In this article, we introduce and analyze a novel fractal-fractional chaotic system. We extended the memristor-based chaotic system to the fractal-fractional mathematical model using Atangana-Baleanu–Caputo and Caputo-Fabrizio types of derivatives with exponential decay type kernels. We established the uniqueness and existence of the solution through Banach's fixed theory and Schauder's fixed point. We used some new numerical methods to derive the solution of the considered model and study the dynamical behavior using these operators. The numerical simulation results presented in both cases include the two and three-dimensional phase portraits and the time-domain responses of the state variables to evaluate the efficacy of both kernels.
Citation: Ihtisham Ul Haq, Nigar Ali, Hijaz Ahmad. Analysis of a chaotic system using fractal-fractional derivatives with exponential decay type kernels[J]. Mathematical Modelling and Control, 2022, 2(4): 185-199. doi: 10.3934/mmc.2022019
In this article, we introduce and analyze a novel fractal-fractional chaotic system. We extended the memristor-based chaotic system to the fractal-fractional mathematical model using Atangana-Baleanu–Caputo and Caputo-Fabrizio types of derivatives with exponential decay type kernels. We established the uniqueness and existence of the solution through Banach's fixed theory and Schauder's fixed point. We used some new numerical methods to derive the solution of the considered model and study the dynamical behavior using these operators. The numerical simulation results presented in both cases include the two and three-dimensional phase portraits and the time-domain responses of the state variables to evaluate the efficacy of both kernels.
[1] | J. Satulovsky, R. Lui, Y. Wang, Exploring the control circuit of cell migration by mathematical modeling, Biophysical journal, 94(2008), 3671–3683. https://doi.org/10.1529/biophysj.107.117002. doi: 10.1529/biophysj.107.117002 |
[2] | V.M. Kosenkov, V.M. Bychkov, Mathematical modeling of transient processes in the discharge circuit and chamber of an electrohydraulic installation, Surface engineering and applied electrochemistry, 51(2015), 167–173. https://doi.org/10.3103/s1068375515020076. doi: 10.3103/s1068375515020076 |
[3] | P. Sharma, D. K. Dhaked, A. K. Sharma, Mathematical modeling and simulation of dc-dc converters using state-space approach, Proceedings of Second International Conference on Smart Energy and Communication, Springer, 2021. |
[4] | I. U. Haq, N. Ali, H. Ahmad, T. A. Nofal, On the fractional-order mathematical model of covid-19 with the effects of multiple non-pharmaceutical interventions, AIMS Mathematics, 7(2022), 16017–16036. https://doi.org/10.3934/math.2022877 doi: 10.3934/math.2022877 |
[5] | F. Özköse, M. Yavuz, M. T. Şenel, R. Habbireeh, Fractional order modelling of omicron sars-cov-2 variant containing heart attack effect using real data from the united kingdom, Chaos, Solitons and Fractals, 157(2022), 111954. https://doi.org/10.1016/j.chaos.2022.111954. doi: 10.1016/j.chaos.2022.111954 |
[6] | I. U. Haq, N. Ali, S. Ahmad, T. Akram, A hybrid interpolation method for fractional pdes and its applications to fractional diffusion and buckmaster equations, Mathematical Problems in Engineering, (2022), 2517602. https://doi.org/10.1155/2022/2517602. doi: 10.1155/2022/2517602 |
[7] | B. Ghanbari, S. Kumar, R. Kumar, A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative, Chaos, Solitons and Fractals, 133(2020), 109619. https://doi.org/10.1016/j.chaos.2020.109619. doi: 10.1016/j.chaos.2020.109619 |
[8] | R. Ganji, H. Jafari, D. Baleanu, A new approach for solving multi variable orders differential equations with mittag–leffler kernel, Chaos, Solitons and Fractals, 130(2020), 109405. https://doi.org/10.1016/j.chaos.2019.109405. doi: 10.1016/j.chaos.2019.109405 |
[9] | N. Tuan, R. Ganji, H. Jafari, A numerical study of fractional rheological models and fractional newell-whitehead-segel equation with non-local and non-singular kernel, Chinese Journal of Physics, 68(2020), 308–320. https://doi.org/10.1016/j.cjph.2020.08.019. doi: 10.1016/j.cjph.2020.08.019 |
[10] | J. S. Jacob, J. H. Priya, A. Karthika, Applications of fractional calculus in science and engineering, Journal of Critical Reviews, 7 (2020), 4385–4394. https://www.jcreview.com/admin/Uploads/Files/624890460526e8.90194993.pdf |
[11] | E. İlhan, İ. O. Kıymaz, A generalization of truncated m-fractional derivative and applications to fractional differential equations, Applied Mathematics and Nonlinear Sciences, 5(2020), 171–188. https://doi.org/10.2478/amns.2020.1.00016. doi: 10.2478/amns.2020.1.00016 |
[12] | Zúñiga-Aguilar, CJ and Gómez-Aguilar, JF and Romero-Ugalde, HM and Jahanshahi, Hadi and Alsaadi, Fawaz E, Fractal-fractional neuro-adaptive method for system identification, Engineering with Computers, 38(2022), 3085–3108. https://doi.org/10.1007/s00366-021-01314-w. doi: 10.1007/s00366-021-01314-w |
[13] | Ghanbari, Behzad and Gómez-Aguilar, JF, Analysis of two avian influenza epidemic models involving fractal-fractional derivatives with power and Mittag-Leffler memories, Chaos, 29(2019), 123113. https://doi.org/10.1063/1.5117285. doi: 10.1063/1.5117285 |
[14] | K. A. Abro, A. Atangana, J. F. Gómez-Aguilar, Chaos control and characterization of brushless DC motor via integral and differential fractal-fractional techniques, International Journal of Modelling and Simulation, (2022), 1–10. https://doi.org/10.1080/02286203.2022.2086743 doi: 10.1080/02286203.2022.2086743 |
[15] | T. Jin, H. Xia, W. Deng, Y. Li, H. Chen, Uncertain fractional-order multi-objective optimization based on reliability analysis and application to fractional-order circuit with caputo type, Circuits, Systems, and Signal Processing, 40(2021), 5955–5982. https://doi.org/10.1007/s00034-021-01761-2. doi: 10.1007/s00034-021-01761-2 |
[16] | M. Mohammad, A. Trounev, M. Alshbool, A novel numerical method for solving fractional diffusion-wave and nonlinear fredholm and volterra integral equations with zero absolute error, Axioms, 10 (2021), 165. https://doi.org/10.3390/axioms10030165 doi: 10.3390/axioms10030165 |
[17] | K. Zourmba, C. Fischer, B. Gambo, J. Effa, A. Mohamadou, Fractional integrator circuit unit using charef approximation method, International Journal of Dynamics and Control, (2020), 1–9. https://doi.org/10.1007/s40435-020-00621-2. doi: 10.1007/s40435-020-00621-2 |
[18] | J. Solís-Pérez, J. Gómez-Aguilar, A. Atangana, Novel numerical method for solving variable-order fractional differential equations with power, exponential and mittag-leffler laws, Chaos, Solitons and Fractals, 114(2018), 175–185. https://doi.org/10.1016/j.chaos.2018.06.032. doi: 10.1016/j.chaos.2018.06.032 |
[19] | J. C. Butcher, Numerical methods for ordinary differential equations in the 20th century, Journal of Computational and Applied Mathematics, 125 125 (2000), 1–29. https://doi.org/10.1016/S0377-0427(00)00455-6. |
[20] | V. Armenio, An improved mac method (simac) for unsteady high-reynolds free surface flows, International Journal for Numerical Methods in Fluids, 24(1997), 185–214. https://doi.org/10.1002/(SICI)1097-0363(19970130)24:2<185::AID-FLD487>3.0.CO;2-Q. doi: 10.1002/(SICI)1097-0363(19970130)24:2<185::AID-FLD487>3.0.CO;2-Q |
[21] | K. Diethelm, A. D. Freed, On the solution of nonlinear fractional-order differential equations used in the modeling of viscoplasticity, Scientific computing in chemical engineering II, Springer, 1999. |
[22] | A. Atangana, Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system, Chaos, solitons and fractals, 102(2017), 396–406. https://doi.org/10.1016/j.chaos.2017.04.027. doi: 10.1016/j.chaos.2017.04.027 |
[23] | R. Gnitchogna, A. Atangana, New two step laplace adam-bashforth method for integer a noninteger order partial differential equations, Numerical Methods for Partial Differential Equations, 34(2018), 1739–1758. https://doi.org/10.1002/num.22216. doi: 10.1002/num.22216 |
[24] | M. Toufik, A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: application to chaotic models, The European Physical Journal Plus, 132(2017), 1–16. https://doi.org/10.1140/epjp/i2017-11717-0. doi: 10.1140/epjp/i2017-11717-0 |
[25] | A. Dlamini, E. F. D. Goufo, M. Khumalo, On the caputo-fabrizio fractal fractional representation for the lorenz chaotic system, AIMS Mathematics, 6(2021), 12395–12421. https://doi.org/10.3934/math.2021717. doi: 10.3934/math.2021717 |
[26] | K.M. Altaf, A. Atangana, Dynamics of ebola disease in the framework of different fractional derivatives, Entropy, 21(2019), 303. https://doi.org/10.3390/e21030303. doi: 10.3390/e21030303 |