t) − dR2(t) = [λα1µ2 − λα2(1 − q(t))2µ2]dt + q(t)σ0dW (0)
t .

Remark 2.1. In this paper, we require that the risk exposure q(t) needs to meet the net profit condition,
so we obtain 0 < 1 −

√
α1
α2
≤ q(t) ≤ 1 from λα1µ2 − λα2(1 − q(t))2µ2 ≥ 0.
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Furthermore, we assume that there is a financial market consist of a risk-free asset and two risky
assets. Both the insurer and reinsurer are allowed to invest in the financial market. Suppose that B(t) is
the price process of the risk-free asset

dB(t) = r0B(t)dt, B(0) = 1, (2.1)

where r0 > 0 is the risk-free interest rate. The price of the risky assets invested by the insurer and
reinsurer are described by constant elasticity of variance (CEV) model, which are given by

dS 1(t) = S 1(t)(r1dt + S β1
1 (t)σ1dW (1)

t ), S 1(0) = s1,

dS 2(t) = S 2(t)(r2dt + S β2
2 (t)σ2dW (2)

t ), S 2(0) = s2,
(2.2)

where r1 > 0, r2 > 0 are expected instantaneous rates of return of the risky assets. Without any loss
of generality, we assume that r1 > r0, r2 > r0. S β1

1 (t)σ1, S β2
2 (t)σ2 are instantaneous volatilities, β1,

β2 are elasticity parameters which satisfy the general condition β1 ≤ 0, β2 ≤ 0. W (0)
t , W (1)

t and W (2)
t

are mutually independent Brownian motions defined on the complete probability space (Ω,F , P), i.e.,
E[W (0)

t W (1)
t ] = 0, E[W (0)

t W (2)
t ] = 0 and E[W (1)

t W (2)
t ] = 0.

2.3. Wealth process

In this paper, we suppose that the insurer can invest in the risk-free asset and risky asset 1, while
the reinsurer can invest in the risk-free asset and risky asset 2.

We denote by A1(t) the amount of investment in risky asset 1 at time t when the insurer’s wealth is
X(t), X(t)−A1(t) represents the amount of investment in risk-free asset. Meanwhile, A2(t) is the amount
of investment in risky asset 2 at time t when the reinsurer’s wealth is Y(t), Y(t) − A2(t) represents the
amount of investment in risk-free asset. We allow A1(t) < 0, X(t) < A1(t) and A2(t) < 0,Y(t) < A2(t), in
other words, suppose that both the insurer and reinsurer can oversell risky assets and borrow risk-free
asset. Then, the insurer’s wealth process is given by

dX(t) = A1(t)
dS 1(t)
S 1(t)

+ (X(t) − A1(t))
dB(t)
B(t)

+ dR1

=
{
A1(t)(r1 − r0) + r0X(t) + λα1µ2 − λα2[1 − q(t)]2µ2

}
dt + q(t)σ0W (0)

t + A1(t)S β1
1 (t)σ1dW (1)

t

(2.3)

with the initial condition X(0) = x. Similarly, the reinsurer’s wealth process is given by

dY(t) = A2(t)
dS 2(t)
S 2(t)

+ (Y(t) − A2(t))
dB(t)
B(t)

+ dR2

=
{
A2(t)(r2 − r0) + r0Y(t) + λα2[1 − q(t)]2µ2

}
dt + [1 − q(t)]σ0W (0)

t + A2(t)S β2
2 (t)σ2dW (2)

t

(2.4)

with the initial condition Y(0) = y.

3. Optimal strategy for the joint exponential utility of terminal wealth

According to Ferguson [30], the goal of investor is to maximize the utility of wealth at a fixed
terminal time when the investor has an exponential utility function. Gerber [31] mentioned that the
exponential utility function plays an important role in insurance mathematics and it is the only utility
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function under the principle of “zero utility”. Inspired by Huang et al. [28], we suppose that the insurer
and reinsurer have the joint exponential utility function

U(x, y) = −
η1η2

m1m2
e−m1 x−m2y, m1 , m2,

where m1,m2, η1, η2 are positive contants, m1,m2 are the risk aversion coefficients of the insurer and
reinsurer. This utility function is not simply a utility function obtained by multiplying two exponential
utilities. It is formed by the fusion of two functions and contains the properties of exponential utility
function, which satisfies Ux > 0,Uy > 0 and Uxx < 0,Uyy < 0.

Definition 3.1. Let Γ = (t, s1, s2, x, y), Λ := R × R × R × R, Θ := [0,T ] × Λ. Then, a strategy
π(t) = (A1(t), A2(t), q(t)) , t ∈ [0,T ] is said to be admissible if it satisfies the following conditions:

(i) ∀t ∈ [0,T ], q(t) ∈ [1 −
√

α1
α2
, 1];

(ii) ∀Γ ∈ Θ, both the Eqs (2.3) and (2.4) have a strong solution {Xt,x(s), s ∈ [t,T ]} and {Y t,y(s), s ∈
[t,T ]} with the initial condition S 1(t) = s1, S 2(t) = s2, X(t) = x,Y(t) = y;

(iii) E[
∫ T

0
A2

i (t)S 2βi
i (t)dt] < ∞, i = 1, 2;

(iv) Eπ {U[X(T ),Y(T )]| S 1(t) = s1, S 2(t) = s2, X(t) = x,Y(t) = y} < ∞, where π(t) = (A1(t), A2(t),
q(t)) ∈ Π, t ∈ [0,T ] is the proportional reinsurance-investment strategy and Π is
the set of admissible strategies π. We suppose that π(t) is Ft−predictable with Ft =

σ(X(s),Y(s), S 1(s), S 2(s), s ≤ t).

Assume that we are interested in maximizing the joint exponential utility of terminal wealth at a
fixed time T . In order to apply the classical tools of stochastic optimal control, now we introduce the
associated value function

V(t, s1, s2, x, y) = sup
(A1,A2,q)∈Π

E {U[X(T ),Y(T )]| S 1(t) = s1, S 2(t) = s2, X(t) = x,Y(t) = y} , t ∈ [0,T ],

with boundary condition V(T, s1, s2, x, y) = U(x, y).
To solve the above problem, we use the dynamic programming approach described in Fleming and

Soner [32]. Suppose that C1,2,2,2,2([0,T ) × R × R × R × R) is the space of V(t, s1, s2, x, y), which are
first-order continuously differentiable in t ∈ [0,T ], second-order continuously differentiable in x ∈ R,
y ∈ R, s1 ∈ R, s2 ∈ R. Denote Vt, Vx, Vy, Vs1 , Vs2 , Vxx, Vyy, Vs1 s1 , Vs2 s2 , Vxs1 , Vys2 and Vxy as the first
and second partial derivatives of V , which are continuous on C1,2,2,2,2. Then V satisfies the following
Hamilton-Jacobi-Bellman equation

sup
(A1,A2,q)∈Π

AA1,A2,qV(t, s1, s2, x, y) = 0, (3.1)

where

AA1,A2,qV(t, s1, s2, x, y)
= Vt + r1s1Vs1 + r2s2Vs2 + [A1(r1 − r0) + r0x + λα1µ2 − λα2(1 − q)2µ2]Vx + [A2(r2 − r0) + r0y

+ λα2(1 − q)2µ2]Vy +
1
2

(A2
1s2β1

1 σ2
1 + q2σ2

0)Vxx +
1
2

[A2
2s2β2

2 σ2
2 + (1 − q)2σ2

0]Vyy +
1
2

s2β1+2
1 σ2

1Vs1 s1

+
1
2

s2β2+2
2 σ2

2Vs2 s2 + σ2
0q(1 − q)Vxy + A1s2β1+1

1 σ2
1Vxs1 + A2s2β2+1

2 σ2
2Vys2 .

(3.2)
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Substituting (3.2) into (3.1), we have the following HJB equation

Vt + sup
(A1,A2,q)∈Π

{
r1s1Vs1 + r2s2Vs2 + [A1(r1 − r0) + r0x + λα1µ2 − λα2(1 − q)2µ2]Vx + [A2(r2 − r0)

+ r0y + λα2(1 − q)2µ2]Vy +
1
2

(A2
1s2β1

1 σ2
1 + q2σ2

0)Vxx +
1
2

[A2
2s2β2

2 σ2
2 + (1 − q)2σ2

0]Vyy

+
1
2

s2β1+2
1 σ2

1Vs1 s1 +
1
2

s2β2+2
2 σ2

2Vs2 s2 +σ2
0q(1 − q)Vxy + A1s2β1+1

1 σ2
1Vxs1 + A2s2β2+1

2 σ2
2Vys2

}
= 0.

(3.3)

Inspired by Li et al. [23], we try a solution to (3.3) by

V(t, s1, s2, x, y) = −
η1η2

m1m2
e[−m1 x−m2y−d(t)]er0(T−t)+g(t,s1 ,s2)

, (3.4)

with the boundary condition g(T, s1, s2) = 0 and d(T ) = 0. Let gt, gs1 , gs2 , gs1 s1 and gs2 s2 be the first
and second partial derivatives of g with respect to (w.r.t) t, s1 and s2, which are given by

Vt = {−r0er0(T−t)[−m1x − m2y − d(t)] − dter0(T−t) + gt}V, Vx = −m1er0(T−t)V, Vy = −m2er0(T−t)V,

Vs1 = gs1V, Vs2 = gs2V, Vxx = m2
1e2r0(T−t)V, Vyy = m2

2e2r0(T−t)V, Vs1 s1 = (gs1 s1 + g2
s1

)V,
Vs2 s2 = (gs2 s2 + g2

s2
)V, Vxs1 = −m1er0(T−t)gs1V, Vys2 = −m2er0(T−t)gs2V, Vxy = m1m2e2r0(T−t)V.

(3.5)

Substituting (3.5) into (3.3), after simplification, we obtain

[r0d(t) − dt − m1λα1µ2]er0(T−t) + gt + r1s1gs1 + r2s2gs2 +
1
2

s2β1+2
1 σ2

1(gs1 s1 + g2
s1

)

+
1
2

s2β2+2
2 σ2

2(gs2 s2 + g2
s2

) + inf
A1

[
− A1m1er0(T−t)(r1 − r0 + s2β1+1

1 σ2
1gs1) +

1
2

A2
1s2β1

1 σ2
1m2

1e2r0(T−t)
]

+ inf
A2

[
− A2m2er0(T−t)(r2 − r0 + s2β2+1

2 σ2
2gs2) +

1
2

A2
2s2β2

2 σ2
2m2

2e2r0(T−t)
]

+ inf
q

{
λα2(1 − q)2µ2er0(T−t)(m1 − m2) +

1
2
σ2

0e2r0(T−t)[q2m2
1 + (1 − q)2m2

2]

+ σ2
0q(1 − q)m1m2e2r0(T−t)

}
= 0,

(3.6)

for 0 < t < T . Let

f1(A1, t) = −A1m1er0(T−t)(r1 − r0 + s2β1+1
1 σ2

1gs1) +
1
2

A2
1s2β1

1 σ2
1m2

1e2r0(T−t), (3.7)

f2(A2, t) = −A2m2er0(T−t)(r2 − r0 + s2β2+1
2 σ2

2gs2) +
1
2

A2
2s2β2

2 σ2
2m2

2e2r0(T−t), (3.8)

and

f (q, t) =λα2(1 − q)2µ2er0(T−t)(m1 − m2) + σ2
0q(1 − q)m1m2e2r0(T−t)

+
1
2
σ2

0e2r0(T−t)[q2m2
1 + (1 − q)2m2

2].
(3.9)

Differentiating (3.7) with respect to A1 gives the insurer’s optimal investment strategy

A∗1(t) =
r1 − r0 + s2β1+1

1 σ2
1gs1

m1s2β1
1 σ2

1

e−r0(T−t). (3.10)
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Similarly, differentiating (3.8) with respect to A2 gives the reinsurer’s optimal investment strategy

A∗2(t) =
r2 − r0 + s2β2+1

2 σ2
2gs2

m2s2β2
2 σ2

2

e−r0(T−t). (3.11)

To find the value of q∗(t) that minimizes f , we need to take the first and the second derivatives of f
w.r.t q. Then, ∂ f (q,t)

∂q and ∂2 f (q,t)
∂q2 are given by

∂ f (q, t)
∂q

=σ2
0[qm2

1 + (q − 1)m2
2]e2r0(T−t) + σ2

0(1 − 2q)m1m2e2r0(T−t)

+ 2(q − 1)λα2µ2(m1 − m2)er0(T−t),

(3.12)

and

∂2 f (q, t)
∂q2 = 2λα2µ2(m1 − m2)er0(T−t) + σ2

0(m1 − m2)2e2r0(T−t). (3.13)

Let ∂ f (q,t)
∂q = 0, we get

q̄(t) =
2λα2µ2 − σ

2
0m2er0(T−t)

2λα2µ2 + σ2
0(m1 − m2)er0(T−t)

= 1 −
m1σ

2
0er0(T−t)

2λα2µ2 + (m1 − m2)σ2
0er0(T−t)

. (3.14)

Let ∂2 f (q,t)
∂q2 = 0, we obtain

2λα2µ2 + σ2
0(m1 − m2)er0(T−t) = 0. (3.15)

Since q(t) ∈ [1 −
√

α1
α2
, 1], we need to discuss the size relationship of q̄(t), 1 −

√
α1
α2

and 1, which is
closely related to the concavity/convexity of f (q, t).

Note that q̄ = 1 −
√

α1
α2

iff

[
m1σ

2
0er0(T−t) −

√
α1

α2

(
2λα2µ2 + (m1 − m2)σ2

0er0(T−t)
)]
×

[
2λα2µ2 + (m1 − m2)σ2

0er0(T−t)
]

= 0, (3.16)

then, from (3.15) and (3.16), we denote

∆1 =
2λα2µ2

(m2 − m1)σ2
0

, ∆2 =
2λα2µ2

[m2 + m1(
√

α2
α1
− 1)]σ2

0

. (3.17)

It is easy to see that ∆1 > ∆2 > 0 when m1 < m2, and ∆2 > 0 > ∆1 when m1 > m2.

Remark 3.1. If m1 = m2 = m, Eq (3.9) becomes f (q, t) = f (t) = 1
2m2σ2

0e2r0(T−t), it indicates that there
is no reinsurance, the optimal investment-reinsurance problem is transformed into a pure investment
problem. If β1, β2 = 0, it is equivalent to the price of risky assets described by GBM model, we find
that the optimal investment strategy A∗1(t), A∗2(t) will change, but the optimal reinsurance strategy is not
affected, this shows that the optimal reinsurance strategy is independent of the price of risky assets.

AIMS Mathematics Volume 8, Issue 7, 15383–15410.



15391

Lemma 3.1. If the parameters r0, r1, r2 and T satisfy one of the following conditions:

(1) r0 ≥ (1 − 1
√

6
)r1 and r0 ≥ (1 − 1

√
6
)r2;

(2) r0 < (1 − 1
√

6
)r1, r0 < (1 − 1

√
6
)r2 and T < 1

γ2
arccot(−γ1

γ2
), where γ1 = −β1r1, and γ2 =

−β1

√
6(r1 − r0)2 − r2

1,

then

E
{

exp
[ ∫ t

0

3(ri − r0)2

S 2βi
i (u)σ2

i

du
]}
< ∞, i = 1, 2.

The detailed proof of this conclusion can be referred to Theorem 5.1 in Zeng and Taksar [33], we
omit it here.

We give Lemma 3.2 for devoting to the proof of the verification theorem.

Lemma 3.2. If conditions in Lemma 3.1 holds, andω(t, s1, s2, x, y) is the solution of HJB equation (3.1)
with the boundary ω(T, s1, s2, x, y) = U(x, y), then we have

E[ω2(t, S 1(t), S 2(t), Xπ∗(t),Yπ∗(t))] < ∞. (3.18)

Proof. See Appendix A.

Theorem 3.1 (Verification theorem). Let ω(t, s1, s2, x, y) ∈ C1,2,2,2,2, and ω satisfies HJB equation (3.1)
with boundary conditions ω(T, s1, s2, x, y) = U(x, y). Let π∗(t) =

(
A∗1(t), A∗2(t), q∗(t)

)
∈ Π such that

Aπ∗V(t, s1, s2, x, y) = 0, then the value function V(t, s1, s2, x, y) = ω(t, s1, s2, x, y) and π∗(t) is the
optimal strategy.

Proof. See Appendix B.
After giving the verification theorem, we now present the optimal reinsurance-investment strategy

and value function in Theorem 3.2.

Theorem 3.2 (The optimal strategy and value function). The optimal investment strategy is given by

A∗1(t) =
r2

1 − r2
0 − (r1 − r0)2e−2r0β1(T−t)

2r0m1s2β1
1 σ2

1

e−r0(T−t),

A∗2(t) =
r2

2 − r2
0 − (r2 − r0)2e−2r0β2(T−t)

2r0m2s2β2
2 σ2

2

e−r0(T−t).

The optimal reinsurance strategy is given by

(1) If m1 > m2, ∆2 ≥ 1 and 0 ≤ t ≤ T − ln ∆2
r0

, then q∗ = 1 −
√

α1
α2
,

(2) If m1 > m2, ∆2 ≥ 1 and T − ln ∆2
r0

< t < T, then q∗(t) = q̄(t),

(3) If m1 > m2 and ∆2 < 1, then q∗ = 1 −
√

α1
α2
,

(4) If m1 < m2, ∆2 ≥ 1 and 0 < t < T − ln ∆2
r0

, then q∗ = 1,
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(5) If m1 < m2, ∆2 ≥ 1 and T − ln ∆2
r0

< t < T, then

q∗ =


1 −

√
α1
α2
, f

(
1 −

√
α1
α2

)
< f (1),

1, f
(
1 −

√
α1
α2

)
≥ f (1),

(6) If m1 < m2 and ∆2 < 1, then q∗ = 1.

The explicit expressions of value function when q∗ takes different values are as follows:

(1) When q∗ = 1 −
√

α1
α2

, the value function is given by

V(t, s1, s2, x, y) = −
η1η2

m1m2
e[−m1 x−m2y−d(t)]er0(T−t)+g(t,s1 ,s2)

,

where

d(t) = −
m1λα1µ2

r0
[e−r0(T−t) − 1] +

σ2
0

2r0

[(1
2
−

√
α1

α2

)
m1

2 +
α1

2α2
(m1 − m2)2 +

√
α1

α2
m1m2

]
× [e−r0(T−t) − er0(T−t)].

Let

g(t, s1, s2) = m(t, k1, k2) = I(t) + J1(t)k1 + J2(t)k2, k1 = s−2β1
1 , k2 = s−2β2

2 ,

where

J1(t) =
(r1 − r0)2

4r0β1σ
2
1

[e−2r0β1(T−t) − 1], J2(t) =
(r2 − r0)2

4r0β2σ
2
2

[e−2r0β2(T−t) − 1], (3.19)

and

I(t) =
(r1 − r0)2(2β1 + 1)

4r0

[1 − e−2r0β1(T−t)

2r0β1
− (T − t)

]
+

(r2 − r0)2(2β2 + 1)
4r0

×
[1 − e−2r0β2(T−t)

2r0β2
− (T − t)

]
.

(3.20)

(2) When q∗(t) = q̄(t), the value function is given by

V(t, s1, s2, x, y) = −
η1η2

m1m2
e[−m1 x−m2y−d(t)]er0(T−t)+g(t,s1 ,s2)

,

where

d(t) = −
m1λα1µ2

r0
[e−r0(T−t) − 1],

I(t) =
(r1 − r0)2(2β1 + 1)

4r0

[1 − e−2r0β1(T−t)

2r0β1
− (T − t)

]
+

λα2µ2m2
1

r0(m1 − m2)
[er0(T−t) − 1]
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+
(r2 − r0)2(2β2 + 1)

4r0

[1 − e−2r0β2(T−t)

2r0β2
− (T − t)

]
+

2λ2α2
2µ

2
2m2

1

r0(m1 − m2)2σ2
0

ln

∣∣∣∣∣∣ 2λα2µ2 + (m1 − m2)σ2
0

2λα2µ2 + (m1 − m2)σ2
0er0(T−t)

∣∣∣∣∣∣ ,
and J1(t), J2(t) are given by (3.19).

(3) When q∗ = 1, the value function is given by

V(t, s1, s2, x, y) = −
η1η2

m1m2
e[−m1 x−m2y−d(t)]er0(T−t)+g(t,s1 ,s2)

,

where

d(t) =
m2

1σ
2
0

4r0
[e−r0(T−t) − er0(T−t)] +

m1λα1µ2

r0
[1 − e−r0(T−t)],

J1(t) and J2(t) are given by (3.19), I(t) is given by (3.20).

Proof. See Appendix C.

Remark 3.2. Compared with [23], due to the premium and re-premium are stipulated by the variance
premium principle, the extremum of the quadratic function (3.9) related to q in HJB equation becomes
uncertain, therefore, we cannot solve the optimal strategy through the first derivative, and we need to
solve at the level of second-order derivatives, which makes classification discussions more complex. In
addition, we find that the optimal investment strategies are the same as [23], but the optimal reinsurance
strategies are different, although their classification intervals are similar.

4. Numerical analysis

In this section, we provide some numerical analysis to study the influencing factors of the optimal
reinsurance-investment strategy and explain the results for better understanding in the economic sense.
Throughout this section, unless otherwise stated, we put r0 = 0.1, r1 = 0.2, r2 = 0.3, β1 = −1,
β2 = −0.8, T = 5, m1 = 1.8, m2 = 1.3, s1 = 5, s2 = 8, σ1 = 1 and σ2 = 2. We assume that the claim
size Zi are i.i.d. with common exponential distribution E(ϕ), the intensity ϕ = 1, then µ = 1, µ2 = 2
and σ0 =

√
2. The number of claims N(t) is assumed to be a Poisson process with intensity λ = 1.

Figure 1 shows that the amount invested by the insurer in risky asset is larger than the reinsurer
at a certain time. This may be due to the fact that, the relative risk aversion coefficient of the insurer
is larger than that of the reinsurer in this example, i.e., m1 > m2. As time passes, we find that the
amount of risky assets invested by the insurer and reinsurer increases gradually over time when other
parameters are fixed. The main reason is that, the rates of return of the risky assets are always larger
than the interest rate of the risk-free asset, both the insurer and reinsurer will gain more profits from
investment in the risky asset as time goes.

Figure 2 shows that the optimal investment strategy decreases with the risk aversion coefficient. The
reason is that, the insurer will increase the reinsurance proportion and reduce the amount of investment
in risky asset when the risk aversion coefficient becomes larger.
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Figure 1. The optimal investment strategy A∗1, A
∗
2 change over time.
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Figure 2. The effect of m1 on the optimal investment strategy A∗1.

In Figure 3, we find that near the initial time, the larger the risk aversion coefficient of reinsurer
is, the more the amount of investment in risky asset is. This is because the larger the risk aversion
coefficient is, the more reinsurance premiums are charged by reinsurers, and they can invest more
money in risky asset. Furthermore, we also find that the amount of the reinsurer’s investment in risky
asset increases more gently with larger risk aversion coefficient.
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Figure 3. The effect of m2 on the optimal investment strategy A∗2.

For a fixed risk-free interest rate r0, Figures 4 and 5 show that both the insurer and reinsurer will
invest more in risky assets when the instantaneous rates of return of the risky assets increase. This
coincides with our intuition.
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Figure 4. The effect of r1 − r0 on the optimal investment strategy A∗1.
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Figure 5. The effect of r2 − r0 on the optimal investment strategy A∗2.

Let α1 = 0.8, then ∆2 > 1 with m1 = 1.8,m2 = 1.3, α2 = 1.1, 1.2, ∆2 < 1 with m1 = 2,m2 =

1.9, α2 = 1.1, 1.2. From Theorem 3.2, the optimal reinsurance strategy is a fixed constant 1 −
√

α1
α2

when ∆2 < 1. When ∆2 > 1, we find that in Figure 6 the larger α2 is, the larger the initial retention
level q∗ is, and the earlier the optimal strategy is changed. This result can be explained by the fact
that more reinsurance premium will be charged for larger α2, so the insurer will buy less reinsurance.
However, larger retention level means higher risk for the insurer, so the insurer will change the optimal
reinsurance strategy earlier.
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Figure 6. the optimal reinsurance retention level q∗ vary over time when m1 > m2.
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Figure 7 demonstrates the influence of m1 on q∗, we vary m1 from 1.9 ∼ 2.1. Let m2 = 1.2,
α1 = 0.8, α2 = 1.2, then we can calculate ∆2 > 1 with m1 = 1.9 ∼ 2.1, and we obtain q∗ = q when
t ∈

(
T − ln ∆2

r0
,T

)
. We find that when the risk aversion coefficient of the reinsurer is fixed, the insurer

with larger risk aversion coefficient would like to buy more reinsurance.
Figure 8 shows the influence of m2 on q∗, we vary m2 from 1.2 ∼ 1.4. Let m1 = 2.0, α1 = 0.8, α2 =

1.2, then we can calculate ∆2 > 1 with m2 = 1.2 ∼ 1.4, and we obtain q∗ = q when t ∈
(
T − ln ∆2

r0
,T

)
.

We find that when the risk aversion coefficient of the insurer is fixed, the reinsurer with larger risk
aversion coefficient is willing to accept more claim risk. A possible reason for this phenomenon is that,
the reinsurer with larger risk aversion coefficient will reduce the amount of investment in risky asset,
and has more cash to hedge the claim risk.
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Figure 7. The effect of m1 on the optimal reinsurance retention level q∗.

2.5 3 3.5 4 4.5 5

t

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

q
*

m
2
=1.4

m
2
=1.3

m
2
=1.2

Figure 8. The effect of m2 on the optimal reinsurance retention level q∗.
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Let m1 = 1.8,m2 = 1.3, α1 = 0.8, then we can calculate ∆2 > 1 with α2 = 1.1 ∼ 1.3. From
Theorem 3.2, we obtain that q∗ = q when t ∈

(
T − ln ∆2

r0
,T

)
. Figure 9 shows that q∗ increases w.r.t

time t and the safety loading of the reinsurer α2. It can be explained that the larger the safety loading
of the reinsurer, the more premium the insurer will pay, then the insurer will appropriately reduce the
reinsurance proportion and increase the retention level.
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Figure 9. The effect of α2 on the optimal reinsurance retention level q∗.

5. Conclusions

In this paper, we study the optimal investment and proportional reinsurance of the insurer and
reinsurer under the joint exponential utility. We find that the optimal investment strategy is related
to risk-free interest rate, the price and the instantaneous rate of return of the risky asset, and risk
aversion coefficient. The value of the optimal reinsurance strategy can be divided into six different
cases. Before reaching the terminal time T , the insurer needs to constantly adjust the reinsurance
proportion to maximize their joint terminal wealth utility. Moreover, we get the explicit expression
of the value function when the optimal reinsurance strategy q∗ takes different values. Also, we use
numerical simulation to illustrate the results in detail and explain the negative impact of risk aversion
coefficient on risky assets investment and retention level, and the positive impact of reinsurer’s safety
load on retention level, etc. In the future, we will further study the excess-of-loss reinsurance with the
price of the risky asset is described by Heston model, or consider different optimization criteria such
as minimizing joint ruin probability of the insurer and reinsurer.
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Appendix A

Proof of Lemma 3.2
First, we can obtain the following equations by (2.2)

dS −2β1
1 (t) = [β1(2β1 + 1)σ2

1 − 2β1r1S −2β1
1 (t)]dt − 2β1σ1

√
S −2β1

1 (t)dW (1)
t , (A.1)

dS −2β2
2 (t) = [β2(2β2 + 1)σ2

2 − 2β2r2S −2β2
2 (t)]dt − 2β2σ2

√
S −2β2

2 (t)dW (2)
t . (A.2)

We denote ω(t) := ω(t, S 1(t), S 2(t), Xπ∗(t),Yπ∗(t)), where ω(t, s1, s2, x, y) is given by (3.4). Applying
Itô’s formula to ω(t), we obtain

dω2(t)
ω2(t)

= 2
{
− m1q(t)σ0er0(T−t)dW (0)

t − m1A1(t)S β1
1 (t)σ1er0(T−t)dW (1)

t − m2[1 − q(t)]σ0er0(T−t)dW (0)
t

− m2A2(t)S β2
2 (t)σ2er0(T−t)dW (2)

t + gs1S
β1+1
1 (t)σ1dW (1)

t + gs2S
β2+1
2 (t)σ2dW (2)

t

}
+

{
m2

1[q2(t)σ2
0

+ A2
1(t)S 2β1

1 (t)σ2
1]e2r0(T−t) + m2

2[(1 − q(t))2σ2
0 + A2

2(t)S 2β2
2 (t)σ2

2]e2r0(T−t) + g2
s1

S 2β1+2
1 (t)σ2

1

+ g2
s2

S 2β2+2
2 (t)σ2

2 + 2m1m2q(t)[1 − q(t)]σ2
0e2r0(T−t) − 2m1A1(t)S 2β1+1

1 (t)σ2
1gs1e

r0(T−t)

− 2m2A2(t)S 2β2+1
2 (t)σ2

2gs2e
r0(T−t)

}
dt,

which yields

dω2(t)
ω2(t)

= −2
{
[m1q(t) + m2(1 − q(t))]σ0er0(T−t)dW (0)

t +
r1 − r0

S β1
1 (t)σ1

dW (1)
t +

r2 − r0

S β2
2 (t)σ2

dW (2)
t

}
+

{
[m1q(t) + m2(1 − q(t))]2σ2

0e2r0(T−t) +
(r1 − r0)2

S 2β1
1 (t)σ2

1

+
(r2 − r0)2

S 2β2
2 (t)σ2

2

}
dt.
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The solution of (A.3) is

ω2(t)
ω2(0)

= exp
{ ∫ t

0
−2[m1q(u) + m2(1 − q(u))]σ0er0(T−u)dW (0)

u −
1
2

∫ t

0
4[m1q(u) + m2(1 − q(u))]2

× σ2
0e2r0(T−u)du −

∫ t

0

2(r1 − r0)

S β1
1 (u)σ1

dW (1)
u −

1
2

∫ t

0

4(r1 − r0)2

S 2β1
1 (u)σ2

1

du −
∫ t

0

2(r2 − r0)

S β2
2 (u)σ2

dW (2)
u

−
1
2

∫ t

0

4(r2 − r0)2

S 2β2
2 (u)σ2

2

du +

∫ t

0
[
3(r1 − r0)2

S 2β1
1 (u)σ2

1

+
3(r2 − r0)2

S 2β2
2 (u)σ2

2

+ 3(m1q(u) + m2(1 − q(u)))2

σ2
0e2r0(T−u)]du

}
.

(A.3)

Furthermore, by Lemma 1 of Gu et al. [7], we know that

exp
{ ∫ t

0
−

2(r1 − r0)

S β1
1 (u)σ1

dW (1)
u −

1
2

∫ t

0

4(r1 − r0)2

S 2β1
1 (u)σ2

1

du
}
,

exp
{ ∫ t

0
−

2(r2 − r0)

S β2
2 (u)σ2

dW (2)
u −

1
2

∫ t

0

4(r2 − r0)2

S 2β2
2 (u)σ2

2

du
}
,

are martingales. According to Lemma 3.1, we obtain

E
{

exp
[ ∫ t

0

3(r1 − r0)2

S 2β1
1 (u)σ2

1

du
]}
< ∞, E

{
exp

[ ∫ t

0

3(r2 − r0)2

S 2β2
2 (u)σ2

2

du
]}
< ∞.

Then taking the expectation on both sides of Eq (A.3), we obtain

E[ω2(t)] = ω2(0)E
{ ∫ t

0

[
3(m1q(u) + m2(1 − q(u)))2σ2

0e2r0(T−u) +
3(r1 − r0)2

S 2β1
1 (u)σ2

1

+
3(r2 − r0)2

S 2β2
2 (u)σ2

2

]
du

}
< ∞.

This ends the proof of Lemma 3.2.

Appendix B

Proof of Theorem 3.1
We first prove that ω = V , and then prove that π∗ is the optimal policy.

(i) Since ω is a function in C1,2,2,2,2([0,T )×R×R×R×R), for all t ∈ [0,T ), π ∈ Π, and any stopping
time τ ∈ [t,∞), applying Itô’s formula to ω between t and T ∧ τ, we obtain that

ω(T ∧ τ, S 1(T ∧ τ), S 2(T ∧ τ), Xπ(T ∧ τ),Yπ(T ∧ τ))

= ω(t, s1, s2, x, y) +

∫ T∧τ

t
Aπω (u, S 1(u), S 2(u), Xπ(u),Yπ(u))du

+

∫ T∧τ

t

{
q(u)ωx +

[
1 − q(u)

]
ωy

}
σ0dW (0)

u +

∫ T∧τ

t
[ωs1S

β1+1
1 (u) + ωxA1(u)S β1

1 (u)]σ1dW (1)
u

+

∫ T∧τ

t
[ωs2S

β2+1
2 (u) + ωyA2(u)S β2

2 (u)]σ2dW (2)
u .

(B.1)
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Since ω ∈ C1,2,2,2,2, ωx, ωy, ωs1 and ωs2 are bounded and continuous in [t,T ∧ τ], then we have

E
[∫ T∧τ

t
[q(u)ωx + (1 − q(u))ωy]2σ2

0du
]
≤ k1σ

2
0(T − t),

∫ T∧τ

t
[ωs1S

β1+1
1 (u) + ωxA1(u)S β1

1 (u)]
2
σ2

1du ≤ k2

∫ T∧τ

t
[S β1+1

1 (u) + A1(u)S β1
1 (u)]

2
σ2

1du

≤ 2k2

∫ T∧τ

t
[S 2β1+2

1 (u) + A2
1(u)S 2β1

1 (u)]σ2
1du,

and ∫ T∧τ

t
[ωs2S

β2+1
2 (u) + ωyA2(u)S β2

2 (u)]
2
σ2

2du ≤ 2k3

∫ T∧τ

t
[S 2β2+2

2 (u) + A2
2(u)S 2β2

2 (u)]σ2
2du,

where k1, k2 and k3 are positive constants.
Let

τn = T ∧ inf{s ≥ t : H1(s) ≥ n} ∧ inf{s ≥ t : H2(s) ≥ n} (B.2)

where

H1(s) =

∫ s

t
S 2(β1+1)

1 (u)σ2
1du, H2(s) =

∫ s

t
S 2(β2+1)

2 (u)σ2
2du. (B.3)

Hence, by (B.2), (B.3) and E[
∫ T

0
A2

i (t)S 2βi
i (t)dt] < ∞, i = 1, 2, the last three terms of (B.1) are

square-integrable martingales for τ = τn. Then taking conditional expectation given (t, s1, s2, x, y)
on both sides of (B.1), we get

Et,s1,s2,x,y[ω(T ∧ τn, S 1(T ∧ τn), S 2(T ∧ τn), Xπ(T ∧ τn),Yπ(T ∧ τn))]

= ω(t, s1, s2, x, y) + Et,s1,s2,x,y

[∫ T∧τn

t
Aπω(u)du

]
≤ ω(t, s1, s2, x, y),

(B.4)

whereω(u) = ω(u, S 1(u), S 2(u), Xπ(u),Yπ(u)). By Eq (3.18) in Lemma 3.2, we know that E[ω(T∧
τn, S 1(T ∧ τn), S 2(T ∧ τn), Xπ(s ∧ τn),Yπ(T ∧ τn))], n = 1, 2, . . . are uniformly integrable. As a
result, for any π ∈ Π, we have

Et,s1,s2,x,y[U(Xπ(T ),Yπ(T ))]
= lim

n→∞
Et,s1,s2,x,y[ω(T ∧ τn, S 1(T ∧ τn), S 2(T ∧ τn), Xπ(T ∧ τn),Yπ(T ∧ τn))]

≤ ω(t, s1, s2, x, y).

Therefore,

V(t, s1, s2, x, y) = sup
π∈Π

Et,s1,s2,x,y[U(Xπ(T ),Yπ(T ))]

≤ ω(t, s1, s2, x, y).
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(ii) Suppose that π∗ is a measurable function valued in Π such that

−
∂ω

∂t
(t, s1, s2, x, y) − sup

π∈Π

Lπω(t, s1, s2, x, y)

= −
∂ω

∂t
(t, s1, s2, x, y) − Lπ

∗

ω(t, s1, s2, x, y) = 0.

Then it is easy to see that the inequality in (B.4) becomes an equality with π = π∗, which in turn
yields

ω(t, s1, s2, x, y) = Et,s1,s2,x,y[ω(T, S 1(T ), S 2(T ), Xπ∗(T ),Yπ∗(T )]
≤ V(t, s1, s2, x, y).

Above all, we have proved that ω(t, s1, s2, x, y) = V(t, s1, s2, x, y), and π∗ is an optimal Markov
control.

Appendix C

Proof of Theorem 3.2
We first show how to classify the optimal reinsurance strategy and provide the value of the optimal

investment A∗1(t), A∗2(t) when q∗(t) takes three different values, finally we give the proof of the explicit
expression of the value function V(t, s1, s2, x, y).

Inserting (3.10) and (3.11) into (3.6), we obtain

[r0d(t) − dt − m1λα1µ2]er0(T−t) + gt +
1
2

s2β1+2
1 σ2

1gs1 s1 + r0s1gs1 −
(r1 − r0)2

2s2β1
1 σ2

1

+
1
2

s2β2+2
2 σ2

2gs2 s2 + r0s2gs2 −
(r2 − r0)2

2s2β2
2 σ2

2

+ inf
q

[ f (q, t)] = 0.
(C.1)

In order to find the optimal value of q that minimizes f (q, t) given by (3.9), we need to discuss the
concavity/convexity of f (q, t) and the size relationship of q̄(t), 1 −

√
α1
α2

and 1.

Note that q̄(t) ≤ 1 −
√

α1
α2

iff


m1 > m2,

{
∆2 ≥ 1, 0 ≤ t ≤ T − ln ∆2

r0
,

∆2 < 1,

m1 < m2,

 ∆1 > ∆2 ≥ 1,T − ln ∆1
r0
≤ t ≤ T − ln ∆2

r0
,

∆1 > 1 > ∆2,T − ln ∆1
r0
≤ t ≤ T,

(C.2)

1 −
√

α1
α2
< q̄(t) < 1 iff

 m1 > m2,∆2 ≥ 1,T − ln ∆2
r0

< t < T,
m1 < m2,∆1 > ∆2 ≥ 1,T − ln ∆2

r0
< t < T,

(C.3)
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and q̄(t) > 1 iff

m1 < m2,

{
∆1 ≥ 1, 0 < t < T − ln ∆1

r0
,

∆1 < 1.
(C.4)

On the other hand, ∂2 f (q,t)
∂q2 > 0 iff

m1 > m2,

m1 < m2,

{
∆1 ≥ 1, 0 ≤ t ≤ T − ln∆1

r0
,

∆1 < 1,
(C.5)

and ∂2 f (q,t)
∂q2 < 0 iff

m1 < m2, ∆1 ≥ 1, T −
ln∆1

r0
≤ t ≤ T. (C.6)

Based on the above analysis, we have the following conclusion.

(1) If q̄(t) ≤ 1 −
√

α1
α2

and ∂2 f (q,t)
∂q2 > 0, then q∗ = 1 −

√
α1
α2
.

Combining (C.2) and (C.5), we obtain m1 > m2,

{
∆2 ≥ 1, 0 ≤ t ≤ T − ln ∆2

r0
,

∆2 < 1.

(2) If q̄(t) ≤ 1 −
√

α1
α2

and ∂2 f (q,t)
∂q2 < 0, then q∗ = 1.

Combining (C.2) and (C.6), we obtain m1 < m2,

 ∆1 > ∆2 ≥ 1,T − ln ∆1
r0
≤ t ≤ T − ln ∆2

r0
,

∆1 > 1 > ∆2,T − ln ∆1
r0
≤ t ≤ T.

(3) If 1 −
√

α1
α2
< q̄(t) < 1 and ∂2 f (q,t)

∂q2 > 0, then q∗ = 1 −
√

α1
α2
.

Combining (C.3) and (C.5), we obtain
m1 > m2,∆2 ≥ 1,T − ln ∆2

r0
< t < T.

(4) If 1 −
√

α1
α2
< q̄(t) < 1 and ∂2 f (q,t)

∂q2 < 0, then q∗ = 1.

Combining (C.3) and (C.6), we obtain m1 < m2,∆1 > ∆2 ≥ 1,T − ln ∆2
r0

< t < T.

(5) If q̄(t) > 1 and ∂2 f (q,t)
∂q2 > 0, then q∗(t) = q̄(t).

Combining (C.4) and (C.5), we obtain m1 < m2,

{
∆1 ≥ 1, 0 < t < T − ln ∆1

r0
,

∆1 < 1.

(6) If q̄(t) > 1 and ∂2 f (q,t)
∂q2 < 0, then q∗ = 1 or 1 −

√
α1
α2
.

Combining (C.4) and (C.6), we find the intersection of the two is empty.

Combining above (1)–(6), we obtain the result of optimal reinsurance strategy shown in
Theorem 3.2. Next, we proof the value of the optimal investment strategy A∗1(t) and A∗2(t), when q∗(t)
takes different values.

(1) When q∗ = 1 −
√

α1
α2

, substituting it into (C.1) yields

{r0d(t) − dt − m1λα1µ2 +
[(1

2
−

√
α1

α2

)
m1

2 +
α1

2α2
(m1 − m2)2 +

√
α1

α2
m1m2

]
σ2

0er0(T−t)}er0(T−t)

+ gt + r0s1gs1 +
1
2

s2β1+2
1 σ2

1gs1 s1 −
(r1 − r0)2

2s2β1
1 σ2

1

+ r0s2gs2 +
1
2

s2β2+2
2 σ2

2gs2 s2 −
(r2 − r0)2

2s2β2
2 σ2

2

= 0,
(C.7)
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which can be split into following two equations[(1
2
−

√
α1

α2

)
m1

2 +
α1

2α2
(m1 − m2)2 +

√
α1

α2
m1m2

]
σ2

0er0(T−t) + r0d(t) − dt − m1λα1µ2 = 0, (C.8)

and

gt + r0s1gs1 +
1
2

s2β1+2
1 σ2

1gs1 s1 −
(r1 − r0)2

2s2β1
1 σ2

1

+ r0s2gs2 +
1
2

s2β2+2
2 σ2

2gs2 s2 −
(r2 − r0)2

2s2β2
2 σ2

2

= 0. (C.9)

Note that (C.8) is a linear ordinary differential equation with the boundary condition d(T ) = 0, it
is not difficult to derive that

d(t) = −
m1λα1µ2

r0
[e−r0(T−t) − 1] +

σ2
0

2r0

[(1
2
−

√
α1

α2

)
m1

2 +
α1

2α2
(m1 − m2)2 +

√
α1

α2
m1m2

]
× [e−r0(T−t) − er0(T−t)].

(C.10)

Trying to solve (C.9), we put

g(t, s1, s2) = m(t, k1, k2), k1 = s−2β1
1 , k2 = s−2β2

2 , (C.11)

with the boundary condition given by m(T, k1, k2) = 0. Then we can obtain the relationship
between the partial derivatives of m and g as follows

gt = mt, gs1 = −2β1s−2β1−1
1 mk1 , gs2 = −2β2s−2β2−1

2 mk2 ,

gs2 s2 = 2β2(2β2 + 1)s−2β2−2
2 mk2 + 4β2

2s−4β2−2
2 mk2k2 ,

gs1 s1 = 2β1(2β1 + 1)s−2β1−2
1 mk1 + 4β2

1s−4β1−2
1 mk1k1 .

(C.12)

Substituting the above first and second partial derivatives into Eq (C.9), and after simplification
we have

mt + [β1(2β1 + 1)σ2
1 − 2r0β1k1]mk1 + 2β2

1σ
2
1k1mk1k1 −

(r1 − r0)2k1

2σ2
1

+ [β2(2β2 + 1)σ2
2

− 2r0β2k2]mk2 + 2β2
2σ

2
2k2mk2k2 −

(r2 − r0)2k2

2σ2
2

= 0.
(C.13)

Motivated by Li et al. [23], we assume that a solution of Eq (C.13) has a following form

m(t, k1, k2) = I(t) + J1(t)k1 + J2(t)k2, (C.14)

with the boundary condition I(T ) = J1(T ) = J2(T ) = 0. Then, we obtain the partial derivatives of
m as

mt = It + J1tk1 + J2tk2, mk1 = J1(t), mk2 = J2(t), mk1k1 = mk2k2 = 0, (C.15)

Substituting (C.15) into (C.13), we have

It + J1tk1 + J2tk2 + [β1(2β1 + 1)σ2
1 − 2r0β1k1]J1(t) −

(r1 − r0)2k1

2σ2
1

+ [β2(2β2 + 1)σ2
2 − 2r0β2k2]J2(t) −

(r2 − r0)2k2

2σ2
2

= 0,
(C.16)
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which can be simplified into

k1[J1t − 2r0β1J1(t) −
(r1 − r0)2

2σ2
1

] + k2[J2t − 2r0β2J2(t) −
(r2 − r0)2

2σ2
2

]

+ It + J1(t)β1(2β1 + 1)σ2
1 + J2(t)β2(2β2 + 1)σ2

2 = 0,
(C.17)

with k1 = s−2β1
1 , 0, k2 = s−2β2

2 , 0, J1(T ) = J2(T ) = 0. We can split Eq (C.17) into three
equations:

J1t − 2r0β1J1(t) −
(r1 − r0)2

2σ2
1

= 0, (C.18)

J2t − 2r0β2J2(t) −
(r2 − r0)2

2σ2
2

= 0, (C.19)

and

It + J1(t)β1(2β1 + 1)σ2
1 + J2(t)β2(2β2 + 1)σ2

2 = 0. (C.20)

Since Eqs (C.18) and (C.19) are linear ordinary differential equations with the boundary condition
J1(T ) = J2(T ) = 0, we derive that

J1(t) =
(r1 − r0)2

4r0β1σ
2
1

[e−2r0β1(T−t) − 1], (C.21)

J2(t) =
(r2 − r0)2

4r0β2σ
2
2

[e−2r0β2(T−t) − 1]. (C.22)

Combining (C.20), (C.21) and (C.22), we have

I(t) =
(r1 − r0)2(2β1 + 1)

4r0

[1 − e−2r0β1(T−t)

2r0β1
− (T − t)

]
+

(r2 − r0)2(2β2 + 1)
4r0

×
[1 − e−2r0β2(T−t)

2r0β2
− (T − t)

]
.

(C.23)

Using Eqs (C.15), (C.21), (C.22), (3.10) and (3.11), we obtain

A∗1(t) =
r2

1 − r2
0 − (r1 − r0)2e−2r0β1(T−t)

2r0m1s2β1
1 σ2

1

e−r0(T−t), (C.24)

A∗2(t) =
r2

2 − r2
0 − (r2 − r0)2e−2r0β2(T−t)

2r0m2s2β2
2 σ2

2

e−r0(T−t). (C.25)

Above all, we present the expression of d(t), g(t, s1, s2), m(t, k1, k2), I(t), J1(t), and J2(t) by (C.10),
(C.12), (C.14), (C.23), (C.21) and (C.22), then we can get the explicit expression of the value
function V(t, s1, s2, x, y).
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(2) When q∗(t) = q̄(t), substituting it into (C.1) yields

[r0d(t) − dt − m1λα1µ2]er0(T−t) + gt +
1
2

s2β1+2
1 σ2

1gs1 s1 + r0s1gs1 −
(r1 − r0)2

2s2β1
1 σ2

1

+
1
2

s2β2+2
2 σ2

2gs2 s2 + r0s2gs2 −
(r2 − r0)2

2s2β2
2 σ2

2

+ f (q̄, t) = 0.
(C.26)

It’s easy to see that Eq (3.9) is independent of g and its partial derivatives. Thus, (C.26) can be
split into following two equations

r0d(t) − dt − m1λα1µ2 = 0, (C.27)

and

gt +
1
2

s2β1+2
1 σ2

1gs1 s1 + r0s1gs1 −
(r1 − r0)2

2s2β1
1 σ2

1

+
1
2

s2β2+2
2 σ2

2gs2 s2

+ r0s2gs2 −
(r2 − r0)2

2s2β2
2 σ2

2

+ f (q̄, t) = 0,
(C.28)

Note that (C.27) is a linear ordinary differential equation with the boundary condition d(T ) = 0,
we have

d(t) = −
m1λα1µ2

r0
[e−r0(T−t) − 1]. (C.29)

Since (C.28) is similar with (C.9), we can get the expression of I(t) which is similar with (C.23),
and it is given by

I(t) =
(r1 − r0)2(2β1 + 1)

4r0

[1 − e−2r0β1(T−t)

2r0β1
− (T − t)

]
+

∫ T

t
f (q̄, τ)dτ +

(r2 − r0)2(2β2 + 1)
4r0

×
[1 − e−2r0β2(T−t)

2r0β2
− (T − t)

]
,

(C.30)

where

f (q̄, t) =λα2(1 − q̄)2µ2(m1 − m2)er0(T−t) + q̄(1 − q̄)m1m2σ
2
0e2r0(T−t)

+
1
2
σ2

0e2r0(T−t)[q̄2m2
1 + (1 − q̄)2m2

2]

=
λα2µ2m2

1(m1 − m2)σ4
0e3r0(T−t) + 2λ2α2

2µ
2
2m2

1σ
2
0e2r0(T−t)

[2λα2µ2 + (m1 − m2)σ2
0er0(T−t)]2

=
λα2µ2m2

1(m1 − m2)σ4
0e3r0(T−t) + (4 − 2)λ2α2

2µ
2
2m2

1σ
2
0e2r0(T−t)

[2λα2µ2 + (m1 − m2)σ2
0er0(T−t)]2

= −
1
r0

[
λα2µ2m2

1σ
2
0e2r0(T−t)

2λα2µ2 + (m1 − m2)σ2
0er0(T−t)

]′
+

er0(T−t)

r0

[
λα2µ2m2

1σ
2
0er0(T−t)

2λα2µ2 + (m1 − m2)σ2
0er0(T−t)

]′
.
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Then ∫ T

t
f (q̄, τ)dτ =

∫ T

t
−

1
r0

[
λα2µ2m2

1σ
2
0e2r0(T−τ)

2λα2µ2 + (m1 − m2)σ2
0er0(T−τ)

]′
dτ

+

∫ T

t

er0(T−τ)

r0

[
λα2µ2m2

1σ
2
0er0(T−τ)

2λα2µ2 + (m1 − m2)σ2
0er0(T−τ)

]′
dτ.

(C.31)

Furthermore,∫ T

t

er0(T−τ)

r0

[
λα2µ2m2

1σ
2
0er0(T−τ)

2λα2µ2 + (m1 − m2)σ2
0er0(T−τ)

]′
dτ

=

[
er0(T−τ)

r0
×

λα2µ2m2
1σ

2
0er0(T−τ)

2λα2µ2 + (m1 − m2)σ2
0er0(T−τ)

]∣∣∣∣∣∣
T

t

+

∫ T

t

λα2µ2m2
1σ

2
0e2r0(T−τ)

2λα2µ2 + (m1 − m2)σ2
0er0(T−τ)

dτ

=
λα2µ2m2

1σ
2
0

2r0λα2µ2 + r0(m1 − m2)σ2
0

−
λα2µ2m2

1σ
2
0e2r0(T−t)

2r0λα2µ2 + r0(m1 − m2)σ2
0er0(T−t)

−
λα2µ2m2

1σ
2
0

r0

×

∫ 1

er0(T−t)

δ

2λα2µ2 + (m1 − m2)σ2
0δ

dδ,

(C.32)

and ∫ 1

er0(T−t)

δ

2λα2µ2 + (m1 − m2)σ2
0δ

dδ

=
1

(m1 − m2)2σ4
0

[(m1 − m2)σ2
0δ − 2λα2µ2 ln |2λα2µ2 + (m1 − m2)σ2

0δ|]|
1
er0(T−t)

= −
1

(m1 − m2)2σ4
0

{
(m1 − m2)σ2

0[er0(T−t) − 1] + 2λα2µ2 ln

∣∣∣∣∣∣ 2λα2µ2 + (m1 − m2)σ2
0

2λα2µ2 + (m1 − m2)σ2
0er0(T−t)

∣∣∣∣∣∣ }.
(C.33)

Combined (C.31), (C.32) and (C.33) , we get∫ T

t
f (q̄, τ)dτ =

λα2µ2m2
1

r0(m1 − m2)
[er0(T−t) − 1] +

2λ2α2
2µ

2
2m2

1

r0(m1 − m2)2σ2
0

ln

∣∣∣∣∣∣ 2λα2µ2 + (m1 − m2)σ2
0

2λα2µ2 + (m1 − m2)σ2
0er0(T−t)

∣∣∣∣∣∣ .
As a result, (C.30) is converted to

I(t) =
(r1 − r0)2(2β1 + 1)

4r0
[
1 − e−2r0β1(T−t)

2r0β1
− (T − t)] +

(r2 − r0)2(2β2 + 1)
4r0

× [
1 − e−2r0β2(T−t)

2r0β2
− (T − t)] +

λα2µ2m2
1

r0(m1 − m2)
[er0(T−t) − 1]

+
2λ2α2

2µ
2
2m2

1

r0(m1 − m2)2σ2
0

ln

∣∣∣∣∣∣ 2λα2µ2 + (m1 − m2)σ2
0

2λα2µ2 + (m1 − m2)σ2
0er0(T−t)

∣∣∣∣∣∣ .
(C.34)

Above all, we obtain the expression of d(t), I(t), J1(t), and J2(t) by (C.29), (C.34), (C.21) and
(C.22), then we can get the explicit expression of the value function V(t, s1, s2, x, y). Similarly,
we can obtain A∗1 and A∗2 are given by (C.24) and (C.25).
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(3) When q∗ = 1, substituting it into (C.1) yields

[r0d(t) − dt − m1λα1µ2 +
1
2

m2
1σ

2
0er0(T−t)]er0(T−t) + gt +

1
2

s2β1+2
1 σ2

1gs1 s1

+ r0s1gs1 −
(r1 − r0)2

2s2β1
1 σ2

1

+
1
2

s2β2+2
2 σ2

2gs2 s2 + r0s2gs2 −
(r2 − r0)2

2s2β2
2 σ2

2

= 0.
(C.35)

Also, (C.35) can be split into (C.9) and

r0d(t) − dt − m1λα1µ2 +
1
2

m2
1σ

2
0er0(T−t) = 0. (C.36)

Solving the above linear ordinary differential equation (C.36) with the boundary condition d(T ) =

0, we obtain

d(t) =
m2

1σ
2
0

4r0
[e−r0(T−t) − er0(T−t)] +

m1λα1µ2

r0
[1 − e−r0(T−t)].

The solution of (C.9) is given by (C.11)–(C.23). So, we can get the explicit expression of the
value function V(t, s1, s2, x, y). Similarly, we can obtain A∗1(t) and A∗2(t) are given by (C.24) and
(C.25).

Above all, the proof of Theorem 3.2 is completed.
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