Research article Special Issues

A characterization of Wolf and Schechter essential pseudospectra

  • Received: 22 December 2023 Revised: 18 April 2024 Accepted: 09 May 2024 Published: 17 May 2024
  • MSC : 47A53, 47A55, 47A13

  • The aim of this paper is to provide new results on the Wolf and Schechter essential pseudospectra of bounded linear operators on a Banach space. More precisely, we characterize the Wolf and Schechter essential pseudospectra by using the notion of Fredholm perturbation. Also, we state the condition under which the Wolf (respectively, Schechter) essential pseudospectrum of two different bounded linear operators coincides. Furthermore, we give some characterizations of the Wolf and Schechter essential pseudospectra of $ 3\times 3 $ upper triangular block operator matrices.

    Citation: Sara Smail, Chafika Belabbaci. A characterization of Wolf and Schechter essential pseudospectra[J]. AIMS Mathematics, 2024, 9(7): 17146-17153. doi: 10.3934/math.2024832

    Related Papers:

  • The aim of this paper is to provide new results on the Wolf and Schechter essential pseudospectra of bounded linear operators on a Banach space. More precisely, we characterize the Wolf and Schechter essential pseudospectra by using the notion of Fredholm perturbation. Also, we state the condition under which the Wolf (respectively, Schechter) essential pseudospectrum of two different bounded linear operators coincides. Furthermore, we give some characterizations of the Wolf and Schechter essential pseudospectra of $ 3\times 3 $ upper triangular block operator matrices.



    加载中


    [1] B. Abdelmoumen, S. Yengui, Perturbation theory, M-essential spectra of operator matrices, Filomat, 34 (2020), 1187–1196. https://doi.org/10.2298/FIL2004187A doi: 10.2298/FIL2004187A
    [2] Y. A. Abramovich, C. D. Aliprantis, An invitation to operator theory, Providence: Am. Math. Soc., 2002. https://doi.org/10.1090/gsm/050
    [3] A. Ammar, B. Boukettaya, A. Jeribi, A note on essential pseudospectra and application, Linear Multilinear A., 64 (2016), 1474–1483. https://doi.org/10.1080/03081087.2015.1091436 doi: 10.1080/03081087.2015.1091436
    [4] A. Ammar, A. Jeribi, A characterization of the essential pseudospectra on a Banach space, Arab. J. Math., 2 (2013), 139–145. https://doi.org/10.1007/s40065-012-0065-7 doi: 10.1007/s40065-012-0065-7
    [5] Q. Bai, J. Huang, A. Chen, Essential, Weyl and Browder spectra of unbounded upper triangular operator matrices, Linear Multilinear A., 64 (2016), 1583–1594. https://doi.org/10.1080/03081087.2015.1111290 doi: 10.1080/03081087.2015.1111290
    [6] C. Belabbaci, New characterizations of the Jeribi essential spectrum, Int. J. Anal. Appl., 21 (2023), 109–109. https://doi.org/10.28924/2291-8639-21-2023-109 doi: 10.28924/2291-8639-21-2023-109
    [7] C. Belabbaci, The S-Jeribi essential spectrum, Ukrainian Math. J., 73 (2021), 359–366. https://doi.org/10.1007/s11253-021-01929-8 doi: 10.1007/s11253-021-01929-8
    [8] E. B. Davies, Spectral theory and differential operators, Cambridge: Cambridge University Press, 1995. https://doi.org/10.1017/CBO9780511623721
    [9] D. E. Edmunds, W. D. Evans, Spectral theory and differential operators, New York: Oxford University Press, 2018. https://doi.org/10.1093/oso/9780198812050.002.0005
    [10] A. Jeribi, A characterization of the Schechter essential spectrum on Banach spaces and applications, J. Math. Anal. Appl., 271 (2002), 343–358. https://doi.org/10.1016/S0022-247X(02)00115-4 doi: 10.1016/S0022-247X(02)00115-4
    [11] A. Jeribi, Linear operators and their essential pseudospectra, Canada: Apple Academic Press, 2018. https://doi.org/10.1201/9781351046275
    [12] A. Jeribi, Some remarks on the Schechter essential spectrum and applications to transport equations, J. Math. Anal. Appl., 275 (2002), 222–237. https://doi.org/10.1016/S0022-247X(02)00323-2 doi: 10.1016/S0022-247X(02)00323-2
    [13] A. Jeribi, Spectral theory and applications of linear operators and block operator matrices, New York: Springer-Verlag, 2015. https://doi.org/10.1007/978-3-319-17566-9
    [14] A. Jeribi, N. Moalla, A characterization of some subsets of schechter's essential spectrum and application to singular transport equation, Math. Anal. Appl., 358 (2009), 434–444. https://doi.org/10.1016/j.jmaa.2009.04.053 doi: 10.1016/j.jmaa.2009.04.053
    [15] A. Jeribi, N. Moalla, S. Yengui, S-essential spectra and application to an example of transport operators, Math. Method. Appl. Sci., 37 (2014), 2341–2353. https://doi.org/10.1002/mma.1564 doi: 10.1002/mma.1564
    [16] N. Karapetiants, S. Samko, Equations with involutive operators, United states: Birkhäuser Boston, 2012. http://dx.doi.org/10.1007/978-1-4612-0183-0
    [17] V. Müller, Spectral theory of linear operator and spectral systems in Banach algebras, operator theory: Advances and applications, Basel: Birkhäuser Verlag, 2007. https://doi.org/10.1007/978-3-7643-8265-0
    [18] M. Schechter, Principles of functional analysis, Providence: Am. Math. Soc., 2002. https://doi.org/10.1090/gsm/036
    [19] L. N. Trefethen, Spectra and pseudospectra: The behavior of nonnormal matrices and operators, Princeton University Press, Princeton, NJ, 2005. https://doi.org/10.1515/9780691213101
    [20] F. Wolf, On the invariance of the essential spectrum under a change of boundary conditions of partial differential boundary operators, Indag. Math., 21 (1959), 142–147. https://doi.org/10.1016/S1385-7258(59)50016-5 doi: 10.1016/S1385-7258(59)50016-5
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(796) PDF downloads(41) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog