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1. Introduction

In recent years, fractional calculus has gained much
attention.  Compared with the integer derivative, the
fractional derivative can lead to better results in many
practical problems as it serves as a powerful tool to describe
the memory and genetic properties of various materials and
processes. Fractional differential equations (FDEs) appear
in plenty of scientific and engineering disciplines because
they describe many events and processes in the domains of
aerodynamics, chemistry, physics, the rtheology of polymers,

etc. For more details, see [1-3] and the references therein.

In addition, fractional damping systems based on velocity
history have attracted extensive attention and been the focus
of much research in the last few decades (see [4-7]). For
example, problems of non-viscous damping with hysteresis
have been studied in the application of magnetorheological
fluids (see [8]). Similarly, this concept was used to simulate
damping in a vehicle tire and plates made of composite
materials (see [9, 10]). The authors of [11] considered a
mechanical system with viscoelastic damping, mass and
a rapid jump by producing the FDEs based on Caputo

fractional derivatives. For more exciting results about

damped dynamic systems, see [4—8].

The existence of solutions for fractional dynamical
systems has been widely investigated because it is a
fundamental problem of fractional dynamical systems as
well as a necessary condition to consider other properties
such as controllability and stability (see [12-14]). For
instance, the authors of [15] investigated the existence of
solutions for fractional neutral differential equations with
infinite delay. The authors of [16] obtained existence results
for an impulsive fractional integro-differential equation with
state-dependent delay. In addition, many authors have
studied multi-term fractional systems as they have been
successfully used in gas dynamics, mechanical systems, etc.
(see [17-21]). These systems are more complicated and
interesting than one-term fractional systems. For example,

Sheng and Jiang discussed the following system in [22]:

D2 x(t) — ACDE, x(1) = f(t,x(1), 1 € J = [0, T];
x(0) = xo, x'(0) = x;,

where 0 < <1 <a <2,xe€R" AisannXn matrix and
f:JXR" — R"is continuous. The existence results were
obtained by utilizing fixed-point theorems.

It is well known that many significant results have

been achieved in the study of finite-dimensional dynamical


http://www.aimspress.com/journal/mmc
http://dx.doi.org/10.3934/mmc.2023015

169

systems. However, the research on dynamical systems is
not limited to the finite dimension. From the perspective
of practical problems in physics, many important dynamical
system problems, such as turbulence in fluid mechanics,
discrete attractors and small dissipative dynamics (see [23]),
are studied in infinite dimensions.

Inspired by the above, we investigate the following
fractional dynamical system with two damping terms in

Banach space H:

CD3.E(t) - ACDE(t) - BEDY£(1) = h(t, &),
1€ T=[0,];
£(0) = &0, £'(0) = yo, £"(0) = 20,

(1.1)

where 0 < vy <1 < B <2 <a <3 &, Yo, 20 € H, A,
B e L(H)and 7 : TXH — His a given function.

To the best of our knowledge, few people have studied this
type of system. Only Zhang and Xu [24] has studied (1.1) in
a finite-dimensional space. The existence and uniqueness of
solutions for (1.1) have been obtained by using the Banach
fixed point theorem. It is remarkable that 7(z, £) meets the
Lipschitz condition, which is difficult to satisfy in practical
problems. Compared with [24], this article has the following
distinctive features. First, we consider (1.1) in abstract
space. Second, on the basis of [22], we generalize the
Gronwall inequality, which is crucial for the proof of our
results. Third, 7(z, £) here is no longer required to satisfy the
Lipschitz conditions.

The remainder of this article is organized as follows. In
Section 2, we introduce some fundamental concepts and
lemmas, which will be used throughout the paper. In Section
3, first, the Gronwall inequality is extended. Second, the
main results are presented and proved. Last, we give an
illustrative instance to support the main results. In Section

4, the conclusion of the full text is given.

2. Preliminaries

In this section, we introduce some definitions and lemmas
used to prove the conclusion. Throughout this paper, let
PC(T,H) be the Banach space of all continuous functions
[0, ¢] to H with the norm ||£]|. = sup{||é@)|| : t € T}
for ¢ € PC(T,H), where || - || is the norm of the Banach
space H. In addition, X(-) and X.(-) represent the Hausdorff

from T =
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measure of noncompactness of a bounded set in H and
PC(T, H) respectively.

Definition 2.1 [1] The
integral of order @ € R* of a function f : [0, +c0) — H with

Riemann-Liouville fractional

the lower zero is defined as follows:

1
OE (r )™ f(s)ds,

T(a)

where t > 0, @ > 0 and I'(-) is a gamma function.

Definition 2.2
derivative of order @ € R* of a function f :

[1] The Riemann-Liouville fractional
[0,+00) - H

with the lower zero is defined as follows:

Dy () = —— (—)” f (t = )" f(s)ds,

( @) dt

where n =[a]+ 1, t >0and a > 0.

Definition 2.3 [1] The Caputo fractional derivative of
order @ € R* of a function f : [0, +o0) — H with the lower

zero is defined as follows:

“D§. (1) = — sy D )gs.

From the definition of fractional integrals and Caputo

derivatives, we have the following results.
Lemma 2.4 [1]

18 D2 f(t) = (1) - Z f<k>(0) t1>0,n—1<a<n.

Lemma 2.5 [25]Let0 <y <1 <B<2 < a < 3; then,

fO)r*+ _f "0y P!
Ta-p+1) TLa-p+2)

SO
IMa—-vy+1)

18 CDL f@) = 157 f (1) -

15, (CDy. f(0) = 157 (1) -

Next, for ¢ € LP(T, R), define the norm

(. Iy,
inf { sup KO,

MO0 o1 T

1 <p<oo;

1Sllr) =
p = OO,
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where u(i) is the Lebesgue measure on T. Then, LF (T,R)
is a Banach space composed of all Lebesgue measurable
functions ¢ : T — R with [|{llzp) < 0.

Lemma 2.6 [26] Suppose that H is a Banach space.
Let D be a closed and convex subset of H and xy € D.
Assume that the continuous operator Q : D — D satisfies

the following:

C c D countable and C c co({xp} U Q(C)) — C is relatively
compact.

Then, Q has a fixed point in D.

Definition 2.7 [27] Let H be a Banach space and Q : H — H
be continuous and bounded. We say that Q is condensing
if X(Q(Q)) <

compact set Q C H.

X(Q) for any bounded and not relatively

Lemma 2.8 [28] If S is bounded, then for each € > 0, there
C S such that

exists a sequence {v,}>”, C

X(©S) <2X({vakol)) + €

Lemma 2.9 [29] Let H be a Banach space and Q : H —» H

be a condensing operator. If the set
E@ ={feH:&=2Q¢ 1€[0,1])

is bounded, then Q has at least one fixed point.

3. Main results

3.1. Generalization of Gronwall inequality

In this section, we extend the Gronwall inequality.

Theorem 3.1. Suppose that a, B, v > 0 and z(t) is a
nonnegative and integrable function on [0,]. Let ;;(t), E(t)
and hi(t) be nondecreasing, nonnegative and continuous
functions defined on [0,t]. Assume that £(t) is nonnegative
and integrable on [0, (] with

&) <
+h(t) f (t — )" ' &(s)ds + h(t) f (t — s &(s)ds
0 0

z(t)

+ hi (1) f (t— s 1&(s)ds, t € [0,1].
0
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Then,

&)

1 L& CECL [T(@)) P T[T (y)])
SZ(I)“LfO Z wey ;g Tl(r—p—@a+ pB+qyl

X (1 — §)""PmDUPBraY=1 (o) g

(3.1
r(r=1)(r=2)- (r—p+1)
Pl

where h(t) = h(t) + h(t) + () and C? =

Proof. Let h(t) = h(t) + h(t) + hy(¢). Then,
E(1) < z2(t) + h(D) f [(t— )+ (= 5P+ (1 — 51 1é(s)ds.
0
Define

BE(r) = h(t) f [(t— )% + (1= s+ (1 — 51 1é(s)ds.
0

Then,
£ <z() +BED), 1€]0,4,
which implies that
r—1 )
£ < ) Ba) + BED). (3.2)
i=0

Now, we prove that

1 ’ = /’ CrCl_,[T(@)] P-4 [T(B)]P [T ()]
I'l(r—p—q@a+ pB+qyl

B &) <[h()] f

p=0 q=0
X (1 — 5)PmDUPBrOY =l g6y g,
(3.3)
and that B"¢(r) — 0 as r — +oo for each ¢ € [0, ¢].
When r =
Suppose that it holds for r = k.
Letr = k + 1; then,

1, the inequality (3.3) holds obviously.

Bk+1§(t)
=B(B'&(1))
<h(?) f (=) "+t -l +(-95)"]
8 UL IT@ P @)IPIT ()
f (s Z 3=
ey F[(k P—qa+pB+qyl

x(s — D)k PO Bl (1) dr | ds.
(3.4)
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Since h(f) is nondecreasing,

Bk+1§(t)

<[h()]F! f (="' + - + -5

k= p crcl Sl (@)] 1<=P=9[T(B)]P [T ()]
F[(k P —@a+ pB+qyl

(3.5)

p=0 g= 0
X(s — T)(k P-a+pBray-1 f(T)dT] ds.

We exchange the integral order. Then,

Bkﬂf(l)
s[h(t)]"“
8 CLCL M@ P @)IPIT ()
. (ZZ I'lk = p— @)+ pB+qy]
X(t — §)° 1( - )(k P—qQ)a+pB+qy-1

k kp crcl [F(cx)]k_”_q[r BTy
+Z;)Z r[(k P =qQa+pB+qyl

7)k-p-@atppray=1

X (t— s)ﬁ_l(s -
k ke crct [F(a)]"_"_q[r BTy
+;)Z; r[(k—p—q)a+p/3+q7]

x(t = (s = v oentas| ey

=[h(z)]"“

kp chel [F(a)]"“""q[F(ﬁ)]P[F 62)K
[ltk+1-p—qa+pB+qyl

p=0 ¢=0
X (f — s)(k+1 P—q)a+pBt+qy-1

kA CpCy D@ T(B) P T (y))
* 22 Tlk—p—-qa+(p+ B +qy]

p=0 ¢=0
X (f — s)(k—p—q)w(p+1)ﬁ+q7—1

k ke crct [F(a)]"’P’q [C@1P[T(y)]a+D
+ZZ [ltk—p—q@a+pB+(qg+1)y]

p=0 g=0

x(t — 5)* p—q)a+pﬁ+(q+1)7—1] &(s)ds

s[h(t)]"“

X (t — s)(k+1 -p—q)a+pp+qy-1

kp chct [F(a)]"“‘P‘q[F(ﬂ)]P[F(V)]‘f
[k +1-p-qga+ pB+qyl

p=0 ¢g=0
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kel kpst oP=t ol i (L@ P T@) P L))
+ZZ Tk+1-p—qa+ pB+qyl

p=1 ¢q=0

X (t — S)(k+lfpfq)a+pﬁ+qyfl

kRt CECT (@)1 P [T(B)1P [T ()]
+Z Z I[k+1-p—qa+pB+qyl

p=0 g¢g=1
X(t — s)(k+]_p_q)"+pﬂ+q7_]]f(s)ds.

So, we have

Bk+1§(t)

“rcpel, + e 'cd. b t CfCZ:;)

<[h()]F!
ZZ F[(k+ 1-p—-q@a+pB+qyl

ft
p=1 g=1

X [[(@)]* =P~ [CB)P[C()]9(t - s
L1 CrCE D@ =PI [T(B)1 [T ()]

)(k+ 1-p—q)a+pB+qy—1

+
qZ::; p=0 Tltk+1-p-q)+pB+qyl
X (1 — S)(k+17pfq)a+pﬁ+q~/fl

zk: CLCL_ [T@1* P @)P [T
+
g=0 Tlk+1-p—q)a+pB+qyl

p=0
X (t — )(k+1—p—q)a+pﬁ+qy—1
cy'cl M@ =[NP [T ()]
+
et T+ 1=-p—ga+ph+qy]
% (t _ S)(k+1—p—q)a+pﬁ+qy—l
. kii C,f‘IC,Z_p+1 (C() =P[R [T ()]
o Tlk+1-p-—ga+pB+qyl
% (l _ S)(k+l—p—q)<t+pﬁ+qy—l
ks criel M@= @)1P[T(y))
Hlptp-1 Tlk+1-p—qla+pf+qyl
X (t — S)(k+1—p—q)a+pﬁ+qv—l
kel IO D@ [T ()]

k—p
[[k+1-p—qa+pB+qyl

e

=1 'P=0

X (t — )(k+17pfq)a+pﬁ+q~/fl

Zk: crel- ‘[r(a)]k“ P[CB)P[T(y)]4
+

Sl Tlk+1=p—gla+pB+qyl

x(1 — S)(k+1—p—q)a+pﬂ+q7—l] &(s)ds.
(3.6)
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Notice that

kel M@ P T @)

p=0 Llk+1-p—qa+pB+qyl

q=0
X (l _ s)(k+l—p—q)<y+pﬁ+q7—l
[C()]*!
=0
P=0T((k + 1a]

. Zk: ClT ()14 [T (y)]
p=0 L[k +1 - g+ qy]

( _ )(k+1)a—l

g=1

OO, M@ 7T ;)

p=0 Llk+1-p—qa+pp+qyl

g=1

% (l _ s)(k+l—p—q)oz+pﬁ+qy—l

([T (1! (kD1
2 T oy

Z": CI D@ [T (y)1
+
p=0 Lltk+1-q)a+qy]

g=1

Combining (3.7) and (3.8), we obtain

C; CZ_p[F(a)]"”""" @ Irm;ie
p=0 Tlk+1-p-—qa+pB+qyl

k
2,
X (1 — S)(k+l—p—q)w+pﬁ+qy—1
Ll CrC D) P [T(B)P [T(y))

+Z! ’

Hlp=o Tlk+1-p-qgla+pBb+qyl

X (f — s)*H1-p-Datpfray-1

[C@)1*!

PREN(CRIS!
Zzgr[(k+1)a]( 9

[Ty Dyl
2 Tk Dyl

k Cl [T(@) 19T (y)1
=1

+
q

p=0 L[k +1-q)a+qy]
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(l _ s)(k+ 1-q)a+qy-1 )

(l _ s)(k+l—q)a+qy—] )

(3.7)

(3.8)

(t _ S)(k+l—q)ar+qy—l .

(3.9)

Similarly,
zkl ccl » [C(a) =P[R [T ()]
=0 Tlk+1=p-qg)a+pB+qyl

p=0
X (l _ s)(k+1—p—q)a+pﬁ+qy—l
k+1

X (t — s)*H1-p-Datpfray-1

cy' el M@ =11 [T ()}
=0 Tlk+1-=p—q)a+pB+qyl

[F(CL’)]k+l (310)

Zzg I'[(k + D]

[C(B)]! N
pek Tl g1

. z": Cy M@+ =P LB [T ()]
g=0 Tlk+1—p—q)a+pB+qyl

p=1

(t _ S)(k+1)(1—1

X (f — s)kH1-p-@atpBray-1

and

kel Ol D@1 7= [T(@)1 [T (y))

[[tk+1-p-—qa+pB+qyl

=1 q=k—p+1
X (f — s)(k+17pfq)a+pﬁ+q~/fl

-1

c,fc,f_p [C(@)+=P= [T (B [T(y)]*
[l(k+1-p—qa+ pB+qyl

k
+
p=0

q=k—p+1
x (¢t — s)(k+l—p—q)a+pﬁ+qy—1

_ L@ @) ()P

| ekt TG —k= Do+ (k+ DB + (k= p+ 1]

X (t _ S)(p—k—l)(t+(k+l)ﬁ+(k—p+l)y—l

(1!

470 Tl + 1]

X (t _ s)(k+l)‘y—l

a Cy. D@ =P [T (B)]P [ (y)]?
g=k-p+1 Tk +1=p—q)a+ pB+qy]

+
p=1

X (f — s)**H1-p-Datpfray-1,
(3.1D
By calculation, we can obtain

p—1
crel +cptct

Pra-1 _ ~p 4
kﬁp+1+Cka7p—C C

k+1 " k+1-p* (3.12)

From (3.9), (3.10), (3.11) and (3.12), the inequality (3.6)
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can be rewritten as

BHE(r) < [h(n))!
tmlmlpcgggﬂpuwnr“ﬂFﬂrwnﬂrwnq
f Z [[(k+1-p—qa+ pB+qyl

p=0 ¢=0

X (t — S)(k+1—p—q)a+pﬁ+qy—1 &(s)ds.

As a result, the inequality (3.3) is proved.
Next, since ﬁ(z), h(#) and hy(f) are continuous on [0, c],
there exists 4 > 0 such that 4(¢) < H. From (3.3),

¢ ’ "” H'CLCL[T(@)]) P [TB)][C(y))
B%wf
iy C[(r—p—q@a+ pB+qyl

X (t — 5)"Pm P PBraY-le ().

Notice that

\:
<
|
=

(a+b+c) = "TPABP A,

p=0 ¢

C/Cl_a

Il
f=}

Using Stirling’s formula, (o + 1) ~ V270(£)”, one can
get that

lim B'&(r)

r—00
L HICECL

<lime) >

p=0 ¢=0

X f (t — 5)"PrPePBray=1gg
0

ifﬂ@dJWWWWWWWW
T[(r—p—qa+pB+qy+1]

HL@] PR ()]
Cl(r - p—q@a+ pB+qyl

r r—-p ﬂrcﬁcq
= lim ¢ Z Z
roe L L8 \2al(r = p — @ + pB+ qy]
r-p—q
« T'(a)®
((r—p —qQa+pB+ qv)a
e
P
rB)#
% (r—-p—-q@a+pB+qy
( ¥
e
q
« Ly
((r—p —Qa+pB+ )y
e
< lim K[W(Cl +C + C3)]"
r—eo 2rd
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where the symbol ~ means that I'(c + 1) is equivalent
infinity of V270 (2 ), €= sup ()], 6 = min{a, 8,7},
te[0,e]
I'(a)®

((r—p—q)a+pﬁ+qy)a’
F(Z’)L’B
(r—p—q)a+p/3+q7)g’

&
((r—p—q)a+pﬁ+q7)y'

e

C =

G, =

(
Cs =

Notice that Cy, C,, C3 > 0asr — oo. So, H(C; + C, +
C3) < 1if rislarge enough, which implies that [H(C;+C; +
C3)]" — 0 as r — oco. Then, we can obtain that 87£(r) — 0

asr — oo,

Therefore, from the inequality (3.2), it is easy to get
(3.1). m|

Corollary 3.1.
3.1.1 hold. Moreover, suppose that z(t) is nondecreasing on
[0, t]. Then,

Assume that the assumptions of Theorem

£(1) < 2O Es[h(n)(T(@)® +TBF) + TP,

where 6 = min{a, B, y} and Es is the Mittag-Leffler function
defined by

o0 k
o
E = - R 0.
s(0) kz:(; Tho 1 1) o € C, Re(6) >

Proof. Since z(¢) is nondecreasing on [0, ¢], from (3.1), we
have

r r=p

1+f Z[h(t)’zz

p=0 g=0
CYCI,[T@1 P~ [T

[l(r=p—q@a+ pB+qyl
X(t — 5)PmDrPBry-1g s]

£(1) <z(1)
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=20 |1 + g[h(t)]' ; g‘;

CrCl_,[T(a)) P4 [T(B)] [T (y)]?
[(r—p-qa+pB+qy+1]
x(t — s)(rfpfq)wrpﬁﬂ]y]

(o] r r=p
<1+ Z[h(t)]’ Z Z
r=1 p=0 g=0
CrCL, [D(a)® )P4 [D(B)FI [T ()1 14
X T(ré + 1) ]
B o [A(OT[D(@)® + TB)F + Ty
=o)L+ Z‘ T(o+1)

=2 Es[h()(T(a)t® +TBF) +T(1'].

3.2.  Existence of solutions

The existence results of (1.1) are given in this section.
Before that, we list the following hypotheses.

(‘H1) h
conditions.
(H?2) There exist ki, k» € (0,1) and real functions
I, € L (T, H), I, € L (T, H) such that

T x H — H satisfies Carathéodory type

172, EN < Li@ONE] + L(f) forall £ e Hand a.e. t € T.
(H?2') There exist real functions [, I, € L*(T, H) such that
1, O < Li@)NEN + L(¢) forall ¢ e Hand a.e. t € T.

(H?3) There exist k3 € (0, 1) and a real function
w € Lé(ii, H) such that

X(A(t, D)) < w(t)X(D) for any bounded D c H and a.e.
ted.

For convenience, denote

a-1

a-1
NEE .
1 -k

a-—1
Ri= ——,
1 -k

Ni=——o,
1 -k

Now, we introduce the following primary results.

Mathematical Modelling and Control

Theorem 3.2. Assume that (H1), (H2) and (H3) hold. In
addition, suppose that

(1+3)(1-k3)
et e Al
'_r(a—ﬁ+ ) T@-y+1) Ta)(1 + J)l-*s
<1,

(3.13)

(1+8)(1-ky)

e e
"T@-B+1) Ta-vy+1) T(a)(1 + N)1h
<1.

(3.14)

Then, (1.1) has at least one solution on .

Proof. Suppose that £(7) is the solution of (1.1). Taking the
integral of order @ on both sides of (1.1), by Lemma 2.4 and

Lemma 2.5, we can get that

£0) =0 + yot + 20 4 — T f (1= 5 g(s)ds
2 Te-p Jo
_a Gty P!
INa-B+1) INa-B+2)

g G B
Bl"(a/—y+1)+l"(a/—7)f(;(t $)TTTTE(s)ds

1 ' a-1
+mﬁ(t—s) h(s, &(s))ds.

Define the operator Q on PC(T, H).

_ e A e
@) =6+t + a5+ = [ =9 e(wds
~ fO [(t—ﬁ B Yo ta—ﬂ+ 1 B 60 1Y
INa-g+1) I'a-B8+2) IlNa-y+1)

B ' a—y—1
+m£(l—é‘) Y &(s)ds

+ % fo (t — 5)* (s, £(5))ds.

(3.15)

Obviously, we only need to certify the existence of fixed

points of Q.
Step 1. We state that Q is continuous.

First, let {£,} be a sequence such that &, — £ asn — oo in
PC(T, H). For arbitrary t,, t, € T, t, > t;, we have
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1Q&x)(12) — Q&) ()l

<lholz = 0) szon(tz ’2)%<r§‘ﬁ—n
%(’g_ﬁ” S
%UW -4
e ,fz(fz — 9" (s
I“(clxﬂ”,B)f [ e O (O
r((llg_” - :(tz — " n(s)lds
' F<l|vB—”y) fo |2 = 97" =0 = 9 Ben(o)lds
" T@ - )" I, &4 (9))llds

1
+ @f [ = 9" = (01 = 97| In(s. £4(s)llds

llzoll - >

<llyoll(t2 — 1) + —(12 )

. r(iﬂ”fi”n @
L e _ o
By MW
r([f:2 ﬂ”ﬂcl) B e

< ol = 1+ 202 - )
LA o _ o
Ml gs._ oy
r?fi”«lf:”i) R r(av‘jr p 2 =

where W := sup{||7i(t, &) :
It is easy to get that [(Q&)(12) — Q&)
(to — t;) — 0. Therefore, {Q¢,} is equicontinuous.
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o) A

tel, & € PCI,H) < .

On the other side,
@) - @)
fo (1 = 9P ign(s) — E(s)lds

T@-p)
I8l
[a~7v)

+ ﬁ fot(r = )" (s, £(5) = (s, E(Dllds.

fo (1 = 9 () — E(s)lds

Thus,

Q&.(1) — QE(D)| = 0 as n— 0o, VieT.  (3.16)

By using the Arzela-Ascoli theorem, we conclude that {Q¢,}
is relatively compact on <.

We now claim that

IQE, (3.17)

- Q¢ = 0 as n — oo.

If (3.17) is not true, there exist &; > 0 and {&,,} of {&,} such
that

Qs — Qéll. > &1, (n=1,2,3---). (3.18)

Because {Q¢,} is relatively compact, {Q¢,} contains a
subsequence. It converges to z € PC(T,H). We assume

that {Q¢&,,} itself converges to z:

IQ&,, (3.19)

—2Zlle = 0 as n — oo.

By (3.16) and (3.19), we obtain that z = Q¢£. So (3.19)
contradicts with (3.18). Thus, (3.17) is true.

Step 2. Choose the constant o which satisfies the
following inequality:
o> K (3.20)
1 -«
where
2 a—p a—p+l
o lllIAll" IlyollllAlle
=|l&oll + + +
=léoll+dboll + S ool + 2=+ T
Il o (A
. JolliBlle™ L3 @)
IMa-y+1) C(@)(1 + R)lF
- 0 as We now claim that
Q:D, — D,, (3.2
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where D, := {¢£ € PC(T,H) : i€l < o}.

In fact, for arbitrary ¢ € D,, using (HH2), we have

Qe
2 t
<holl + ol + S ool + F(ﬂf”ﬁ) fo (= 5y P s ds
AP Iyolll A+
IlNa-Bg+1) T(@-+2)
= f t(’ = )" NIEs)llds
Ila-vy)
Bl o
femy D T f (- 5 laCs. £(s))lds
2 ﬂ B
<loll + ol + 2 el + FU—%H)
A yolli Al
IFae-Bg+1) T@-B+2)
IBloe™  olllBle
IlNa-y+1) T(@-y+1)
+ % fo (t = 9 i (s)ds + ﬁ f (1 — 8 ' L(s)ds.

(3.22)

Notice that

ki

t t . 1=k t .
f(t—s)“’lll(s)ds < (f (t—s)‘dklds) (f ll(s)klds) ,
0 0 0
t t - 1=k; t . ka
f (t-9)""(s)ds < ( f (t-s) “'zcis) ( f lz(s)kzds)
0 0 0

These, together with (3.22), guarantee that

IQE)I|
€A lyoll|AN P+
<
(I€E0ll + ellyoll - || oll + fa—psD " Ta-pr2
Ll R0k
Il B|e > LB (@)
[@-y+1) C(a)(1 + R)l-*&
(1+8)(1-ky)
Ao 1Bl o N [1Z11] et Do
Ma-g+1) Ta-y+1) F(a)(l +N)I-k

From (3.20), we have that ||Q(é)||. < o if ||€]l. < o.

Step 3. We demonstrate that S is relatively compact if

S C D, is countable and
§ cco({go} U Q(S)) (3.23)

for some & € D,.
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Let S

X{@QEDN,L)

= {&),., € D,. By (H3), one can get that

X [ =9 s,
f (1 = 9 ()ds), )
-y Jo

X({% f (1 = 7 s, £u(s)ds),)
2| A

<F(O'J I f (= 9P XU, )ds

2 B —_—— o0

r(;' ”y) f (= 9 X(UE()I )ds
‘s f (1 = 8 X (s, Ex(NI, )ds
EL

a—p-1
F(a f (t—5) ds
ZIIBII

(o2 1
r(a y)f( s

f (1= 9 s Xl )

T

<( 2
“\La-g+1)

X Xc({€nhlr)

(1+3)(1—k3)
g AN ) )

T@-y+1) L) +9)%

(3.24)

foreacht e T.
Note that {Q&,}”, is equicontinuous by Step 1. From a
well-known result on the measure of noncompactness, we

have

X Q&2 = sup X{@QEDD),L))-

This together with (3.13), (3.23) and (3.24) guarantees that

Xe({&ntim) < Xe({QE,2)) < dXc({&0l, ),

which implies that § = {£,}7, is relatively compact.

From Lemma 2.6, Q has a fixed point in D,. It is a

solution of (1.1). ]

Theorem 3.3. Assuming that (H1), (H2') and (H3) hold.
In addition, suppose that

”w” L(1+S)(l—k3)
Lk’ (€3]

C(a)(1 + J)'-k

4Bl
INa-y+1)

Al AeF
"T@-B+1)

<1.

(3.25)
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Then (1.1) has at least one solution on T. From (H2'), we choose K; = |llillo and K> = ||l2loo-
Then, |7z, Il < Killgll + Ka.

Proof. First, it is easy to get that Q : PC(T,H) —» PC(T, H
ytog ( ) ( ) For each ¢ € E(Q) and 1 € T, we have

defined as (3.15) is bounded and continuous.

Then, from Lemma 2.8, for any &€ > 0 and bounded [1E@]
C c PC(T,H), there exists {v,}7, € C satisfying X(C) < ollllA>
2X(Iva),) + & and <lIgoll + cllyoll ‘= || Zoll + T-g+1)
N ||)’0||||~7‘||Ld_ﬁ+l N li€ollll Bl
X(@QO)®) T@-B+2) T@-y+1)
PR _ A f wp1
SX({F ﬁ)fo(t s) &(s)ds £ € CY) +F(a ) (t—) liEC)lid s
' s - [l2] f e
X({r —7).£(t ) &(s)ds : E€CY) ]"(a/ 3 (= )7 &) llds
Xipe fo (1= 5" h(s, £(s))ds : £ € C)) * i f (= 9" (s, £))ds
A ! ope o 2 Al
Xy [ = ol ds) <lill + ol + Sl + (A1
B ' a—y- o Ilyollllﬂllt“‘ﬁ+1 li€ollll Bl Ko
2X - )" Yy, () d
+ 2K -7) fo(t 9T bn(ds) Ta@-B+2) TLa-y+1) T+l
1 !
+ 2K s f (1 = ° (A5, va(sDI ds) + 36 +F('('f‘”ﬁ) f (1 = P ig(s)llds
4| Al a B Y
“Fap f (1= 9" P X (2, s F(L'[ _”7) fo (= 97 lgCs)lds
4”8” _ eyl ) Kl ! a—
F(a » f (=) X{va()}2)ds +m fo (t = ) E)ds.
* @ f (t = )" X({A(s, va())2, )ds + 3& For convenience, define
(1+3)(1—k3) 2 Al B
NI A el ) el bl + Sl + s
\La-B+1) Ta-y+1)  T)(+3J)"k _[M 3
- N [lyollllAll* N liollll Bl Kou”
X X (v}, + 3¢ Fa@-+2) Ta-y+1) T(@+1)
for arbitrary ¢ € T. Notice that _ Al ] K
M Ta-p ¥ T Te-p P T
Xe(tvaluty) < Xe(€), Xe((QC)) = S,S;P X(@QC®). By Corollary 3.1.2, we can obtain
Let £ —» 0. We obtain llE@II
X(@QC)) < IX.(C), <t fo (1= e s
which implies that Q@ : PC(IT,H) — PCI,H) is a +X2 fo (t = )" MIE()llds + x3 fo (t = )" IE(s)lds
condensing operator by (3.25). <l Ea—ﬂ[ (1 +x2 + x3)(T(@)® + e — B
At last, define the set + e - y)ta_y)]

=M.
E@Q ={¢ e PCT,H): & =aQ¢, 1€ (0,1]}.
This means that [|£(r)]] < M* for each ¢ € E(Q). Thus, the

We declare that E(Q) is bounded. set E(Q) is bounded.
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From Lemma 2.9, (1.1) has at least one solution. m]

Remark 3.1. Notice that I} € L™ (T, H), which implies that
11 (¢) is no longer required to satisfy (3.14).

3.3. Examples

In this section, an example is used to illustrate the
effectiveness of the obtained results.
Example Consider the following fractional dynamical

system with two damping terms in Banach space cy:

(1) — 81 z fn(t) - 82 W) = (8, 61,62, +),
t € z =[O0, 1],
&(0)=0, £0)=0, &0)=0 (n=1,2,3,--),
(3.26)

where g; (i = 1,2) are positive numbers, and

hn(ts‘fl’f%' o
te I, (51,52,“‘

)= 2hi(e+ %) for
)€cy, n=1,2,3,---;

co represents the space where all sequences converge to
zero, which is a Banach space with respect to the norm

lI€llco = sup [&]-

Conclusion: System (3.26) has at least one solution

0nlif281+82<1—%.

Proof System (3.26) can be considered as a system
of the style of (1.1), where

a =

|
| W

B=5. =—€o—o—z<>—(0 o)

e ’}:-

In addition, A = £,& and B = &,&, where & is the identity

operator.

h(ts‘f) = (hl(t"f)’ o "hn(t9§)’ o ) =

From Theorem 3.2.1, we only need to show that the
conditions (H1), (H?2), (H3), (3.13) and (3.14) are satisfied.

We can easily conclude that the function 7 satisfies (#1).
To verify condition (H2), let & = {¢ j};il € c¢o. Then

1 -
mﬂ{fj + j_z}jzlnoo <

(2, E)lleo = 77 €l + )
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for t € T. So we choose [(t) = ﬁ, L) = z—+1 This shows
that (H2) holds. To prove (H3), we review the Hausdorff

measure of noncompactness X in cg:

X(D) = lim sup||( = Tp)é|le,
)

where D is a bounded subset in ¢y and T, is the projection
onto the linear span of the first n vectors in the standard basis
[27].

Letu = {uj} € D C co; we have
t o0
XG0, D) = o Jim sup (7= o)t + 172l

lim sup [|(7 = To){u;} 32 Dl

1 n—oo ueD

t2

t2 +1 X(D)

for t € T. So we can choose w(t) = 7 Hence (H3) is

satisfied. Obviously, |lw|l;2 < 1 and I = &~ = 3. So,
(1+3)(1—k3)
AANSF 2Bl ”‘“”Lp ' :
INa-B+1) T(@-vy+1) T(a)(1 + J)l-*
2 2 2
@ T3 10
(1+8)(1-ky)
N e L T
IlNa-g+1) T(a-y+1) I'(a)(1 +N)1‘k1

Thus, (3.26) has at least one solution on ¥ = [0, 1]. O

4. Conclusions

This paper studies the existence of solutions for fractional
dynamical systems with two damping terms in abstract
space. The desired results have been obtained by using
the non-compact measurement method and the fixed point
theorem. For the first time, we consider systems with
damping in an infinite-dimensional space. The conclusions
of this paper are important for systems with two damping
terms. In the future, the controllability of similar systems

can be considered on this basis.
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