In this paper, we consider the problem of optimal investment-reinsurance for the insurer and reinsurer under the stochastic volatility model. The surplus process of the insurer is described by a diffusion model. The insurer can purchase proportional reinsurance from the reinsurer and the premium charged by the insurer and reinsurer follows the variance principle. Both the insurer and reinsurer are allowed to invest in risk-free assets and risky assets, and the market price of risk depends on a Markovian, affine-form, and square-root stochastic factor process. Our goal is to maximize the joint exponential utility of the terminal wealth of the insurer, and reinsurer over a certain period of time. By solving the HJB equation, we obtain the optimal investment-reinsurance strategies, and present the proof of the verification theorem. Finally, we demonstrate a numerical analysis, and the economic implications of our findings are illustrated.
Citation: Wuyuan Jiang, Zechao Miao, Jun Liu. Optimal investment and reinsurance for the insurer and reinsurer with the joint exponential utility[J]. AIMS Mathematics, 2024, 9(12): 35181-35217. doi: 10.3934/math.20241672
In this paper, we consider the problem of optimal investment-reinsurance for the insurer and reinsurer under the stochastic volatility model. The surplus process of the insurer is described by a diffusion model. The insurer can purchase proportional reinsurance from the reinsurer and the premium charged by the insurer and reinsurer follows the variance principle. Both the insurer and reinsurer are allowed to invest in risk-free assets and risky assets, and the market price of risk depends on a Markovian, affine-form, and square-root stochastic factor process. Our goal is to maximize the joint exponential utility of the terminal wealth of the insurer, and reinsurer over a certain period of time. By solving the HJB equation, we obtain the optimal investment-reinsurance strategies, and present the proof of the verification theorem. Finally, we demonstrate a numerical analysis, and the economic implications of our findings are illustrated.
[1] | S. Browne, Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probability of ruin, Math. Oper. Res., 20 (1995), 937–958. https://doi.org/10.1287/moor.20.4.937 doi: 10.1287/moor.20.4.937 |
[2] | H. Yang, L. Zhang, Optimal investment for insurer with jump-diffusion risk process, Insur. Math. Econ., 37 (2005), 615–634. https://doi.org/10.1016/j.insmatheco.2005.06.009 doi: 10.1016/j.insmatheco.2005.06.009 |
[3] | X. Zhang, K. Zhang, X. Yu, Optimal proportional reinsurance and investment with transaction costs, i: Maximizing the terminal wealth, Insur. Math. Econ., 44 (2009), 473–478. https://doi.org/10.1016/j.insmatheco.2009.01.004 doi: 10.1016/j.insmatheco.2009.01.004 |
[4] | Z. Liang, K. Yuen, K. Cheung, Optimal reinsurance-investment problem in a constant elasticity of variance stock market for jump‐diffusion risk model, Appl. Stoch. Modol. Bus. Ind., 28 (2012), 585–597. https://doi.org/10.1002/asmb.934 doi: 10.1002/asmb.934 |
[5] | H. Yi, X. Zhang, Y. Shan, H. Shu, Optimal portfolio and reinsurance with two differential risky assets, Commun. Stat.-Theooy Meth., 52 (2023), 7094–7114. https://doi.org/10.1080/03610926.2022.2039708 doi: 10.1080/03610926.2022.2039708 |
[6] | L. Bai, H. Zhang, Dynamic mean-variance problem with constrained risk control for the insurers, Math. Meth. Oper. Res., 68 (2008), 181–205. https://doi.org/10.1007/s00186-007-0195-4 doi: 10.1007/s00186-007-0195-4 |
[7] | D. Li, X. Rong, H. Zhao, Time-consistent reinsurance-investment strategy for an insurer and a reinsurer with mean-variance criterion under the CEV model, J. Comput. Appl. Math., 283 (2015), 142–162. https://doi.org/10.1016/j.cam.2015.01.038 doi: 10.1016/j.cam.2015.01.038 |
[8] | Y. Zeng, D. Li, A. Gu, Robust equilibrium reinsurance-investment strategy for a mean-variance insurer in a model with jumps, Insur. Math. Econ. 66 (2016), 138–152. https://doi.org/10.1016/j.insmatheco.2015.10.012 |
[9] | D. Li, X. Rong, H. Zhao, Equilibrium excess-of-loss reinsurance and investment strategies for an insurer and a reinsurer, Commun. Stat. Theoy Meth., 51 (2022), 7496–7527. https://doi.org/10.1080/03610926.2021.1873379 doi: 10.1080/03610926.2021.1873379 |
[10] | H. Yi, Y. Shan, H. Shu, X. Zhang, Optimal mean-variance investment and reinsurance strategies with a general Lévy process risk model, Syst. Sci. Control Eng., 12 (2024), 2306831. https://doi.org/10.1080/21642583.2024.2306831 doi: 10.1080/21642583.2024.2306831 |
[11] | V. Young, Optimal investment strategy to minimize the probability of lifetime ruin, N. Amer. Actuar. J., 8 (2004), 106–126. https://doi.org/10.1080/10920277.2004.10596174 doi: 10.1080/10920277.2004.10596174 |
[12] | S. Promislow, V. Young, Minimizing the probability of ruin when claims follow brownian motion with drift, N. Amer. Actuar. J., 9 (2005), 110–128. https://doi.org/10.1080/10920277.2005.10596214 doi: 10.1080/10920277.2005.10596214 |
[13] | S. Chen, Z. Li, K. Li, Optimal investment-reinsurance policy for an insurance company with var constraint, Insur. Math. Econ., 47 (2010), 144–153. https://doi.org/10.1016/j.insmatheco.2010.06.002 doi: 10.1016/j.insmatheco.2010.06.002 |
[14] | Y. Cao, X. Zeng, Optimal proportional reinsurance and investment with minimum probability of ruin, Appl. Math. Comput., 218 (2012), 5433–5438. https://doi.org/10.1016/j.amc.2011.11.031 doi: 10.1016/j.amc.2011.11.031 |
[15] | E. Bayraktar, Y. Zhang, Minimizing the probability of lifetime ruin under ambiguity aversion, SIAM J. Control Optim., 53 (2015), 58–90. https://doi.org/10.2139/ssrn.2391987 doi: 10.2139/ssrn.2391987 |
[16] | M. Kaluszka, Optimal reinsurance under mean-variance premium principles, Insur. Math. Econ., 28 (2001), 61–67. https://doi.org/10.1016/S0167-6687(00)00066-4 doi: 10.1016/S0167-6687(00)00066-4 |
[17] | M. Kaluszka, Mean-variance optimal reinsurance arrangements, Scand. Actuar. J., 1 (2004), 28–41. https://doi.org/10.1080/03461230410019222 doi: 10.1080/03461230410019222 |
[18] | Z. Liang, K. Yuen, Optimal dynamic reinsurance with dependent risks: variance premium principle, Scand. Actuar. J., 1 (2016), 18–36. https://doi.org/10.1080/03461238.2014.892899 doi: 10.1080/03461238.2014.892899 |
[19] | X. Zhang, H. Meng, Y. Zeng, Optimal investment and reinsurance strategies for insurers with generalized mean-variance premium principle and no-short selling, Insur. Math. Econ., 67 (2016), 125–132. https://doi.org/10.1016/j.insmatheco.2016.01.001 doi: 10.1016/j.insmatheco.2016.01.001 |
[20] | Y. Deng, M. Li, Y. Huang, H. Meng, J. Zhou, Robust optimal strategies for an insurer under generalized mean-variance premium principle with defaultable bond, Commun. Stat. Theory Meth., 50 (2021), 5126–5159. https://doi.org/10.1080/03610926.2020.1726391 doi: 10.1080/03610926.2020.1726391 |
[21] | K. French, G. Schwert, R. Stambaugh, Expected stock returns and volatility, J. Fina. Econ., 19 (1987), 3–29. https://doi.org/10.1016/0304-405X(87)90026-2 doi: 10.1016/0304-405X(87)90026-2 |
[22] | A. Gu, X. Guo, Z. Li, Y. Zeng, Optimal control of excess-of-loss reinsurance and investment for insurers under a CEV model, Insur. Math. Econ., 51 (2012), 674–684. https://doi.org/10.1016/j.insmatheco.2012.09.003 doi: 10.1016/j.insmatheco.2012.09.003 |
[23] | L. Chen, X. Hu, M. Chen, Optimal investment and reinsurance for the insurer and reinsurer with the joint exponential utility under the CEV model, AIMS Math., 8 (2023), 15383–15410. https://doi.org/10.3934/math.2023786 doi: 10.3934/math.2023786 |
[24] | W. Jiang, Z. Yang, Optimal robust reinsurance contracts with investment strategy under variance premium principle, Math. Control Relat. Fields, 14 (2024), 199–214. https://doi.org/10.3934/mcrf.2023001 doi: 10.3934/mcrf.2023001 |
[25] | Z. Li, Y. Zeng, Y. Lai, Optimal time-consistent investment and reinsurance strategies for insurers under Heston's SV model, Insur. Math. Econ., 51 (2012), 191–203. https://doi.org/10.1016/j.insmatheco.2011.09.002 doi: 10.1016/j.insmatheco.2011.09.002 |
[26] | H. Zhao, X. Rong, Y. Zhao, Optimal excess-of-loss reinsurance and investment problem for an insurer with jump-diffusion risk process under the Heston model, Insur. Math. Econ., 53 (2013), 504–514. https://doi.org/10.1016/j.insmatheco.2013.08.004 doi: 10.1016/j.insmatheco.2013.08.004 |
[27] | J. Ma, Z. Lu, D. Chen, Optimal reinsurance-investment with loss aversion under rough Heston model, Quant. Finance, 33 (2023), 95–109. https://doi.org/10.1080/14697688.2022.2140308 doi: 10.1080/14697688.2022.2140308 |
[28] | Z. Sun, X. Zhang, K. Yuen, Mean-variance asset-liability management with affine diffusion factor process and a reinsurance option, Scand. Actuar. J., 3 (2020), 218–244. https://doi.org/10.1080/03461238.2019.1658619 doi: 10.1080/03461238.2019.1658619 |
[29] | K. Borch, Reciprocal reinsurance treaties, ASTIN Bull.: J. IAA, 1 (1960), 170–191. https://doi.org/10.1017/S0515036100009557 doi: 10.1017/S0515036100009557 |
[30] | V. Kaishev, Optimal retention levels, given the joint survival of cedent and reinsurer, Scand. Actuar. J., 6 (2004), 401–430. https://doi.org/10.1080/03461230410020437 doi: 10.1080/03461230410020437 |
[31] | J. Cai, Y. Fang, Z. Li, G. Willmot, Optimal reciprocal reinsurance treaties under the joint survival probability and the joint profitable probability, J. Risk Insur., 80 (2013), 145–168. https://doi.org/10.1111/j.1539-6975.2012.01462.x doi: 10.1111/j.1539-6975.2012.01462.x |
[32] | D. Li, X. Rong, H. Zhao, Optimal reinsurance-investment problem for maximizing the product of the insurer's and the reinsurer's utilities under a CEV model, J. Comput. Appl. Math., 255 (2014), 671–683. https://doi.org/10.1016/j.cam.2013.06.033 doi: 10.1016/j.cam.2013.06.033 |
[33] | H. Zhao, C. Weng, Y. Shen, Y. Zeng, Time-consistent investment-reinsurance strategies towards joint interests of the insurer and the reinsurer under CEV models, Sci. China Math., 60 (2017), 317–344. https://doi.org/10.2139/ssrn.2432207 doi: 10.2139/ssrn.2432207 |
[34] | D. Li, X. Rong, H. Zhao, Optimal reinsurance and investment problem for an insurer and a reinsurer with jump-diffusion risk process under the Heston model, Comput. Appl. Math., 35 (2016), 533–557. https://doi.org/10.1007/s40314-014-0204-1 doi: 10.1007/s40314-014-0204-1 |
[35] | Y. Bai, Z. Zhou, R. Gao, H. Xiao, Nash equilibrium investment-reinsurance strategies for an insurer and a reinsurer with intertemporal restrictions and common interests, Mathematics, 8 (2020), 139. https://doi.org/10.3390/math8010139 doi: 10.3390/math8010139 |
[36] | Y. Yuan, Z. Liang, X. Han, Minimizing the penalized probability of drawdown for a general insurance company under ambiguity aversion, Math. Meth. Oper. Res., 96 (2022), 259–290. https://doi.org/10.1007/s00186-022-00794-w doi: 10.1007/s00186-022-00794-w |
[37] | F. Wu, X. Zhang, Z. Liang, Optimal reinsurance-investment problem for a general insurance company under a generalized dynamic contagion claim model, Math. Control Relat. Fields, 13 (2023), 533–557. https://doi.org/10.3934/mcrf.2022030 doi: 10.3934/mcrf.2022030 |
[38] | J. Grandell, Aspects of risk theory, New York: Springer, 1991. |
[39] | Y. Huang, Y. Ouyang, L. Tang, J. Zhou, Robust optimal investment and reinsurance problem for the product of the insurer's and the reinsurer's utilities, J. Comput. Appl. Math., 344 (2018), 532–552. https://doi.org/10.1016/j.cam.2018.05.060 doi: 10.1016/j.cam.2018.05.060 |