This paper briefly proposes an improved asymmetric Lyapunov-Krasovskii functional to analyze the stability issue of delayed neural networks (DNNs). By utilizing linear matrix inequalities (LMIs) incorporating integral inequality and reciprocally convex combination techniques, a new stability criterion is formulated. Compared to existing methods, the newly developed stability criterion demonstrates less conservatism and complexity in analyzing neural networks. To explicate the potency and preeminence of the proposed stability criterion, a renowned numerical instance is showcased, serving as an illustrative embodiment.
Citation: Xianhao Zheng, Jun Wang, Kaibo Shi, Yiqian Tang, Jinde Cao. Novel stability criterion for DNNs via improved asymmetric LKF[J]. Mathematical Modelling and Control, 2024, 4(3): 307-315. doi: 10.3934/mmc.2024025
This paper briefly proposes an improved asymmetric Lyapunov-Krasovskii functional to analyze the stability issue of delayed neural networks (DNNs). By utilizing linear matrix inequalities (LMIs) incorporating integral inequality and reciprocally convex combination techniques, a new stability criterion is formulated. Compared to existing methods, the newly developed stability criterion demonstrates less conservatism and complexity in analyzing neural networks. To explicate the potency and preeminence of the proposed stability criterion, a renowned numerical instance is showcased, serving as an illustrative embodiment.
[1] |
Q. Xiao, Z. Zeng, Lagrange stability for T-S fuzzy memristive neural networks with time-varying delays on time scales, IEEE Trans. Fuzzy Syst., 26 (2018), 1091–1103. https://doi.org/10.1109/TFUZZ.2017.2704059 doi: 10.1109/TFUZZ.2017.2704059
![]() |
[2] |
H. Shen, Y. Zhu, L. Zhang, J. H. Park, Extended dissipative state estimation for markov jump neural networks with unreliable links, IEEE Trans. Neural Networks Learn. Syst., 28 (2017), 346–358. https://doi.org/10.1109/TNNLS.2015.2511196 doi: 10.1109/TNNLS.2015.2511196
![]() |
[3] |
H. Zhang, F. Yan, X. Liu, Q. Zhang, Stability analysis for neural networks with time-varying delay based on quadratic convex combination, IEEE Trans. Neural Networks Learn. Syst., 24 (2013), 513–521. https://doi.org/10.1109/TNNLS.2012.2236571 doi: 10.1109/TNNLS.2012.2236571
![]() |
[4] |
C. Ge, C. Hua, X. Guan, New delay-dependent stability criteria for neural networks with time-varying delay using delay-decomposition approach, IEEE Trans. Neural Networks Learn. Syst., 25 (2014), 1378–1383. https://doi.org/10.1109/TNNLS.2013.2285564 doi: 10.1109/TNNLS.2013.2285564
![]() |
[5] |
O. M. Kwon, M. J. Park, S. M. Lee, J. H. Park, E. J. Cha, Stability for neural networks with time-varying delays via some new approaches, IEEE Trans. Neural Networks Learn. Syst., 24 (2013), 181–193. https://doi.org/10.1109/TNNLS.2012.2224883 doi: 10.1109/TNNLS.2012.2224883
![]() |
[6] |
X. Zhang, Q. Han, J. Wang, Admissible delay upper bounds for global asymptotic stability of neural networks with time-varying delays, IEEE Trans. Neural Networks Learn. Syst., 29 (2018), 5319–5329. https://doi.org/10.1109/TNNLS.2018.2797279 doi: 10.1109/TNNLS.2018.2797279
![]() |
[7] |
H. Liang, G. Liu, H. Zhang, T. Huang, Neural-network-based event-triggered adaptive control of nonaffine nonlinear multiagent systems with dynamic uncertainties, IEEE Trans. Neural Networks Learn. Syst., 32 (2021), 2239–2250. https://doi.org/10.1109/TNNLS.2020.3003950 doi: 10.1109/TNNLS.2020.3003950
![]() |
[8] |
Y. Wang, W. Zhou, J. Luo, H. Yan, H. Pu, Y. Peng, Reliable intelligent path following control for a robotic airship against sensor faults, IEEE/ASME Trans. Mech., 24 (2019), 2572–2582. https://doi.org/10.1109/TMECH.2019.2929224 doi: 10.1109/TMECH.2019.2929224
![]() |
[9] |
Z. Wang, S. Ding, Q. Shan, H. Zhang, Stability of recurrent neural networks with time-varying delay via flexible terminal method, IEEE Trans. Neural Networks Learn. Syst., 28 (2017), 2456–2463. https://doi.org/10.1109/TNNLS.2016.2578309 doi: 10.1109/TNNLS.2016.2578309
![]() |
[10] |
T. H. Lee, M. Park, J. H. Park, O. Kwon, S. Lee, Extended dissipative analysis for neural networks with time-varying delays, IEEE Trans. Neural Networks Learn. Syst., 25 (2014), 1936–1941. https://doi.org/10.1109/TNNLS.2013.2296514 doi: 10.1109/TNNLS.2013.2296514
![]() |
[11] |
Y. He, M. Ji, C. Zhang, M. Wu, Global exponential stability of neural networks with time-varying delay based on free-matrix-based integral inequality, Neural Networks, 77 (2016), 80–86. https://doi.org/10.1016/j.neunet.2016.02.002 doi: 10.1016/j.neunet.2016.02.002
![]() |
[12] |
O. M. Kwon, M. J. Park, J. H. Park, S. M. Lee, E. J. Cha, On stability analysis for neural networks with interval time-varying delays via some new augmented Lyapunov-Krasovskii functional, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 3184–3201. https://doi.org/10.1016/j.cnsns.2014.02.024 doi: 10.1016/j.cnsns.2014.02.024
![]() |
[13] |
M. Ji, Y. He, C. Zhang, M. Wu, Novel stability criteria for recurrent neural networks with time-varying delay, Neurocomputing, 138 (2014), 383–391. https://doi.org/10.1016/j.neucom.2014.01.024 doi: 10.1016/j.neucom.2014.01.024
![]() |
[14] |
R. Rakkiyappan, R. Sivasamy, J. H. Park, T. H. Lee, An improved stability criterion for generalized neural networks with additive time-varying delays, Neurocomputing, 171 (2016), 615–624. https://doi.org/10.1016/j.neucom.2015.07.004 doi: 10.1016/j.neucom.2015.07.004
![]() |
[15] |
H. Zeng, Y. He, M. Wu, S. Xiao, Stability analysis of generalized neural networks with time-varying delays via a new integral inequality, Neurocomputing, 161 (2015), 148–154. https://doi.org/10.1016/j.neucom.2015.02.055 doi: 10.1016/j.neucom.2015.02.055
![]() |
[16] |
C. Zhang, Y. He, L. Jiang, Q. H. Wu, M. Wu, Delay-dependent stability criteria for generalized neural networks with two delay components, IEEE Trans. Neural Networks Learn. Syst., 25 (2014), 1263–1276. https://doi.org/10.1109/TNNLS.2013.2284968 doi: 10.1109/TNNLS.2013.2284968
![]() |
[17] |
C. Zhang, Y. He, L. Jiang, M. Wu, Stability analysis for delayed neural networks considering both conservativeness and complexity, IEEE Trans. Neural Networks Learn. Syst., 27 (2016), 1486–1501. https://doi.org/10.1109/TNNLS.2015.2449898 doi: 10.1109/TNNLS.2015.2449898
![]() |
[18] |
C. Zhang, Y. He, L. Jiang, W. Lin, M. Wu, Delay-dependent stability analysis of neural networks with time-varying delay: a generalized free-weighting-matrix approach, Appl. Math. Comput., 294 (2017), 102–120. https://doi.org/10.1016/j.amc.2016.08.043 doi: 10.1016/j.amc.2016.08.043
![]() |
[19] |
X. Zhang, Q. Han, Global asymptotic stability for a class of generalized neural networks with interval time-varying delays, IEEE Trans. Neural Networks, 22 (2011), 1180–1192. https://doi.org/10.1109/TNN.2011.2147331 doi: 10.1109/TNN.2011.2147331
![]() |
[20] |
H. Zhang, Q. Shan, Z. Wang, Stability analysis of neural networks with two delay components based on dynamic delay interval method, IEEE Trans. Neural Networks Learn. Syst., 28 (2017), 259–267. https://doi.org/10.1109/TNNLS.2015.2503749 doi: 10.1109/TNNLS.2015.2503749
![]() |
[21] |
H. Shao, H. Li, C. Zhu, New stability results for delayed neural networks, Appl. Math. Comput., 311 (2017), 324–334. https://doi.org/10.1016/j.amc.2017.05.023 doi: 10.1016/j.amc.2017.05.023
![]() |
[22] |
W. Lin, Y. He, C. Zhang, M. Wu, Stability analysis of neural networks with time-varying delay: enhanced stability criteria and conservatism comparisons, Commun. Nonlinear Sci. Numer. Simul., 54 (2018), 118–135. https://doi.org/10.1016/j.cnsns.2017.05.021 doi: 10.1016/j.cnsns.2017.05.021
![]() |
[23] |
Z. Sheng, C. Lin, B. Chen, Q. Wang, Asymmetric Lyapunov-Krasovskii functional method on stability of time-delay systems, Int. J. Robust Nonlinear Control, 31 (2021), 2847–2854. https://doi.org/10.1002/rnc.5417 doi: 10.1002/rnc.5417
![]() |
[24] |
Z. Sheng, L. Wang, C. Lin, B. Chen, A novel asymmetric Lyapunov-Krasovskii functional method to stability for T-S fuzzy systems with time-varying delay, Int. J. Fuzzy Syst., 24 (2022), 949–956. https://doi.org/10.1007/s40815-021-01176-w doi: 10.1007/s40815-021-01176-w
![]() |
[25] |
H. Shao, Delay-dependent stability for recurrent neural networks with time-varying delays, IEEE Trans. Neural Networks, 19 (2008), 1647–1651. https://doi.org/10.1109/TNN.2008.2001265 doi: 10.1109/TNN.2008.2001265
![]() |
[26] |
A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality: application to time-delay systems, Automatica, 49 (2013), 2860–2866. https://doi.org/10.1016/j.automatica.2013.05.030 doi: 10.1016/j.automatica.2013.05.030
![]() |
[27] |
J. Chen, J. H. Park, S. Xu, Stability analysis for delayed neural networks with an improved general free-matrix-based integral inequality, IEEE Trans. Neural Networks Learn. Syst., 31 (2020), 675–684. https://doi.org/10.1109/TNNLS.2019.2909350 doi: 10.1109/TNNLS.2019.2909350
![]() |
[28] |
Z. Li, Y. Bai, C. Huang, H. Yan, S. Mu, Improved stability analysis for delayed neural networks, IEEE Trans. Neural Networks Learn. Syst., 29 (2018), 4535–4541. https://doi.org/10.1109/TNNLS.2017.2743262 doi: 10.1109/TNNLS.2017.2743262
![]() |
[29] |
H. Shao, H. Li, L. Shao, Improved delay-dependent stability result for neural networks with time-varying delays, ISA Trans., 80 (2018), 35–42. https://doi.org/10.1016/j.isatra.2018.05.016 doi: 10.1016/j.isatra.2018.05.016
![]() |