This paper mainly considered the finite-time lag synchronization for two-layer complex networks with impulsive effects. Different types of controllers were designed to achieve the lag synchronization of two-layer complex networks. Several sufficient conditions on lag synchronization in the sense of finite time were derived. The time for synchronization was also estimated. It is important to note that synchronization time was influenced by the initial value, as well as the impulses and impulse sequence. This implied that different impulse effects result in varying synchronization times. Additionally, desynchronizing impulses can extend the synchronization time, whereas synchronizing impulses have the opposite effect. Finally, a numerical example was presented to showcase the practicality and validity of the proposed theoretical criteria.
Citation: Yao Chu, Xiuping Han, R. Rakkiyappan. Finite-time lag synchronization for two-layer complex networks with impulsive effects[J]. Mathematical Modelling and Control, 2024, 4(1): 71-85. doi: 10.3934/mmc.2024007
This paper mainly considered the finite-time lag synchronization for two-layer complex networks with impulsive effects. Different types of controllers were designed to achieve the lag synchronization of two-layer complex networks. Several sufficient conditions on lag synchronization in the sense of finite time were derived. The time for synchronization was also estimated. It is important to note that synchronization time was influenced by the initial value, as well as the impulses and impulse sequence. This implied that different impulse effects result in varying synchronization times. Additionally, desynchronizing impulses can extend the synchronization time, whereas synchronizing impulses have the opposite effect. Finally, a numerical example was presented to showcase the practicality and validity of the proposed theoretical criteria.
[1] | A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Synchronization in complex networks, Phys. Reports, 469 (2008), 93–153. https://doi.org/10.1016/j.physrep.2008.09.002 doi: 10.1016/j.physrep.2008.09.002 |
[2] | E. Estrada, The structure of complex networks: theory and applications, Oxford University Press, 2012. https://doi.org/10.1093/acprof:oso/9780199591756.001 |
[3] | W. Zhang, Y. Tang, Q. Miao, J. Fang, Synchronization of stochastic dynamical networks under impulsive control with time delays, IEEE Trans. Neural Networks Learn. Syst., 25 (2013), 1758–1768. https://doi.org/10.1109/TNNLS.2013.2294727 doi: 10.1109/TNNLS.2013.2294727 |
[4] | X. Liu, T. Chen, Synchronization of nonlinear coupled networks via aperiodically intermittent pinning control, IEEE Trans. Neural Networks Learn. Syst., 26 (2014), 113–126. https://doi.org/10.1109/TNNLS.2014.2311838 doi: 10.1109/TNNLS.2014.2311838 |
[5] | Z. Fan, X. Wu, B. Mao, J. Lü, Output discernibility of topological variations in linear dynamical networks, IEEE Trans. Autom. Control, 2024. https://doi.org/10.1109/TAC.2024.3366315 |
[6] | X. Liu, K. Zhang, Synchronization of linear dynamical networks on time scales: pinning control via delayed impulses, Automatica, 72 (2016), 147–152. https://doi.org/10.1016/j.automatica.2016.06.001 doi: 10.1016/j.automatica.2016.06.001 |
[7] | M. O. Jackson, Social and economic networks, Princeton: Princeton University Press, 2008. https://doi.org/10.2307/j.ctvcm4gh1 |
[8] | S. Boccaletti, G. Bianconi, R. Criado, C. I. del Genio, J. Gómez-Gardeñes, M. Romance, et al., The structure and dynamics of multilayer networks, Phys. Reports, 544 (2014), 1–122. https://doi.org/10.1016/J.PHYSREP.2014.07.001 doi: 10.1016/J.PHYSREP.2014.07.001 |
[9] | G. D'Agostino, A. Scala, Networks of networks: the last frontier of complexity, Berlin: Springer, 2014. https://doi.org/10.1007/978-3-319-03518-5 |
[10] | P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, P. J. Mucha, Community structure in time-dependent, multiscale, and multiplex networks, Science, 328 (2010), 876–878. https://doi.org/10.1126/science.1184819 doi: 10.1126/science.1184819 |
[11] | A. Ouannas, Z. Odibat, Generalized synchronization of different dimensional chaotic dynamical systems in discrete time, Nonlinear Dyn., 81 (2015), 765–771. https://doi.org/10.1007/s11071-015-2026-0 doi: 10.1007/s11071-015-2026-0 |
[12] | X. Liu, T. Chen, Synchronization of complex networks via aperiodically intermittent pinning control, IEEE Trans. Autom. Control, 60 (2015), 3316–3321. https://doi.org/10.1109/TAC.2015.2416912 doi: 10.1109/TAC.2015.2416912 |
[13] | X. Yang, J. Cao, Y. Long, W. Rui, Adaptive lag synchronization for competitive neural networks with mixed delays and uncertain hybrid perturbations, IEEE Trans. Neural Networks, 21 (2010), 1656–1667. https://doi.org/10.1109/TNN.2010.2068560 doi: 10.1109/TNN.2010.2068560 |
[14] | B. Mao, X. Wu, H. Liu, Y. Xu, J. Lü, Adaptive fuzzy tracking control with global prescribed-time prescribed performance for uncertain strict-feedback nonlinear systems, IEEE Trans. Cybern., 2024. https://doi.org/10.1109/TCYB.2024.3366177 |
[15] | B. Blasius, A. Huppert, L. Stone, Complex dynamics and phase synchronization in spatially extended ecological systems, Nature, 399 (1999), 354–359. https://doi.org/10.1038/20676 doi: 10.1038/20676 |
[16] | X. He, Y. Wang, X. Li, Uncertain impulsive control for leader-following synchronization of complex networks, Chaos Solitons Fract., 147 (2021), 110980. https://doi.org/10.1016/j.chaos.2021.110980 doi: 10.1016/j.chaos.2021.110980 |
[17] | M. Li, X. Yang, X. Li, Delayed impulsive control for lag synchronization of delayed neural networks involving partial unmeasurable states, IEEE Trans. Neural Networks Learn. Syst., 35 (2022), 783–791. https://doi.org/10.1109/TNNLS.2022.3177234 doi: 10.1109/TNNLS.2022.3177234 |
[18] | J. Zhou, T. Chen, L. Xiang, Chaotic lag synchronization of coupled delayed neural networks and its applications in secure communication, Circuits Syst. Signal Process., 24 (2005), 599–613. https://doi.org/10.1007/s00034-005-2410-y doi: 10.1007/s00034-005-2410-y |
[19] | P. Wang, G. Wen, X. Yu, W. Yu, Synchronization of multi-layer networks: from node-to-node synchronization to complete synchronization, IEEE Trans. Circuits Syst. I, 66 (2018), 1141–1152. https://doi.org/10.1109/TCSI.2018.2877414 doi: 10.1109/TCSI.2018.2877414 |
[20] | H. Liu, J. Li, Z. Li, Z. Zeng, J. Lü, Intralayer synchronization of multiplex dynamical networks via pinning impulsive control, IEEE Trans. Cybern., 52 (2020), 2110–2122. https://doi.org/10.1109/TCYB.2020.3006032 doi: 10.1109/TCYB.2020.3006032 |
[21] | D. Ning, J. Chen, M. Jiang, Pinning impulsive synchronization of two-layer heterogeneous delayed networks, Phys. A, 586 (2022), 126461. https://doi.org/10.1016/j.physa.2021.126461 doi: 10.1016/j.physa.2021.126461 |
[22] | X. Wu, X. Wu, C. Wang, B. Mao, J. Lu, J. Lü, et al., Synchronization in multiplex networks, Phys. Reports, 1060 (2024), 1–54. https://doi.org/10.1016/j.physrep.2024.01.005 doi: 10.1016/j.physrep.2024.01.005 |
[23] | S. Jalan, A. Singh, Cluster synchronization in multiplex networks, Europhys. Lett., 113 (2016), 30002. https://doi.org/10.1209/0295-5075/113/30002 doi: 10.1209/0295-5075/113/30002 |
[24] | Y. Li, X. Wu, J. Lu, J. Lü, Synchronizability of duplex networks, IEEE Trans. Circuits Syst. II, 63 (2015), 206–210. https://doi.org/10.1109/TCSII.2015.2468924 doi: 10.1109/TCSII.2015.2468924 |
[25] | X. Wu, Y. Li, J. Wei, J. Zhao, J. Feng, J. Lu, Inter-layer synchronization in two-layer networks via variable substitution control, J. Franklin Inst., 357 (2020), 2371–2387. https://doi.org/10.1016/j.jfranklin.2019.12.019 doi: 10.1016/j.jfranklin.2019.12.019 |
[26] | R. Sevilla-Escoboza, I. Sendiña-Nadal, I. Leyva, R. Gutiérrez, J. M. Buldú, S. Boccaletti, Inter-layer synchronization in multiplex networks of identical layers, Chaos, 26 (2016), 065304. https://doi.org/10.1063/1.4952967 doi: 10.1063/1.4952967 |
[27] | Y. Xu, X. Wu, B. Mao, J. Lü, C. Xie, Finite-time intra-layer and inter-layer quasi-synchronization of two-layer multi-weighted networks, IEEE Trans. Circuits Syst. I, 68 (2021), 1589–1598. https://doi.org/10.1109/TCSI.2021.3050988 doi: 10.1109/TCSI.2021.3050988 |
[28] | C. Song, J. Zhou, J. Wang, Finite time inter-layer synchronization of duplex networks via event-dependent intermittent control, IEEE Trans. Circuits Syst. II, 69 (2022), 4889–4893. https://doi.org/10.1109/TCSII.2022.3187269 doi: 10.1109/TCSII.2022.3187269 |
[29] | X. Li, L. Zhou, F. Tan, An image encryption scheme based on finite-time cluster synchronization of two-layer complex dynamic networks, Soft Comput., 26 (2022), 511–525. https://doi.org/10.1007/s00500-021-06500-y doi: 10.1007/s00500-021-06500-y |
[30] | T. Jing, F. Chen, X. Zhang, Finite-time lag synchronization of time-varying delayed complex networks via periodically intermittent control and sliding mode control, Neurocomputing, 199 (2016), 178–184. https://doi.org/10.1016/j.neucom.2016.03.018 doi: 10.1016/j.neucom.2016.03.018 |
[31] | X. Yang, X. Li, P. Duan, Finite-time lag synchronization for uncertain complex networks involving impulsive disturbances, Neural Comput. Appl., 34 (2022), 5097–5106. https://doi.org/10.1007/s00521-021-05987-8 doi: 10.1007/s00521-021-05987-8 |
[32] | B. Li, Finite-time synchronization for complex dynamical networks with hybrid coupling and time-varying delay, Nonlinear Dyn., 76 (2014), 1603–1610. https://doi.org/10.1007/s11071-013-1232-x doi: 10.1007/s11071-013-1232-x |
[33] | D. Yang, X. Li, S. Song, Finite-time synchronization for delayed complex dynamical networks with synchronizing or desynchronizing impulses, IEEE Trans. Neural Networks Learn. Syst., 33 (2020), 736–746. https://doi.org/10.1109/TNNLS.2020.3028835 doi: 10.1109/TNNLS.2020.3028835 |
[34] | X. Yang, J. Lu, Finite-time synchronization of coupled networks with Markovian topology and impulsive effects, IEEE Trans. Autom. Control, 61 (2015), 2256–2261. https://doi.org/10.1109/TAC.2015.2484328 doi: 10.1109/TAC.2015.2484328 |
[35] | X. Yang, J. Lam, D. W. Ho, Z. Feng, Fixed-time synchronization of complex networks with impulsive effects via nonchattering control, IEEE Trans. Autom. Control, 62 (2017), 5511–5521. https://doi.org/10.1109/TAC.2017.2691303 doi: 10.1109/TAC.2017.2691303 |
[36] | W. Zhang, Y. Tang, X. Wu, J. Fang, Synchronization of nonlinear dynamical networks with heterogeneous impulses, IEEE Trans. Circuits Syst. I, 61 (2013), 1220–1228. https://doi.org/10.1109/TCSI.2013.2286027 doi: 10.1109/TCSI.2013.2286027 |
[37] | W. H. Chen, S. Luo, W. X. Zheng, Impulsive synchronization of reaction-diffusion neural networks with mixed delays and its application to image encryption, IEEE Trans. Neural Networks Learn. Syst., 27 (2016), 2696–2710. https://doi.org/10.1109/TNNLS.2015.2512849 doi: 10.1109/TNNLS.2015.2512849 |
[38] | X. Wang, X. Liu, K. She, S. Zhong, Finite-time lag synchronization of master-slave complex dynamical networks with unknown signal propagation delays, J. Franklin Inst., 354 (2017), 4913–4929. https://doi.org/10.1016/j.jfranklin.2017.05.004 doi: 10.1016/j.jfranklin.2017.05.004 |
[39] | U. E. Vincent, R. Guo, Finite-time synchronization for a class of chaotic and hyperchaotic systems via adaptive feedback controller, Phys. Lett. A, 375 (2011), 2322–2326. https://doi.org/10.1016/j.physleta.2011.04.041 doi: 10.1016/j.physleta.2011.04.041 |
[40] | G. Al-Mahbashi, M. M. Noorani, Finite-time lag synchronization of uncertain complex dynamical networks with disturbances via sliding mode control, IEEE Access, 7 (2019), 7082–7092. https://doi.org/10.1109/ACCESS.2018.2877707 doi: 10.1109/ACCESS.2018.2877707 |
[41] | X. Zhang, X. Li, J. Cao, F. Miaadi, Design of memory controllers for finite-time stabilization of delayed neural networks with uncertainty, J. Franklin Inst., 355 (2018), 5394–5413. https://doi.org/10.1016/j.jfranklin.2018.05.037 doi: 10.1016/j.jfranklin.2018.05.037 |
[42] | X. Li, D. W. Ho, J. Cao, Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica, 99 (2019), 361–368. https://doi.org/10.1016/j.automatica.2018.10.024 doi: 10.1016/j.automatica.2018.10.024 |