Research article

Input-to-state stability of delayed systems with bounded-delay impulses

  • Received: 08 December 2021 Revised: 16 February 2022 Accepted: 06 March 2022 Published: 24 March 2022
  • This paper considers the input-to-state stability (ISS) of delayed systems with bounded-delay impulses, where the delays in impulses are arbitrarily large but bounded. A novel Halanay-type inequality with delayed impulses and external inputs is proposed to deeply evaluate the effects of delayed impulses on ISS of delayed systems. Then, we obtain some delay-independent ISS criteria for the addressed delayed systems by using Lyapunov method. Particularly, by applying a new analysis technique, the current study enriches the Halanay-type inequalities and further improve the results derived in [1]. Two illustrative examples are presented to validate theoretical results.

    Citation: Bangxin Jiang, Yijun Lou, Jianquan Lu. Input-to-state stability of delayed systems with bounded-delay impulses[J]. Mathematical Modelling and Control, 2022, 2(2): 44-54. doi: 10.3934/mmc.2022006

    Related Papers:

  • This paper considers the input-to-state stability (ISS) of delayed systems with bounded-delay impulses, where the delays in impulses are arbitrarily large but bounded. A novel Halanay-type inequality with delayed impulses and external inputs is proposed to deeply evaluate the effects of delayed impulses on ISS of delayed systems. Then, we obtain some delay-independent ISS criteria for the addressed delayed systems by using Lyapunov method. Particularly, by applying a new analysis technique, the current study enriches the Halanay-type inequalities and further improve the results derived in [1]. Two illustrative examples are presented to validate theoretical results.



    加载中


    [1] X. Li, X. Zhang, S. Song, Effect of delayed impulses on input-to-state stability of nonlinear systems, Automatica, 76 (2017), 378–382. https://doi.org/10.1016/j.automatica.2016.08.009 doi: 10.1016/j.automatica.2016.08.009
    [2] E. D. Sontag, Smooth stabilization implies coprime factorization, IEEE T. Automat. Contr., 34 (1989), 435–443. https://doi.org/10.1109/9.28018 doi: 10.1109/9.28018
    [3] S. Dashkovskiy, P. Feketa, Input-to-state stability of impulsive systems and their networks, Nonlinear Analysis: Hybrid Systems, 26 (2017), 190–200. https://doi.org/10.1016/j.nahs.2017.06.004 doi: 10.1016/j.nahs.2017.06.004
    [4] Z. Jiang, Y. Wang, Input-to-state stability for discrete-time nonlinear systems, Automatica, 37 (2001), 857–869. https://doi.org/10.1016/S0005-1098(01)00028-0 doi: 10.1016/S0005-1098(01)00028-0
    [5] X. Li, T. Zhang, J. Wu, Input-to-state stability of impulsive systems via event-triggered impulsive control, IEEE T. Cybernetics, (2021). https://doi.org/10.1109/TCYB.2020.3044003 doi: 10.1109/TCYB.2020.3044003
    [6] Q. Zhu, J. Cao, R. Rakkiyappan, Exponential input-to-state stability of stochastic Cohen–Grossberg neural networks with mixed delays, Nonlinear Dynam., 79 (2015), 1085–1098. https://doi.org/10.1007/s11071-014-1725-2 doi: 10.1007/s11071-014-1725-2
    [7] X. Qi, H. Bao, J. Cao, Exponential input-to-state stability of quaternion-valued neural networks with time delay, Appl. Math. Comput., 358 (2019), 382–393. https://doi.org/10.1016/j.amc.2019.04.045 doi: 10.1016/j.amc.2019.04.045
    [8] X. Li, H. Zhu, S. Song, Input-to-state stability of nonlinear systems using observer-based event-triggered impulsive control, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51 (2020), 6892–6900. https://doi.org/10.1109/TSMC.2020.2964172 doi: 10.1109/TSMC.2020.2964172
    [9] S. Dashkovskiy, A. Mironchenko, Input-to-state stability of nonlinear impulsive systems, SIAM J. Control Optim., 51 (2013), 1962–1987. https://doi.org/10.1137/120881993 doi: 10.1137/120881993
    [10] X. Li, P. Li, Input-to-state stability of nonlinear systems: Event-triggered impulsive control, IEEE T. Automat. Contr., (2021). https://doi.org/10.1109/TAC.2021.3063227 doi: 10.1109/TAC.2021.3063227
    [11] B. Jiang, J. Lu, X. Li, J. Qiu, Event-triggered impulsive stabilization of systems with external disturbances, IEEE T. Automat. Contr., (2021). https://doi.org/10.1109/TAC.2021.3108123 doi: 10.1109/TAC.2021.3108123
    [12] G. Stamov, E. Gospodinova, I. Stamova, Practical exponential stability with respect to $h$-manifolds of discontinuous delayed Cohen–Grossberg neural networks with variable impulsive perturbations, Mathematical Modelling and Control, 1 (2021), 26–34. https://doi.org/10.3934/mmc.2021003 doi: 10.3934/mmc.2021003
    [13] X. Li, D. O'Regan, H. Akca, Global exponential stabilization of impulsive neural networks with unbounded continuously distributed delays, IMA J. Appl. Math., 80 (2015), 85–99. https://doi.org/10.1093/imamat/hxt027 doi: 10.1093/imamat/hxt027
    [14] B. Jiang, J. Lu, J. Lou, J. Qiu, Synchronization in an array of coupled neural networks with delayed impulses: Average impulsive delay method, Neural Networks, 121 (2020), 452–460. https://doi.org/10.1016/j.neunet.2019.09.019 doi: 10.1016/j.neunet.2019.09.019
    [15] M. Hu, J. Xiao, R. Xiao, W. Chen, Impulsive effects on the stability and stabilization of positive systems with delays, Journal of the Franklin Institute, 354 (2017), 4034–4054. https://doi.org/10.1016/j.jfranklin.2017.03.019 doi: 10.1016/j.jfranklin.2017.03.019
    [16] J. Lu, B. Jiang, W. X. Zheng, Potential impacts of delay on stability of impulsive control systems, IEEE T. Automat. Contr., (2021). https://doi.org/10.1109/TAC.2021.3120672 doi: 10.1109/TAC.2021.3120672
    [17] X. Li, T. Caraballo, R. Rakkiyappan, X. Han, On the stability of impulsive functional differential equations with infinite delays, Math. Method. Appl. Sci., 38 (2015), 3130–3140. https://doi.org/10.1002/mma.3303 doi: 10.1002/mma.3303
    [18] T. Wei, X. Xie, X. Li, Persistence and periodicity of survival red blood cells model with time-varying delays and impulses, Mathematical Modelling and Control, 1 (2021), 12–25. https://doi.org/10.3934/mmc.2021002 doi: 10.3934/mmc.2021002
    [19] B. Jiang, J. Lu, Y. Liu, Exponential stability of delayed systems with average-delay impulses, SIAM J. Control Optim., 58 (2020), 3763–3784. https://doi.org/10.1137/20M1317037 doi: 10.1137/20M1317037
    [20] X. Yang, Z. Yang, Synchronization of TS fuzzy complex dynamical networks with time-varying impulsive delays and stochastic effects, Fuzzy Set. Syst., 235 (2014), 25–43. https://doi.org/10.1016/j.fss.2013.06.008 doi: 10.1016/j.fss.2013.06.008
    [21] J. P. Hespanha, D. Liberzon, A. R. Teel, Lyapunov conditions for input-to-state stability of impulsive systems, Automatica, 44 (2008), 2735–2744. https://doi.org/10.1016/j.automatica.2008.03.021 doi: 10.1016/j.automatica.2008.03.021
    [22] J. Liu, X. Liu, W. Xie, Input-to-state stability of impulsive and switching hybrid systems with time-delay, Automatica, 47 (2011), 899–908. https://doi.org/10.1016/j.automatica.2011.01.061 doi: 10.1016/j.automatica.2011.01.061
    [23] H. Zhu, P. Li, X. Li, Input-to-state stability of impulsive systems with hybrid delayed impulse effects, J. Appl. Anal. Comput., 9 (2019), 777–795. https://doi.org/10.11948/2156-907X.20180182 doi: 10.11948/2156-907X.20180182
    [24] J. Hale, Theory of Functional Differential Equations, New York, NY, USA: Springer-Verlag, 1977.
    [25] X. Liu, S. Zhong, Stability analysis of delayed switched cascade nonlinear systems with uniform switching signals, Mathematical Modelling and Control, 11 (2021), 90–101. https://doi.org/10.3934/mmc.2021007 doi: 10.3934/mmc.2021007
    [26] D. Peng, X. Li, R. Rakkiyappan, Y. Ding, Stabilization of stochastic delayed systems: Event-triggered impulsive control, Appl. Math. Comput., 401 (2021), 126054. https://doi.org/10.1016/j.amc.2021.126054 doi: 10.1016/j.amc.2021.126054
    [27] X. Li, X. Yang, T. Huang, Persistence of delayed cooperative models: Impulsive control method, Appl. Math. Comput., 342 (2019), 130–146. https://doi.org/10.1016/j.amc.2018.09.003 doi: 10.1016/j.amc.2018.09.003
    [28] K. Gu, J. Chen, V. L. Kharitonov, Stability of Time-Delay Systems, Springer Science and Business Media, 2003.
    [29] W. Chen, W. Zheng, Input-to-state stability and integral input-to-state stability of nonlinear impulsive systems with delays, Automatica, 45 (2009), 1481–1488. https://doi.org/10.1016/j.automatica.2009.02.005 doi: 10.1016/j.automatica.2009.02.005
    [30] X. Liu, K. Zhang, Input-to-state stability of time-delay systems with delay-dependent impulses, IEEE T. Automat. Contr., 65 (2020), 1676–1682. https://doi.org/10.1109/TAC.2019.2930239 doi: 10.1109/TAC.2019.2930239
    [31] X. Li, J. Cao, Delay-dependent stability of neural networks of neutral type with time delay in the leakage term, Nonlinearity, 23 (2010), 1709. https://doi.org/10.1088/0951-7715/23/7/010 doi: 10.1088/0951-7715/23/7/010
    [32] W. Chen, W. Zheng, Exponential stability of nonlinear time-delay systems with delayed impulse effects, Automatica, 47 (2011), 1075–1083. https://doi.org/10.1016/j.automatica.2011.02.031 doi: 10.1016/j.automatica.2011.02.031
    [33] X. Li, Y. Ding, Razumikhin-type theorems for time-delay systems with persistent impulses, Syst. Control Lett., 107 (2017), 22–27. https://doi.org/10.1016/j.sysconle.2017.06.007 doi: 10.1016/j.sysconle.2017.06.007
    [34] A. Halanay, Differential Equations: Stability, Oscillations, Time Lags, New York: Academic, 1966.
    [35] B. Liu, D. J. Hill, Input-to-state stability for discrete time-delay systems via the Razumikhin technique, Syst. Control Lett., 58 (2009), 567–575. https://doi.org/10.1016/j.sysconle.2009.03.008 doi: 10.1016/j.sysconle.2009.03.008
    [36] Y. Wang, J. Lu, Y. Lou, Halanay-type inequality with delayed impulses and its applications, Sci. China Inform. Sci., 62 (2019), 192206. https://doi.org/10.1007/s11432-018-9809-y doi: 10.1007/s11432-018-9809-y
    [37] O. Solomon, E. Fridman, New stability conditions for semilinear diffusion systems with time-delays, in: 53rd IEEE Conference on Decision and Control, (2014), 1313–1317. https://doi.org/10.1109/CDC.2014.7039563
    [38] G. Ballinger, X. Liu, Existence and uniqueness results for impulsive delay differential equations, Dynamics of Continuous Discrete and Impulsive Systems, 5 (1999), 579–591.
    [39] T. Yoshizawa, Stability Theory by Lyapunov's Second Method, Vol. 9, Mathematical Society of Japan, 1966.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2425) PDF downloads(192) Cited by(12)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog