Research article

Emergent behavior of Cucker–Smale model with time-varying topological structures and reaction-type delays

  • Received: 19 October 2022 Revised: 08 November 2022 Accepted: 21 November 2022 Published: 19 December 2022
  • This paper studies the continuous Cucker–Smale model with time-varying topological structures and reaction-type delay. The goal of this paper is to establish a sufficient framework for flocking behaviors. Our method combines strict Lyapunov design with the derivation of an appropriate persistence condition for multi-agent systems. First, to prove that position fluctuations are uniformly bounded, a strict and trajectory-dependent Lyapunov functional is constructed via reparametrization of the time variable. Then, by constructing a global Lyapunov functional and using a novel backward-forward estimate, it is deduced that velocity fluctuations converge to zero. Finally, flocking behaviors are analyzed separately in terms of time delays and communication failures.

    Citation: Qin Xu, Xiao Wang, Yicheng Liu. Emergent behavior of Cucker–Smale model with time-varying topological structures and reaction-type delays[J]. Mathematical Modelling and Control, 2022, 2(4): 200-218. doi: 10.3934/mmc.2022020

    Related Papers:

  • This paper studies the continuous Cucker–Smale model with time-varying topological structures and reaction-type delay. The goal of this paper is to establish a sufficient framework for flocking behaviors. Our method combines strict Lyapunov design with the derivation of an appropriate persistence condition for multi-agent systems. First, to prove that position fluctuations are uniformly bounded, a strict and trajectory-dependent Lyapunov functional is constructed via reparametrization of the time variable. Then, by constructing a global Lyapunov functional and using a novel backward-forward estimate, it is deduced that velocity fluctuations converge to zero. Finally, flocking behaviors are analyzed separately in terms of time delays and communication failures.



    加载中


    [1] F. Cucker, S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852–862. https://doi.org/10.1109/TAC.2007.895842 doi: 10.1109/TAC.2007.895842
    [2] F. Cucker, S. Smale, On the mathematics of emergence, Jpn. J. Math., 2 (2007), 197–227. https://doi.org/10.1007/s11537-007-0647-x doi: 10.1007/s11537-007-0647-x
    [3] S. Motsch, E. Tadmor, Heterophilious dynamics enhances consensus, SIAM Rev., 56 (2014), 577–621. https://doi.org/10.1137/120901866 doi: 10.1137/120901866
    [4] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226–1229. https://doi.org/10.1103/physrevlett.75.1226 doi: 10.1103/physrevlett.75.1226
    [5] Y.-P. Choi, S.-Y. Ha, Z. Li, Emergent dynamics of the Cucker–Smale flocking model and its variants, Birkhäuser, Cham, 2017. https://doi.org/10.1007/978-3-319-49996-3_8
    [6] S.-Y. Ha, J. Kim, J. Park, X. Zhang, Complete cluster predictability of the Cucker–Smale flocking model on the real line, Arch. Ration. Mech. Anal., 231 (2018), 319–365. https://doi.org/10.1007/s00205-018-1281-x doi: 10.1007/s00205-018-1281-x
    [7] S.-Y. Ha, J.-G. Liu, A simple proof of the Cucker–Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297–325. https://doi.org/10.4310/cms.2009.v7.n2.a2 doi: 10.4310/cms.2009.v7.n2.a2
    [8] F. Cucker, J.-G. Dong, On the critical exponent for flocks under hierarchical leadership, Math. Models Methods Appl. Sci., 19 (2009), 1391–1404. https://doi.org/10.1142/S0218202509003851 doi: 10.1142/S0218202509003851
    [9] F. Dalmao, E. Mordecki, Cucker–Smale flocking under hierarchical leadership and random interactions, SIAM J. Appl. Math., 71 (2011), 1307–1316. https://doi.org/10.1137/100785910 doi: 10.1137/100785910
    [10] F. Dalmao, E. Mordecki, Hierarchical Cucker–Smale model subject to random failure, IEEE Trans. Automat. Control, 57 (2012), 1789–1793. https://doi.org/10.1109/tac.2012.2188440 doi: 10.1109/tac.2012.2188440
    [11] Y. He, X. Mu, Cucker–Smale flocking subject to random failure on general digraphs, Automatica J. IFAC, 106 (2019), 54–60. https://doi.org/10.1016/j.automatica.2019.04.031 doi: 10.1016/j.automatica.2019.04.031
    [12] X. Mu, Y. He, Hierarchical Cucker–Smale flocking under random interactions with time-varying failure probabilities, J. Franklin Inst., 355 (2018), 8723–8742. https://doi.org/10.1016/j.jfranklin.2018.09.014 doi: 10.1016/j.jfranklin.2018.09.014
    [13] J. Shen, Cucker–Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2008), 694–719. https://doi.org/10.1137/060673254 doi: 10.1137/060673254
    [14] H. Liu, X. Wang, X. Li, Y. Liu, Finite-time flocking and collision avoidance for second-order multi-agent systems, Internat. J. Systems Sci., 51 (2020), 102–115. https://doi.org/10.1080/00207721.2019.1701133 doi: 10.1080/00207721.2019.1701133
    [15] H. Liu, X. Wang, Y. Huang, Y. Liu, A new class of fixed-time bipartite flocking protocols for multi-agent systems, Appl. Math. Model., 84 (2020), 501–521. https://doi.org/10.1016/j.apm.2020.04.016 doi: 10.1016/j.apm.2020.04.016
    [16] S. M. Ahn, S.-Y. Ha, Stochastic flocking dynamics of the Cucker–Smale model with multiplicative white noises, J. Math. Phys., 51 (2010), 103301. https://doi.org/10.1063/1.3496895 doi: 10.1063/1.3496895
    [17] R. Erban, J. Haškovec, Y. Sun, A Cucker–Smale model with noise and delay, SIAM J. Appl. Math., 76 (2016), 1535–1557. https://doi.org/10.1137/15m1030467 doi: 10.1137/15m1030467
    [18] S.-Y. Ha, J. Jeong, S. E. Noh, Q. Xiao, X. Zhang, Emergent dynamics of Cucker–Smale flocking particles in a random environment, J. Differ. Equations, 262 (2017), 2554–2591. https://doi.org/10.1016/j.jde.2016.11.017 doi: 10.1016/j.jde.2016.11.017
    [19] L. Ru, Z. Li, X. Xue, Cucker–Smale flocking with randomly failed interactions, J. Franklin Inst., 352 (2015), 1099–1118. https://doi.org/10.1016/j.jfranklin.2014.12.007 doi: 10.1016/j.jfranklin.2014.12.007
    [20] B. Bonnet, É. Flayac, Consensus and flocking under communication failures for a class of Cucker–Smale systems, Syst. Control Lett., 152 (2021), 104930. https://doi.org/10.1016/j.sysconle.2021.104930 doi: 10.1016/j.sysconle.2021.104930
    [21] S. Martin, A. Girard, A. Fazeli, A. Jadbabaie, Multiagent flocking under general communication rule, IEEE Trans. Control Netw. Syst., 1 (2014), 155–166. https://doi.org/10.1109/tcns.2014.2316994 doi: 10.1109/tcns.2014.2316994
    [22] F. Cucker, J.-G. Dong, On flocks under switching directed interaction topologies, SIAM J. Appl. Math., 79 (2019), 95–110. https://doi.org/10.1137/18m116976x doi: 10.1137/18m116976x
    [23] J.-G. Dong, S.-Y. Ha, J. Jung, D. Kim, On the stochastic flocking of the Cucker–Smale flock with randomly switching topologies, SIAM J. Control Optim., 58 (2020), 2332–2353. https://doi.org/10.1137/19m1279150 doi: 10.1137/19m1279150
    [24] M. R. Cartabia, Cucker–Smale model with time delay, Discrete Contin. Dyn. Syst., 42 (2022), 2409–2432. https://doi.org/10.3934/dcds.2021195 doi: 10.3934/dcds.2021195
    [25] Z. Chen, X. Yin, The delayed Cucker–Smale model with short range communication weights, Kinet. Relat. Models, 4 (2021), 929–948. https://doi.org/10.3934/krm.2021030 doi: 10.3934/krm.2021030
    [26] J. Cheng, Z. Li, J. Wu, Flocking in a two-agent Cucker–Smale model with large delay, Proc. Amer. Math. Soc., 149 (2021), 1711–1721. https://doi.org/10.1090/proc/15295 doi: 10.1090/proc/15295
    [27] Y.-P. Choi, J. Haškovec, Cucker–Smale model with normalized communication weights and time delay, Kinet. Relat. Models, 10 (2017), 1011–1033. https://doi.org/10.3934/krm.2017040 doi: 10.3934/krm.2017040
    [28] J.-G. Dong, S.-Y. Ha, D. Kim, J. Kim, Time-delay effect on the flocking in an ensemble of thermomechanical Cucker–Smale particles, J. Differ. Equations, 266 (2019), 2373–2407. https://doi.org/10.1016/j.jde.2018.08.034 doi: 10.1016/j.jde.2018.08.034
    [29] J. Haškovec, I. Markou, Asymptotic flocking in the Cucker–Smale model with reaction-type delays in the non-oscillatory regime, Kinet. Relat. Models, 13 (2020), 795–813. https://doi.org/10.3934/krm.2020027 doi: 10.3934/krm.2020027
    [30] Y. Liu, J. Wu, Flocking and asymptotic velocity of the Cucker–Smale model with processing delay, J. Math. Anal. Appl., 415 (2014), 53–61. https://doi.org/10.1016/j.jmaa.2014.01.036 doi: 10.1016/j.jmaa.2014.01.036
    [31] C. Pignotti, E. Trélat, Convergence to consensus of the general finite-dimensional Cucker–Smale model with time-varying delays, Commun. Math. Sci., 16 (2018), 2053–2076. https://doi.org/10.4310/cms.2018.v16.n8.a1 doi: 10.4310/cms.2018.v16.n8.a1
    [32] X. Wang, L. Wang, J. Wu, Impacts of time delay on flocking dynamics of a two-agent flock model, Commun. Nonlinear Sci. Numer. Simul., 70 (2019), 80–88. https://doi.org/10.1016/j.cnsns.2018.10.017 doi: 10.1016/j.cnsns.2018.10.017
    [33] N. Bellomo, P. Degond, E. Tadmor, Active particles, Vol. 1, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser/Springer, Cham, 2017. https://doi.org/10.1007/978-3-319-49996-3
    [34] N. Bellomo, P. Degond, E. Tadmor, Active particles, Vol. 2, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser/Springer, Cham, 2019. https://doi.org/10.1007/978-3-030-20297-2
    [35] B. Jiang, Y. Lou, J. Lu, Input-to-state stability of delayed systems with bounded-delay impulses, Mathematical Modelling and Control, 2 (2022), 44–54. https://doi.org/10.3934/mmc.2022006 doi: 10.3934/mmc.2022006
    [36] T. Wei, X. Xie, X. Li, Persistence and periodicity of survival red blood cells model with time-varying delays and impulses, Mathematical Modelling and Control, 1 (2021), 12–25. https://doi.org/10.3934/mmc.2021002 doi: 10.3934/mmc.2021002
    [37] F. Cucker, E. Mordecki, Flocking in noisy environments, J. Math. Pures Appl., 89 (2008), 278–296. https://doi.org/10.1016/j.matpur.2007.12.002 doi: 10.1016/j.matpur.2007.12.002
    [38] M. Caponigro, M. Fornasier, B. Piccoli, E. Trélat, Sparse stabilization and control of alignment models, Math. Models Methods Appl. Sci., 25 (2014), 521–564. https://doi.org/10.1142/s0218202515400059 doi: 10.1142/s0218202515400059
    [39] M. Fiedler, Algebraic connectivity of graphs, Czech. Math. J., 23 (1973), 298–305. https://doi.org/10.21136/cmj.1973.101168 doi: 10.21136/cmj.1973.101168
    [40] U. Krause, Positive dynamical systems in discrete time, de Gruyter, 2015. https://doi.org/10.1515/9783110365696
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1086) PDF downloads(76) Cited by(0)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog