Research article Special Issues

New criteria for oscillation of damped fractional partial differential equations

  • Received: 03 July 2022 Revised: 29 November 2022 Accepted: 20 December 2022 Published: 23 December 2022
  • In this paper, we consider a class of fractional partial differential equations with damping term subject to Robin and Dirichlet boundary value conditions. We derive several new sufficient criteria for oscillation of solutions of the equations by using the integral averaging technique and generalized Riccati type transformations. Some applications of the main results are illustrated by some examples.

    Citation: Zhenguo Luo, Liping Luo. New criteria for oscillation of damped fractional partial differential equations[J]. Mathematical Modelling and Control, 2022, 2(4): 219-227. doi: 10.3934/mmc.2022021

    Related Papers:

  • In this paper, we consider a class of fractional partial differential equations with damping term subject to Robin and Dirichlet boundary value conditions. We derive several new sufficient criteria for oscillation of solutions of the equations by using the integral averaging technique and generalized Riccati type transformations. Some applications of the main results are illustrated by some examples.



    加载中


    [1] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Science Publishers, Yverdon, Geneva, Switzerland, 1993.
    [2] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Vol. 198, Academic Press, San Diego, California, USA, 1999.
    [3] A. A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, in: North-Holland Mathematics Studies, Vol. 204, Elsevier Science B.V., Amsterdam, The Netherlands, 2006.
    [4] S. Abbas, M. Benchohra, G. M. N'Gukata, Topics in Fractional Differential Equations, Springer, New York, USA, 2012.
    [5] Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific Publishing Co. Pte. Ltd., Singapore, 2014.
    [6] P. Prakash, S. Harikrishnan, J. J. Nieto, J. H. Kim, Oscillation of a time fractional partial differential equation, Electronic Journal of Qualitative Theory of Differential Equations, 15 (2014), 1–10. https://doi.org/10.14232/ejqtde.2014.1.15 doi: 10.14232/ejqtde.2014.1.15
    [7] P. Prakash, S. Harikrishnan, M. Benchohra, Oscillation of certain nonlinear fractional partial differential equation with damping term, Appl. Math. Lett., 43 (2015), 72–79. https://doi.org/10.1016/j.aml.2014.11.018 doi: 10.1016/j.aml.2014.11.018
    [8] S. Harikrishnan, P. Prakash, J. J. Nieto, Foreced oscillation of solutions of a nonlinear fractional partial differential equation, Appl. Math. Comput., 254 (2015), 14–19. https://doi.org/10.1016/j.amc.2014.12.074 doi: 10.1016/j.amc.2014.12.074
    [9] W. N. Li, On the forced oscillation of certain fractional partial differential equations, Appl. Math. Lett., 50 (2015), 5–9. https://doi.org/10.1016/j.aml.2015.05.016 doi: 10.1016/j.aml.2015.05.016
    [10] W. N. Li, Forced oscillation criteria for a class of fractional partial differential equations with damping term, Math. Probl. Eng., 2015 (2015), 1–6. https://doi.org/10.1155/2015/410904 doi: 10.1155/2015/410904
    [11] W. N. Li, Oscillation of solutions for certain fractional partial differential equations, Advances in Difference Equations, 16 (2016), 1–8. https://doi.org/10.1186/s13662-016-0756-z doi: 10.1186/s13662-016-0756-z
    [12] W. N. Li, W. Sheng, Oscillation properties for solutions of a kind of partial fractional differential equations with damping term, Journal of Nonlinear Science and Applications, 9 (2016), 1600–1608. http://dx.doi.org/10.22436/jnsa.009.04.17 doi: 10.22436/jnsa.009.04.17
    [13] Y. Zhou, B. Ahmad, F. L. Chen, A. Alsaedi, Oscillation for fractional partial differential equations, B. Malays. Math. Sci. So., 42 (2019), 449–465. https://doi.org/10.1007/s40840-017-0495-7 doi: 10.1007/s40840-017-0495-7
    [14] Q. Feng, A. P. Liu, Oscillation for a class of fractional differential equation, Journal of Applied Mathematics and Physics, 7 (2019), 1429–1439. https://doi.org/10.4236/jamp.2019.77096 doi: 10.4236/jamp.2019.77096
    [15] L. P. Luo, Z. G. Luo, Y. H. Zeng, New results for oscillation of fractional partial differential equations with damping term, Discrete and Continuous Dynamical Systems Series S, 14 (2021), 3223–3231. https://doi.org/10.3934/dcdss.2020336 doi: 10.3934/dcdss.2020336
    [16] R. Courant, D. Hilbert, Methods of Mathematical Physics, Vol. 1, Interscience, New York, USA, 1966.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1164) PDF downloads(107) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog