This paper studies the existence of solutions for fractional dynamical systems with two damping terms in Banach space. First, we generalize the well-known Gronwall inequality. Next, according to fixed-point theorems and inequalities, the existence results for the considered system are obtained. At last, an example is used to support the main results.
Citation: Shuli Zhang, Yansheng Liu. Existence of solutions for a class of fractional dynamical systems with two damping terms in Banach space[J]. Mathematical Modelling and Control, 2023, 3(3): 168-180. doi: 10.3934/mmc.2023015
This paper studies the existence of solutions for fractional dynamical systems with two damping terms in Banach space. First, we generalize the well-known Gronwall inequality. Next, according to fixed-point theorems and inequalities, the existence results for the considered system are obtained. At last, an example is used to support the main results.
[1] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations elsevier science, Elsevier, 2006. |
[2] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, 1993. |
[3] | V. E. Tarasov, Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media, Springer Science & Business Media, 2011. |
[4] | J. Padovan, J. T. Sawicki, Nonlinear vibrations of fractionally damped systems, Nonlinear Dyn, 16 (1998), 321–336. https://doi.org/10.1023/A:1008289024058 doi: 10.1023/A:1008289024058 |
[5] | L. J. Sheu, H. K. Chen, J. H. Chen, Chaotic dynamics of the fractionally damped Duffing equation, Chaos, Solitons, Fractals, 32 (2007), 1459–1468. https://doi.org/10.1016/j.chaos.2005.11.066 doi: 10.1016/j.chaos.2005.11.066 |
[6] | Y. A. Rossikhin, M. V. Shitikova, Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results, Appl. Mech. Rev., 63 (2010), 010801. https://doi.org/10.1115/1.4000563 doi: 10.1115/1.4000563 |
[7] | R. E. Mickens, K. O. Oyedeji, S. A. Rucker, Analysis of the simple harmonic oscillator with fractional damping, J. sound. vib., 268 (2003), 839–842. https://doi.org/10.1016/S0022-460X(03)00371-7 doi: 10.1016/S0022-460X(03)00371-7 |
[8] | A. Rodriguez, W. Iwata, F. Ikhouane, J. Rodellar, Model identification of a large-scale magnetorheological fluid damper, J. sound. vib., 18 (2008), 015010. https://doi.org/10.1088/0964-1726/18/1/015010 doi: 10.1088/0964-1726/18/1/015010 |
[9] | B. G. Kao, A three-dimensional dynamic tire model for vehicle dynamic simulations, Tire Science and Technology, 28 (2000), 72–95. https://doi.org/10.2346/1.2135995 doi: 10.2346/1.2135995 |
[10] | B. B. He, H. C. Zhou, C. H. Kou, The controllability of fractional damped dynamical systems with control delay, Commun. Nonlinear Sci. Numer. Simulat, 32 (2016), 190–198. https://doi.org/10.1016/j.cnsns.2015.08.011 doi: 10.1016/j.cnsns.2015.08.011 |
[11] | S. Müller, M. Kästner, J. Brummund, V. Ulbricht, On the numerical handling of fractional viscoelastic material models in a FE analysis, Comput. Mech., 51 (2013), 999–1012. https://doi.org/10.1007/s00466-012-0783-x doi: 10.1007/s00466-012-0783-x |
[12] | M. Feckan, Y. Zhou, J. R. Wang, On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simul, 27 (1996), 16–27. https://doi.org/10.1016/j.cnsns.2011.11.017 doi: 10.1016/j.cnsns.2011.11.017 |
[13] | T. L. Guo, W. Jiang, Impulsive fractional functional differential equations, Comput. Math. Appl., 64 (2012), 3414–3424. https://doi.org/10.1016/j.camwa.2011.12.054 doi: 10.1016/j.camwa.2011.12.054 |
[14] | A. Vinodkumar, Existence and uniqueness of solutions for random impulsive differential equation, Malaya J. Mat., 1 (2012), 8–13. |
[15] | Y. Zhou, F. Jiao, J. Li, Existence and uniqueness for fractional neutral differential equations with infinite delay, Nonlinear Analysis: Theory, Methods & Applications, 71 (2009), 3249–3256. https://doi.org/10.1016/j.na.2009.01.202 doi: 10.1016/j.na.2009.01.202 |
[16] | S. Suganya, M. M. Arjunan, J. J. Trujillo, Existence results for an impulsive fractional integro-differential equation with state-dependent delay, Appl. Math. Comput., 266 (2015), 54–69. https://doi.org/10.1016/j.amc.2015.05.031 doi: 10.1016/j.amc.2015.05.031 |
[17] | F. Mainardi, The fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos Solitons Fractals, 7 (1996). https://doi.org/10.1016/0960-0779(95)00125-5 doi: 10.1016/0960-0779(95)00125-5 |
[18] | P. J. Torvik, R. L. Bargley, On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech., 51 (1984), 294–298. https://doi.org/10.1115/1.3167615 doi: 10.1115/1.3167615 |
[19] | M. Caputo, Linear model of dissipation whose Q is almost frequency independent, Comput. Math. Appl., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246x.1967.tb02303.x doi: 10.1111/j.1365-246x.1967.tb02303.x |
[20] | K. Balachandran, V. Govindaraj, M. Rivero, J. J. Trujillo, Controllability of fractional damped dynamical systems, Appl. Math. Comput., 257 (2015), 66–73. https://doi.org/10.1016/j.amc.2014.12.059 doi: 10.1016/j.amc.2014.12.059 |
[21] | D. Xiaoli, J. J. Nieto, Controllability and optimality of linear time-invariant neutral control systems with different fractional orders, Commun. Nonlinear Sci. Numer. Simul., 32 (2016), 190–198. https://doi.org/10.1016/S0252-9602(15)30034-5 doi: 10.1016/S0252-9602(15)30034-5 |
[22] | J. Sheng, W. Jiang, Existence and uniqueness of the solution of fractional damped dynamical systems Adv. Differ. Equ-ny, 2017 (2017), 1–14. https://doi.org/10.1186/s13662-016-1049-2 doi: 10.1186/s13662-016-1049-2 |
[23] | B. Guo, L. Ling, Y. Ma, H. Yang, Infinite-Dimensional Dynamical Systems, de Gruyter, 2018. |
[24] | Y. Zhang, R. Xu, The existence and uniqueness of solutions to initial value problems of fractional differential equations, Journal of QuFu Normal University, 48 (2022), 27–31. |
[25] | B. B. He, H. C. Zhou, C. H. Kou, The controllability of fractional damped dynamical systems with control delay, Acta Mathematica Scientia, 35 (2015), 1003–1013. https://doi.org/10.1016/j.cnsns.2015.08.011 doi: 10.1016/j.cnsns.2015.08.011 |
[26] | D. Guo, V. Lakshmikantham, X. Liu, Nonlinear integral equations in abstract spaces, Springer Science & Business Media, 2013. |
[27] | D. Guo, V. Lakshmikantham, Nonlinear problems in abstract cones, Academic Press, 2014. |
[28] | D. Bothe, Multivalued perturbations of m-accretive differential inclusions, Isreal J. Math., 108 (1998), 109–138. https://doi.org/10.1007/BF02783044 doi: 10.1007/BF02783044 |
[29] | R. R. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E. Rodkina, B. N. Sadovskii, Measures of noncompactness and condensing operators, Basel: Birkhäuser, 1992. |