Research article

Fractional calculus analysis: investigating Drinfeld-Sokolov-Wilson system and Harry Dym equations via meshless procedures

  • Received: 27 August 2023 Revised: 02 December 2023 Accepted: 15 December 2023 Published: 29 March 2024
  • In this study, we present two meshless schemes, namely the radial basis function (RBF) method and the polynomial method, for the numerical investigation of the time-fractional Harry Dym equation and the Drinfeld-Sokolov-Wilson system. In both methods, the temporal derivatives are estimated using the Caputo operator, while the spatial derivatives are approximated either through radial basis functions or polynomials. Additionally, a collocation approach is employed to convert the system of equations into a system of linear equations that is easier to solve. The accuracy of the methods is assessed by calculating the $ L_{\infty} $ error norm, and the outcomes are displayed through tables and figures. The simulation results indicate that both methods exhibit strong performance in handling the fractional partial differential equations (PDEs) under investigation.

    Citation: Muhammad Nawaz Khan, Imtiaz Ahmad, Mehnaz Shakeel, Rashid Jan. Fractional calculus analysis: investigating Drinfeld-Sokolov-Wilson system and Harry Dym equations via meshless procedures[J]. Mathematical Modelling and Control, 2024, 4(1): 86-100. doi: 10.3934/mmc.2024008

    Related Papers:

  • In this study, we present two meshless schemes, namely the radial basis function (RBF) method and the polynomial method, for the numerical investigation of the time-fractional Harry Dym equation and the Drinfeld-Sokolov-Wilson system. In both methods, the temporal derivatives are estimated using the Caputo operator, while the spatial derivatives are approximated either through radial basis functions or polynomials. Additionally, a collocation approach is employed to convert the system of equations into a system of linear equations that is easier to solve. The accuracy of the methods is assessed by calculating the $ L_{\infty} $ error norm, and the outcomes are displayed through tables and figures. The simulation results indicate that both methods exhibit strong performance in handling the fractional partial differential equations (PDEs) under investigation.



    加载中


    [1] J. Li, I. Ahmad, H. Ahmad, D. Shah, Y. Chu, Numerical solution of two-term time-fractional PDE models arising in mathematical physics using local meshless method, Open Phys., 18 (2020), 1063–1072. https://doi.org/10.1515/phys-2020-0222 doi: 10.1515/phys-2020-0222
    [2] V. E. Tarasov, Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media, Springer Science & Business Media, 2011. https://doi.org/10.1007/978-3-642-14003-7
    [3] R. Caponetto, Fractional order systems, World Sci. Ser. Nonlinear Sci. Ser. A, 72 (2010), 1–32. https://doi.org/10.1142/9789814304207_0001 doi: 10.1142/9789814304207_0001
    [4] I. Podlubny, Fractional differential equations, Academic Press, 1999.
    [5] I. Ahmad, H. Ahmad, M. Inc, H. Rezazadeh, M. A. Akbar, M. M. Khater, et al., Solution of fractional-order Korteweg-de Vries and Burgers' equations utilizing local meshless method, J. Ocean Eng. Sci., 2021. https://doi.org/10.1016/j.joes.2021.08.014
    [6] I. Ahmad, I. Ali, R. Jan, S. A. Idris, M. Mousa, Solutions of a three-dimensional multi-term fractional anomalous solute transport model for contamination in groundwater, Plos One, 18 (2023), e0294348. https://doi.org/10.1371/journal.pone.0294348 doi: 10.1371/journal.pone.0294348
    [7] F. Wang, M. N. Khan, I. Ahmad, H. Ahmad, H. Abu-Zinadah, Y. M. Chu, Numerical solution of traveling waves in chemical kinetics: time-fractional Fishers equations, Fractals, 30 (2022), 2240051. https://doi.org/10.1142/S0218348X22400515 doi: 10.1142/S0218348X22400515
    [8] H. Ahmad, T. A. Khan, I. Ahmad, P. S. Stanimirović, Y. M. Chu, A new analyzing technique for nonlinear time fractional Cauchy reaction-diffusion model equations, Results Phys., 19 (2020), 103462. https://doi.org/10.1016/j.rinp.2020.103462 doi: 10.1016/j.rinp.2020.103462
    [9] M. Inc, M. N. Khan, I. Ahmad, S. W. Yao, H. Ahmad, P. Thounthong, Analysing time-fractional exotic options via efficient local meshless method, Results Phys., 19 (2020), 103385. https://doi.org/10.1016/j.rinp.2020.103385 doi: 10.1016/j.rinp.2020.103385
    [10] H. Ahmad, M. N. Khan, I. Ahmad, M. Omri, M. F. Alotaibi, A meshless method for numerical solutions of linear and nonlinear time-fractional Black-Scholes models. AIMS Math., 8 (2023), 19677–19698. https://doi.org/10.3934/math.20231003 doi: 10.3934/math.20231003
    [11] B. Almutairi, I. Ahmad, B. Almohsen, H. Ahmad, D. U. Ozsahin, Numerical simulations of time-fractional PDEs arising in mathematics and physics using the local meshless differential quadrature method, Therm. Sci., 27 (2023), 263–272. https://doi.org/10.2298/TSCI23S1263A doi: 10.2298/TSCI23S1263A
    [12] H. Irshad, M. Shakeel, I. Ahmad, H. Ahmad, C. Tearnbucha, W. Sudsutad, Simulation of generalized time fractional Gardner equation utilizing in plasma physics for non-linear propagation of ion-acoustic waves, Therm. Sci., 27 (2023), 121–128. https://doi.org/10.2298/TSCI23S1121I doi: 10.2298/TSCI23S1121I
    [13] I. Ahmad, A. R. Seadawy, H. Ahmad, P. Thounthong, F. Wang, Numerical study of multi-dimensional hyperbolic telegraph equations arising in nuclear material science via an efficient local meshless method, Int. J. Nonlinear Sci. Numer., 23 (2022), 115–122. https://doi.org/10.1515/ijnsns-2020-0166 doi: 10.1515/ijnsns-2020-0166
    [14] Z. Hussain, S. Khan, A. Ullah, Ikramullah, M. Ayaz, I. Ahmad, et al., Extension of optimal homotopy asymptotic method with use of Daftardar-Jeffery polynomials to Hirota-Satsuma coupled system of Korteweg-de Vries equations, Open Phys., 18 (2020), 916–924. https://doi.org/10.1515/phys-2020-0210 doi: 10.1515/phys-2020-0210
    [15] F. Wang, J. Zhang, I. Ahmad, A. Farooq, H. Ahmad, A novel meshfree strategy for a viscous wave equation with variable coefficients, Front Phys., 9 (2021), 701512. https://doi.org/10.3389/fphy.2021.701512 doi: 10.3389/fphy.2021.701512
    [16] M. Ahsan, A. A. Khan, S. Dinibutun, I. Ahmad, H. Ahmad, N. Jarasthitikulchai, et al., The haar wavelets based numerical solution of Reccati equation with integral boundary condition, Therm. Sci., 27 (2023), 93–100. https://doi.org/10.2298/TSCI23S1093A doi: 10.2298/TSCI23S1093A
    [17] K. Srinivasa, R. A. Mundewadi, Wavelets approach for the solution of nonlinear variable delay differential equations, Int. J. Math. Comput. Eng., 1 (2023), 139–148. https://doi.org/10.2478/ijmce-2023-0011 doi: 10.2478/ijmce-2023-0011
    [18] R. Singh, J. Mishra, V. K. Gupta, The dynamical analysis of a Tumor Growth model under the effect of fractal fractional Caputo-Fabrizio derivative, Int. J. Math. Compt. Eng., 1 (2023), 115–126. https://doi.org/10.2478/ijmce-2023-0009 doi: 10.2478/ijmce-2023-0009
    [19] F. Wang, I. Ahmad, H. Ahmad, H. Ahmad, K. S. Alimgeer, C. Cesarano, et al., Meshless method based on RBFs for solving three-dimensional multi-term time fractional PDEs arising in engineering phenomenons, J. King Saud Univ. Sci., 33 (2021), 101604. https://doi.org/10.1016/j.jksus.2021.101604 doi: 10.1016/j.jksus.2021.101604
    [20] A. H. Arnous, M. S. Hashemi, K. S. Nisar, M. Shakeel, J. Ahmad, I. Ahmad, et al., Investigating solitary wave solutions with enhanced algebraic method for new extended Sakovich equations in fluid dynamics, Results Phys., 57 (2024), 107369. https://doi.org/10.1016/j.rinp.2024.107369 doi: 10.1016/j.rinp.2024.107369
    [21] V. G. Drinfel'd, V. V. Sokolov, Lie algebras and equations of Korteweg-de Vries type, J. Soviet Math., 30 (1985), 1975–2036. https://doi.org/10.1007/BF02105860 doi: 10.1007/BF02105860
    [22] G. Wilson, The affine Lie algebra $C^{(1)}_{2} $ and an equation of Hirota and Satsuma, Phys. Lett. A, 89 (1982), 332–334. https://doi.org/10.1016/0375-9601(82)90186-4 doi: 10.1016/0375-9601(82)90186-4
    [23] Z. X. Qin, Z. H. Yan, An improved F-expansion method and its application to coupled Drinfeld-Sokolov-Wilson equation, Commun. Theor. Phys., 50 (2008), 309. https://doi.org/10.1088/0253-6102/50/2/05 doi: 10.1088/0253-6102/50/2/05
    [24] R. Arora, A. Kumar, Solution of the coupled Drinfeld's-Sokolov-Wilson (DSW) system by homotopy analysis method, Adv. Sci. Eng. Med., 5 (2013), 1105–1111. https://doi.org/10.1166/asem.2013.1399 doi: 10.1166/asem.2013.1399
    [25] W. Liu, Y. Zhang, Time-fractional Drinfeld-Sokolov-Wilson system: Lie symmetry analysis, analytical solutions and conservation laws, Eur. Phys. J. Plus, 134 (2019), 126. https://doi.org/10.1140/epjp/i2019-12490-8 doi: 10.1140/epjp/i2019-12490-8
    [26] M. Inc, On numerical doubly periodic wave solutions of the coupled Drinfel'd-Sokolov-Wilson equation by the decomposition method, Appl. Math. Comput., 172 (2006), 421–430. https://doi.org/10.1016/j.amc.2005.02.012 doi: 10.1016/j.amc.2005.02.012
    [27] R. Islam, K. Khan, M. A. Akbar, M. E. Islam, M. T. Ahmed, Traveling wave solutions of some nonlinear evolution equations, Alex. Eng. J., 54 (2015), 263–269. https://doi.org/10.1016/j.aej.2015.01.002 doi: 10.1016/j.aej.2015.01.002
    [28] J. Moser, Dynamical systems, theory and applications, Springer, 1975. https://doi.org/10.1007/3-540-07171-7
    [29] V. Dougalis, F. Sturm, G. Zouraris, On an initial-boundary value problem for a wide-angle parabolic equation in a waveguide with a variable bottom, Math. Methods Appl. Sci., 32 (2009), 1519–1540. https://doi.org/10.1002/mma.1097 doi: 10.1002/mma.1097
    [30] S. Kumar, M. P. Tripathi, O. P. Singh, A fractional model of Harry Dym equation and its approximate solution, Ain Shams Eng. J., 4 (2013), 111–115. https://doi.org/10.1016/j.asej.2012.07.001 doi: 10.1016/j.asej.2012.07.001
    [31] I. Ahmad, M. Ahsan, I. Hussain, P. Kumam, W. Kumam, Numerical simulation of PDEs by local meshless differential quadrature collocation method, Symmetry, 11 (2019), 394. https://doi.org/10.3390/sym11030394 doi: 10.3390/sym11030394
    [32] P. Thounthong, M. N. Khan, I. Hussain, I. Ahmad, P. Kumam, Symmetric radial basis function method for simulation of elliptic partial differential equations, Mathematics, 6 (2018), 327. https://doi.org/10.3390/math6120327 doi: 10.3390/math6120327
    [33] I. Ahmad, M. Riaz, M. Ayaz, M. Arif, S. Islam, P. Kumam, Numerical simulation of partial differential equations via local meshless method, Symmetry, 11 (2019), 257. https://doi.org/10.3390/sym11020257 doi: 10.3390/sym11020257
    [34] M. Nawaz, I. Ahmad, H. Ahmad, A radial basis function collocation method for space-dependent inverse heat problems, J. Appl. Comput. Mech., 6 (2020), 1187–1199. https://doi.org/10.22055/JACM.2020.32999.2123 doi: 10.22055/JACM.2020.32999.2123
    [35] I. Ahmad, S. ul Islam, A. Q. M. Khaliq, Local RBF method for multi-dimensional partial differential equations, Comput. Math. Appl., 74 (2017), 292–324. https://doi.org/10.1016/j.camwa.2017.04.026 doi: 10.1016/j.camwa.2017.04.026
    [36] I. Ahmad, H Ahmad, P. Thounthong, Y. M. Chu, C. Cesarano, Solution of multi-term time-fractional PDE models arising in mathematical biology and physics by local meshless method, Symmetry, 12 (2020), 1195. https://doi.org/10.3390/sym12071195 doi: 10.3390/sym12071195
    [37] M. I. Bhatti, M. H. Rahman, N. Dimakis, Approximate solutions of nonlinear partial differential equations using B-polynomial bases, Fractal Fract., 5 (2021), 106. https://doi.org/10.3390/fractalfract5030106 doi: 10.3390/fractalfract5030106
    [38] A. Davari, A. Ahmadi, New implementation of legendre polynomials for solving partial differential equations, Appl. Math., 4 (2013), 1647. https://doi.org/10.4236/am.2013.412224 doi: 10.4236/am.2013.412224
    [39] I. Ahmad, A. A. Bakar, I. Ali, S. Haq, S. Yussof, A. H. Ali, Computational analysis of time-fractional models in energy infrastructure applications. Alex. Eng. J., 82 (2023), 426–436. https://doi.org/10.1016/j.aej.2023.09.057 doi: 10.1016/j.aej.2023.09.057
    [40] N. N. H. Shah, R. Jan, H. Ahmad, N. N. A. Razak, I. Ahmad, H. Ahmad, Enhancing public health strategies for tungiasis: A mathematical approach with fractional derivative, AIMS Bioeng., 10 (2023), 384–405. https://doi.org/10.3934/bioeng.2023023 doi: 10.3934/bioeng.2023023
    [41] G. Jumarie, Stock exchange fractional dynamics defined as fractional exponential growth driven by (usual) Gaussian white noise. Application to fractional Black-Scholes equations, Insur. Math. Econ., 42 (2008), 271–287. https://doi.org/10.1016/j.insmatheco.2007.03.001 doi: 10.1016/j.insmatheco.2007.03.001
    [42] G. Jumarie, Derivation and solutions of some fractional Black-Scholes equations in coarse-grained space and time, Application to Merton's optimal portfolio, Comput. Math. Appl., 59 (2010), 1142–1164. https://doi.org/10.1016/j.camwa.2009.05.015 doi: 10.1016/j.camwa.2009.05.015
    [43] M. Caputo, Linear models of dissipation whose Q is almost frequency independent-Ⅱ, Geophys. J. Int., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x
    [44] A. Atangana, D. Baleanu, New fractional derivatives with non-local and nonsingular kernel theory and application to heat transfer model, Therm. Sci, 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [45] J. He, Z. Li, Q. Wang, A new fractional derivative and its application to explanation of polar bear hairs, J. King Saud. Univ. Sci., 28 (2016), 190–192. https://doi.org/10.1016/j.jksus.2015.03.004 doi: 10.1016/j.jksus.2015.03.004
    [46] Z. Sun, X. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56 (2006), 193–209. https://doi.org/10.1016/j.apnum.2005.03.003 doi: 10.1016/j.apnum.2005.03.003
    [47] G. E. Fasshauer, Meshfree approximation methods with MATLAB, World Scientific, 2007.
    [48] H. Wendland, Local polynomial reproduction and moving least squares approximation, IMA J. Numer. Anal., 21 (2001), 285–300. https://doi.org/10.1093/imanum/21.1.285 doi: 10.1093/imanum/21.1.285
    [49] P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation, Commun. Pure Appl. Math., 7 (1954), 159–193. https://doi.org/10.1002/cpa.3160070112 doi: 10.1002/cpa.3160070112
    [50] R. Mokhtari, Exact solutions of the Harry-Dym equation, Commun. Theor. Phys., 55 (2011), 204. https://doi.org/10.1088/0253-6102/55/2/03 doi: 10.1088/0253-6102/55/2/03
    [51] A. Ghafoor, S. Sardar, A. Ullah, M. Hussain, H. Ahmad, F. A. Awwad, et al., Simulations of the one and two dimensional nonlinear evolutionary partial differential equations: a numerical study, Results Phys., 49 (2023), 106466. https://doi.org/10.1016/j.rinp.2023.106466 doi: 10.1016/j.rinp.2023.106466
    [52] M. Rawashdeh, A new approach to solve the fractional Harry Dym equation using the FRDTM, Int. J. Pure Appl. Math., 95 (2014), 553–566. https://doi.org/10.12732/ijpam.v95i4.8 doi: 10.12732/ijpam.v95i4.8
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(825) PDF downloads(87) Cited by(5)

Article outline

Figures and Tables

Figures(7)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog