Research article Special Issues

Existence of solutions for a class of fractional dynamical systems with two damping terms in Banach space

  • Received: 01 December 2022 Revised: 15 February 2023 Accepted: 05 March 2023 Published: 31 August 2023
  • This paper studies the existence of solutions for fractional dynamical systems with two damping terms in Banach space. First, we generalize the well-known Gronwall inequality. Next, according to fixed-point theorems and inequalities, the existence results for the considered system are obtained. At last, an example is used to support the main results.

    Citation: Shuli Zhang, Yansheng Liu. Existence of solutions for a class of fractional dynamical systems with two damping terms in Banach space[J]. Mathematical Modelling and Control, 2023, 3(3): 168-180. doi: 10.3934/mmc.2023015

    Related Papers:

  • This paper studies the existence of solutions for fractional dynamical systems with two damping terms in Banach space. First, we generalize the well-known Gronwall inequality. Next, according to fixed-point theorems and inequalities, the existence results for the considered system are obtained. At last, an example is used to support the main results.



    加载中


    [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations elsevier science, Elsevier, 2006.
    [2] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, 1993.
    [3] V. E. Tarasov, Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media, Springer Science & Business Media, 2011.
    [4] J. Padovan, J. T. Sawicki, Nonlinear vibrations of fractionally damped systems, Nonlinear Dyn, 16 (1998), 321–336. https://doi.org/10.1023/A:1008289024058 doi: 10.1023/A:1008289024058
    [5] L. J. Sheu, H. K. Chen, J. H. Chen, Chaotic dynamics of the fractionally damped Duffing equation, Chaos, Solitons, Fractals, 32 (2007), 1459–1468. https://doi.org/10.1016/j.chaos.2005.11.066 doi: 10.1016/j.chaos.2005.11.066
    [6] Y. A. Rossikhin, M. V. Shitikova, Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results, Appl. Mech. Rev., 63 (2010), 010801. https://doi.org/10.1115/1.4000563 doi: 10.1115/1.4000563
    [7] R. E. Mickens, K. O. Oyedeji, S. A. Rucker, Analysis of the simple harmonic oscillator with fractional damping, J. sound. vib., 268 (2003), 839–842. https://doi.org/10.1016/S0022-460X(03)00371-7 doi: 10.1016/S0022-460X(03)00371-7
    [8] A. Rodriguez, W. Iwata, F. Ikhouane, J. Rodellar, Model identification of a large-scale magnetorheological fluid damper, J. sound. vib., 18 (2008), 015010. https://doi.org/10.1088/0964-1726/18/1/015010 doi: 10.1088/0964-1726/18/1/015010
    [9] B. G. Kao, A three-dimensional dynamic tire model for vehicle dynamic simulations, Tire Science and Technology, 28 (2000), 72–95. https://doi.org/10.2346/1.2135995 doi: 10.2346/1.2135995
    [10] B. B. He, H. C. Zhou, C. H. Kou, The controllability of fractional damped dynamical systems with control delay, Commun. Nonlinear Sci. Numer. Simulat, 32 (2016), 190–198. https://doi.org/10.1016/j.cnsns.2015.08.011 doi: 10.1016/j.cnsns.2015.08.011
    [11] S. Müller, M. Kästner, J. Brummund, V. Ulbricht, On the numerical handling of fractional viscoelastic material models in a FE analysis, Comput. Mech., 51 (2013), 999–1012. https://doi.org/10.1007/s00466-012-0783-x doi: 10.1007/s00466-012-0783-x
    [12] M. Feckan, Y. Zhou, J. R. Wang, On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simul, 27 (1996), 16–27. https://doi.org/10.1016/j.cnsns.2011.11.017 doi: 10.1016/j.cnsns.2011.11.017
    [13] T. L. Guo, W. Jiang, Impulsive fractional functional differential equations, Comput. Math. Appl., 64 (2012), 3414–3424. https://doi.org/10.1016/j.camwa.2011.12.054 doi: 10.1016/j.camwa.2011.12.054
    [14] A. Vinodkumar, Existence and uniqueness of solutions for random impulsive differential equation, Malaya J. Mat., 1 (2012), 8–13.
    [15] Y. Zhou, F. Jiao, J. Li, Existence and uniqueness for fractional neutral differential equations with infinite delay, Nonlinear Analysis: Theory, Methods & Applications, 71 (2009), 3249–3256. https://doi.org/10.1016/j.na.2009.01.202 doi: 10.1016/j.na.2009.01.202
    [16] S. Suganya, M. M. Arjunan, J. J. Trujillo, Existence results for an impulsive fractional integro-differential equation with state-dependent delay, Appl. Math. Comput., 266 (2015), 54–69. https://doi.org/10.1016/j.amc.2015.05.031 doi: 10.1016/j.amc.2015.05.031
    [17] F. Mainardi, The fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos Solitons Fractals, 7 (1996). https://doi.org/10.1016/0960-0779(95)00125-5 doi: 10.1016/0960-0779(95)00125-5
    [18] P. J. Torvik, R. L. Bargley, On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech., 51 (1984), 294–298. https://doi.org/10.1115/1.3167615 doi: 10.1115/1.3167615
    [19] M. Caputo, Linear model of dissipation whose Q is almost frequency independent, Comput. Math. Appl., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246x.1967.tb02303.x doi: 10.1111/j.1365-246x.1967.tb02303.x
    [20] K. Balachandran, V. Govindaraj, M. Rivero, J. J. Trujillo, Controllability of fractional damped dynamical systems, Appl. Math. Comput., 257 (2015), 66–73. https://doi.org/10.1016/j.amc.2014.12.059 doi: 10.1016/j.amc.2014.12.059
    [21] D. Xiaoli, J. J. Nieto, Controllability and optimality of linear time-invariant neutral control systems with different fractional orders, Commun. Nonlinear Sci. Numer. Simul., 32 (2016), 190–198. https://doi.org/10.1016/S0252-9602(15)30034-5 doi: 10.1016/S0252-9602(15)30034-5
    [22] J. Sheng, W. Jiang, Existence and uniqueness of the solution of fractional damped dynamical systems Adv. Differ. Equ-ny, 2017 (2017), 1–14. https://doi.org/10.1186/s13662-016-1049-2 doi: 10.1186/s13662-016-1049-2
    [23] B. Guo, L. Ling, Y. Ma, H. Yang, Infinite-Dimensional Dynamical Systems, de Gruyter, 2018.
    [24] Y. Zhang, R. Xu, The existence and uniqueness of solutions to initial value problems of fractional differential equations, Journal of QuFu Normal University, 48 (2022), 27–31.
    [25] B. B. He, H. C. Zhou, C. H. Kou, The controllability of fractional damped dynamical systems with control delay, Acta Mathematica Scientia, 35 (2015), 1003–1013. https://doi.org/10.1016/j.cnsns.2015.08.011 doi: 10.1016/j.cnsns.2015.08.011
    [26] D. Guo, V. Lakshmikantham, X. Liu, Nonlinear integral equations in abstract spaces, Springer Science & Business Media, 2013.
    [27] D. Guo, V. Lakshmikantham, Nonlinear problems in abstract cones, Academic Press, 2014.
    [28] D. Bothe, Multivalued perturbations of m-accretive differential inclusions, Isreal J. Math., 108 (1998), 109–138. https://doi.org/10.1007/BF02783044 doi: 10.1007/BF02783044
    [29] R. R. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E. Rodkina, B. N. Sadovskii, Measures of noncompactness and condensing operators, Basel: Birkhäuser, 1992.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1124) PDF downloads(121) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog