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Abstract: This paper briefly proposes an improved asymmetric Lyapunov-Krasovskii functional to analyze the stability issue of delayed
neural networks (DNNs). By utilizing linear matrix inequalities (LMIs) incorporating integral inequality and reciprocally convex
combination techniques, a new stability criterion is formulated. Compared to existing methods, the newly developed stability criterion
demonstrates less conservatism and complexity in analyzing neural networks. To explicate the potency and preeminence of the proposed
stability criterion, a renowned numerical instance is showcased, serving as an illustrative embodiment.
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1. Introduction

Since neural networks (NNs) are effective in modeling
and describing nonlinear dynamics, there has been a
remarkable surge in the utilization of NNs, which
have contributed substantially to the fields of signal
processing, image processing, combinatorial optimization,
pattern recognition, and other scientific and engineering
domains [1, 2]. Theoretical advancements have laid a
solid foundation for this progress, thereby facilitating the
successful establishment of NNs as a powerful tool for a
diverse range of applications. Consequently, the stability
analysis of delayed neural networks (DNNs) has attracted
many scholars [3, 4].

It should be noted that temporal lags are invariably
encountered within NNs as a consequence of intrinsic
factors, including but not limited to the finite velocity of
information processing [5], which can lead to instability and

degraded performance in numerous real-world applications

of NNs. In this way, the prognostic capacity and resilience of

the neural network would suffer severe impairment, thereby

gravely undermining its efficacy and dependability. Hence,

the assessment of the stability of a computing system must
be conducted with great care and precision, employing
accurate evaluation criteria that abide by the principles of
scientific rigor to provide reliable guarantee for the system’s
operation. Thus, in recent years, researchers have been
dedicated to analyzing the stability of DNNs and investing
significant amounts of time and effort into reducing the
conservatism of stability criteria [6–8]. In regards to
the stability criterion, accommodating a wider range of

delay tolerance would result in a less conservative estimate.
Consequently, the upper limit of the delay range assumes
critical significance in the assessment and quantification
of the degree of conservativeness. The stability of NNs

with variable delays has been widely studied using the
Lyapunov-Krasovskii functionals (LKFs) technique because

time delays in actual NNs are usually time-varying.
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In order to analyze and solve the stability problems of
DNNs, common approaches such as the Lyapunov stability
method and linear matrix inequalities (LMIs) are often
adopted. Among these, the Lyapunov stability method is
widely applied, while LMIs provide a useful descriptive
framework for these systems. This method aims to
create suitable LKFs to derive less conservative stability
conditions, ensuring the stability of the studied DNN even
with delays varying within the largest possible closed
interval. Various types of augmented LKFs were introduced
in [9–22] to investigate the asymptotic or exponential
stability that is dependent on delay in DNNs with varying
temporal delays. Utilizing the augmented LKF approach,
numerous improved stability criteria were also established.
Moreover, integral inequality, the free-weighting matrix
method, and reciprocally convex combination, which are
commonly used methods or techniques, have been utilized
to obtain the stability criteria. To reduce the conservatism
of stability criteria, recent works [10,13–15] have employed
delayed state derivative terms as augmented vector elements
to estimate the time derivative. Although the existing
literature indicates that the resultant stability criteria are
less conservative, it is worth noting that the dimensions of
the criteria in the LMI formulation experience substantial
expansion. Thus, enhanced LKFs generally increase the
difficulty and complexity, resulting in a corresponding
increase in the server’s computational burden and time.

The work done by the above scholars still requires
symmetry in the construction of LKF. In [23], two novel
delay-dependent stability criteria for time-delay systems
are presented, utilizing LMIs. Both are established via
asymmetric augmented LKFs, ensuring positivity without
the need for all involved matrices in the LKFs to be
symmetric and positive definite. In [24], the author used the
same method to study the stability of Takagi-Sugeno fuzzy
system.

In this paper, the primary contribution can be outlined as
follows:

(1) An improved asymmetric LKF is proposed, which
can be positively definite without requiring that all matrix
variables be symmetric or positive-definite.

(2) A new stability criterion is formulated by utilizing
linear matrix inequalities incorporating integral inequality

and reciprocally convex combination techniques.
(3) Compared to traditional methods, this new approach

has less conservatism and complexity, which enables it to
more accurately characterize neural network stability issues.

Ultimately, the efficacy and superiority of this novel
approach were successfully demonstrated, corroborating
its robustness and superiority over existing methodologies
through a commonly employed numerical illustration,
providing a feasible solution for practical engineering
applications.

Notations: Rn denotes the n-dimensional Euclidean vector
space. Rn×m is the set of all n×m real matrices. Dn

+ represents
the set of positive-definite diagonal matrices of Rn×n. diag{}

denotes a block-diagonal matrix. He(M) = M +MT . N
stands for the sets of nonnegative integers.

2. Preliminaries

Lemma 2.1. (Jensen’s inequality [25]) Given Q > 0, for

any continuous function

ζ(θ) : [δ1, δ2]→ Rn,

the following inequality holds:

(α1 − α2)
∫ α1

α2

ζT (θ)Qζ(θ)dθ ≥
(∫ α1

α2

ζ(θ)dθ
)T

Q

(∫ α1

α2

ζ(θ)dθ
)
,

(α1 − α2)2

2

∫ α1

α2

∫ α1

s
ẋT (u)Qẋ(u)duds

≥

(∫ α1

α2

∫ α1

s
ẋ(u)duds

)T

Q

(∫ α1

α2

∫ α1

s
ẋ(u)duds

)
.

Lemma 2.2. (Wirtinger-based integral inequality [26])

Given R > 0, for any continuous function

ζ(η) : [δ1, δ2]→ Rn,

the following inequality holds:∫ δ2

δ1

ζT (η)(s)Rζ(η)dη

≥
1

δ2 − δ1

(∫ δ2

δ1

ζT (η)dη
)
R

(∫ δ2

δ1

ζ(η)dη
)
+

3
δ2 − δ1

ΦTRΦ,

where

Φ =

∫ δ2

δ1

ζ(η)dη −
2

δ2 − δ1

∫ δ2

δ1

∫ δ1

θ

ζ(η)dηdθ,∫ δ2

δ1

ζ̇T (η)Rζ̇(η)dη ≥
π2

(δ2 − δ1)2

∫ δ2

δ1

ζT (η)(s)Rζ(η)dη.
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Lemma 2.3. (B-L inequality [27]) Given R > 0, for any

continuous function

x(t) : [ψ1, ψ2]→ Rn,

the following inequality holds:

∫ ψ2

ψ1

ẋT (s)Rẋ(s)ds ≥
1

ψ2 − ψ1
ϑT

N

 N∑
k=0

(2k + 1)ΓT
N(k)RΓN(k)

ϑN

holds for any N ∈ N, where

ϑN :=

col{x(ψ2), x(ψ1)}, N = 0,

col{x(ψ2), x(ψ1), 1
ψ2−ψ1

Ω0, . . . ,
1

ψ2−ψ1
ΩN−1},N ≥ 1,

m =
1

ψ2 − ψ1
,

ΓN(k) :=

[I − I], N = 0,[
I (−1)k+1I γ0

NK I . . . γN−1
NK I

]
, N ≥ 1,

γ
j
Nk :=

−(2 j + 1)
(
1 − (−1)k+ j

)
, j ≤ k − 1,

0, j ≤ k − 1.

3. Main results

Consider the following DNNs:

ẋ(t) = −Ax(t) +W0 f (x(t)) +W1 f (x(t − h(t))), (3.1)

where
x(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ Rn

represents the neuron state vector, and the activation
functions are given by

f (x(t)) = [ f1(x1(t)), f2(x2(t)), . . . , fn(xn(t))]T ,

A = diag{a1, a2, . . . , an} > 0, Wi(i = 0, 1)

are the connection matrices. ht is the abbreviation of
h(t) denotes a time-varying delay, which is a differentiable
function satisfying:

0 ≤ ht ≤ hm, ν1 ≤ ḣt ≤ ν2, (3.2)

where hm, ν1 and ν2 are the real constants.
The activation functions f (· ) is continuous, satisfy

fi(0) = 0

and
k1i ≤

fi(u1) − fi(u2)
u1 − u2

≤ k2i, u1 , u2, (3.3)

where k1i and k2i are known real constants, i = 1, 2, . . . ,m.
For convenience, we define

K1 = diag{k11, k12, . . . , k1m}

and
K2 = diag{k21, k22, . . . , k2m}.

For simplicity, we define the following notations:

ht = h(t), fw(t) = f (x(t)),

eT
i = [0n∗(i−1)n In∗n 0n∗(10−i)n], i = 1, 2 . . . , 10,

µ1 = col {x(t), x(t − hm)} , µ2 = col {x(t − ht), f (x(t))} ,

µ3 = col
{

f (x(t − h(t))),
∫ t

t−hm

ẋ(s)ds
}
,

µ4 = col
{∫ t

t−hm

x(u)du,
∫ t

s
x(u)du

}
,

µ5 = col
{∫ t

t−hm

∫ t

s
x(u)du,

∫ t

t−hm

∫ t−hm

θ

∫ t

s
x(u)dudsdθ

}
,

ζ(t) = col {µ1, µ2, µ3, µ4, µ5} .

Theorem 3.1. Given hm > 0, system (1) is asymptotically

stable if there exist matrices

Q = [Q1Q2]

with

Q1 = QT
1 , P = PT =

P11 P12

∗ P22

 ,
P11, P12, P22 ∈ Rn×n, Qi ∈ Rn×n, (i = 1, 2),

Ti ∈ Rn×n > 0, (i = 1, 2), Fi ∈ Rn×n > 0, (i = 1, 2),

Ni ∈ Dn
+, (i = 1, 2),

any matrices S 1 ∈ Rn×n,G ∈ Rn×n, such that

R7 =

T1 G

∗ T1

 > 0, (3.4)

R8 =

Q1 + T1
1
2 Q2

∗ T2

 > 0, (3.5)

R9 =


Θ11 Θ12 0 0
∗ Θ22 Θ23 −3h−1

m Q2

∗ ∗ Θ33 Θ34

∗ ∗ ∗ 12h−2
m T2

 > 0, (3.6)
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R10 =

Π11 Π12

∗ Π22

 < 0, (3.7)

Θ11 = eT
1 [hmP11 + h2

mT1]e1,

Θ12 = eT
1 [hmP12 − hmT1]e7,

Θ22 = eT
7 [hmP22 + 4Q1 + 4T1]e7,

Θ23 = eT
7 [2Q2 − 6h−1

m Q1 − 6h−1
m T1]e9,

Θ33 = eT
9 [12h−2

m Q1 − 3h−1
m He (Q2) + 12h−2

m T1 + 4T2]e9,

Θ34 = eT
9 [6h−2

m Q2 − 6h−1
m T2]e10,

Π11 = eT
1 [Q1 + h2

mT2 + He(P12 − AP11) + h2
mAT1A

−K1R1 − S 1 + F1 + (X − 1)T1]e1 − eT
2 [K1R2

−(X − 1)T1 + Q1]e2 − eT
3 [T2 −

−Xπ2

h2
m

T1]e3

+eT
1 [He( 1

2 S 1 −G − PT
12)]e2 + eT

1 [He(P22

−AP12 +
1
2 QT

2 )]e3 − eT
2 [He(P22 +

1
2 Q2)]e3,

Π12 = eT
1 [PT

11WT
0 − h2

mAT1W0 + K2R1]e4 + eT
1 [PT

11WT
1

−h2
mAT1W1]e5 + eT

1 S 1e6 + eT
1 [G − T1]e7

−eT
2 K2R2e5 −

1
2 eT

2 S 1e6 + eT
2 [GT − T1]e7

+eT
3 PT

12WT
0 e4 + eT

3 PT
12WT

1 e5,

Π22 = eT
4 [F2 − R1 + h2

mW0T1W0]e4 + eT
4 [h2

mHe(W0T1

×W1)]e5 + eT
5 [h2

mW1T1W1 − R2 − (1 − ḣt)F2]e5

−eT
6 S 1e6 + eT

7 [2T1 − He(G) − (1 − ht)F1]e7.

Proof. Consider the following LKF candidate:

Vt =

4∑
i=1

Vti, (3.8)

where

Vt1 = ρ
T (t)Pρ(t), ρ (t) =

[
xT (t)

∫ t

t−hm

xT (u) du
]T

,

Vt2 =

∫ t

t−hm

xT (s)Q
[
xT (s)

∫ t

s
xT (u)du

]T

ds, Q = [Q1 Q2],

Vt3 =

∫ t

t−ht

xT (s)F1x(s)ds + hm

∫ t

t−hm

∫ t

s
ẋT (u)T1 ẋ(u)duds

+ hm

∫ t

t−hm

∫ t

s
xT (u)T2x(u)duds,

Vt4 =

∫ t

t−ht

f T
w (s)F2 fw(s)ds.

By Lemma 2.1, since T1 > 0 and T2 > 0, we obtain

hm

∫ t

s
ẋT (u)T1 ẋ(u)du ≥ (x(t) − x(s))T T1(x(t) − x(s)),

(3.9)

hm

∫ t

s
xT (u)T2x(u)du ≥

∫ t

s
xT (u)duT2

∫ t

s
x(u)du. (3.10)

Thus, we can infer

Vt2 + Vt3 =

∫ t

t−ht

xT (s)F1x(s)ds

+

∫ t

t−hm

[xT (s)Q
[
xT (s)

∫ t

s
xT (u)du

]T

+ hm

∫ t

s

[
ẋT (u)T1 ẋ(u) + xT (u)T2x(u)

]
du]ds

≥

∫ t

t−ht

xT (s)F1x(s)ds

+

∫ t

t−hm


x(t)
x(s)∫ t

s x(u)du


T

R6


x(t)
x(s)∫ t

s x(u)du

 ds, (3.11)

where

R6 =


T1 −T1 0
∗ Q1 + T1

1
2 Q2

∗ ∗ T2

 .
Based on the above conditions, we can get

4∑
i=1

Vti ≥Vt1 +

∫ t

t−hm


x(t)
x(s)∫ t

s x(u)du


T

R6


x(t)
x(s)∫ t

s x(u)du

 ds

+

∫ t

t−ht

xT (s)F1x(s)ds +
∫ t

t−ht

f T (x(s))F2 f (x(s))ds

≥
1

hm
ζT (t)R9ζ(t) +

∫ t

t−ht

xT (s)F1x(s)ds

+

∫ t

t−ht

f T (x(s))F2 f (x(s))ds > 0. (3.12)

The time derivatives of Vti, i ∈ {1, . . . , 4} along the
trajectory of system (3.1) is given by:

V̇t1 =2ρ̇T (t)Pρ(t),

V̇t2 =xT (t)Q1x(t) +
∫ t

t−hm

xT (u)duQ2x(t)

− xT (t − hm)Q
[
xT (t − hm)

∫ t

t−hm

xT (u)du
]T

,

V̇t3 =h2
m ẋT (t)T1 ẋ(t) − hm

∫ t

t−hm

ẋT (u)T1 ẋ(u)du

+ h2
mxT (t)T2x(t) − hm

∫ t

t−hm

xT (u)T2x(u)du

+ xT (t)F1x(t) − (1 − ḣt)xT (t − ht)F1x(t − ht),

V̇t4 = f T (x(t))F2 f (x(t)) − (1 − ḣt) f T (x(t − ht))F2 f (x(t − ht)).
(3.13)
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For any symmetric matrices S 1, the following one
equalities hold:

[x(t) − x(t − hm) +
∫ t

t−hm

ẋ(s)ds]T × S 1[x(t)

− x(t − hm) −
∫ t

t−hm

ẋ(s)ds]

= [e1 − e2 + e6]T S 1[e1 − e2 − e6]. (3.14)

According to (3.3), for any appropriate diagonal matrices

Ni = diag{ni1, ni2, . . . , nim} > 0, (i = 1, 2),

we have

0 ≤
n∑

i=1

[ fi(xi(t)) − k1ixi(t)]ni1[k2ixi(t) − fi(xi(t))]

+

n∑
i=1

[ fi(xi(t − h(t))) − k1ixi(t − h(t)]ni2[k2ixi(t − h(t))

− fi(xi(t − h(t)))]

=[ f (x(t)) − K1x(t)]T N1[K2x(t) − f (x(t))]

+ [ f (x(t − h(t))) − K1x(t − h(t)]T N2[K2x(t − h(t))

− f (x(t − h(t)))]. (3.15)

Then

0 ≤

 x(t)
f (x(t))

T −M1N1 M2N1

∗ −N1

  x(t)
f (x(t))


+

 x(t − h(t))
f (x(t − h(t)))

T −M1N2 M2N2

∗ −N2

  x(t − h(t))
f (x(t − h(t)))


=

e1

e4

T −M1N1 M2N1

∗ −N1

 e1

e4


+

e3

e5

T −M1N2 M2N2

∗ −N2

 e3

e5

 , (3.16)

where

M1 = diag{k11k21, k12k22, . . . , k1mk2m},

M2 = diag
{

k11 + k21

2
,

k12 + k22

2
, . . . ,

k1m + k2m

2

}
.

Based on (3.4) and (3.5), we can obtain

− hm

∫ t

t−hm

ẋT (u)T1 ẋ(u)du = −αhm

∫ t

t−hm

ẋT (u)T1 ẋ(u)du

− (1 − α)hm

∫ t

t−hm

ẋT (u)T1 ẋ(u)du

≤ −α


e1

e2

e3


T 

T1 −M −T1 + M

∗ T1 −T1 + MT

∗ ∗ 2T1 − M − MT



e1

e2

e3


− (1 − α)

π2

hm
eT

7 T1e7. (3.17)

According to Lemma 2.1, we can obtain

− hm

∫ t

t−hm

xT (u)T2x(u)du

≤ −

∫ t

t−hm

xT (u)duT2

∫ t

t−hm

x(u)du. (3.18)

By combining (3.16)–(3.18), one can derive that

V̇t ≤ ζ
T (t)R10ζ(t). (3.19)

The inequality (3.19) holds, so

ζT (t)R10ζ(t) < 0

proves that V̇t < 0. Therefore, if LMIs (3.4)–(3.7) hold, the
system (3.1) is asymptotically stable.

The proof is completed. □

Remark 3.1. The underlying expression is deftly rescaled

through the integration of the Wirtinger-based integral

inequality and the B-L inequality. Here, their coefficients are

assigned as α and 1−α, respectively. This approach provides

a flexible transformation within the range of [0, 1], which

facilitates the pursuit of optimal amalgamation. In scenarios

where α = 1, thus making 1 − α = 0, the outcome solely

relies on scaling through the B-L inequality. Conversely, if

α = 0, which makes 1 − α = 1, scaling exclusively uses the

Wirtinger-based integral inequality.

Remark 3.2. Numerous researchers have introduced

various LKFs in the analysis of DNNs, traditionally

requiring the matrices to be symmetric. However, this study

optimizes this traditional constraint by devising asymmetric

forms of LKFs. With such asymmetric constructs, it

is not mandatory for each matrix to be symmetric or

positive definite when setting the conditions. Consequently,

the conditions become more relaxed, leading to a less

conservative theorem, thus broadening the horizons of

analysis in this domain.
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4. Numerical example

In this part, a numerical example is given to illustrate
the effectiveness of the suggested stability criterion. The
primary goal is to acquire an acceptable maximum upper
bound (AMUB) that is deemed acceptable for the time-
varying delays and provides assurance of the neural
networks under consideration’s global asymptotic stability.
As the AMUB increases, the stability criterion becomes less
conservative.

Example 1. We consider DNNs (3.1) with the following
parameters [17, 18, 21, 28, 29]:

W0 =

0.0503 0.0454
0.0987 0.2075

 , W1 =

0.2381 0.9320
0.0388 0.5062


and

M1 = [0, 0; 0, 0], M2 = [0.3, 0; 0, 0.8], A = [1.5, 0; 0, 0.7].

In Table 1, the maximum time delay achieved for
various values of µ within a specific range is presented for
Theorem 1 and other related articles.

Table 1. The maximum allowable delays of ht

with various µ for Example 1.

Methods µ=0.4 µ=0.45 µ=0.5 µ=0.55

[17]Th.1 7.6697 6.7287 6.4126 6.2569
[21]Th.1 8.3186 7.2119 6.8373 6.6485
[28]Th.1 8.3958 7.3107 7.0641 6.7829
[29]Th.1 10.1095 8.6732 8.1733 7.8993
[18]Th.3 13.8671 11.1174 10.0050 9.4157
Theorem 1 13.7544 12.4328 11.4954 10.7915

It is evident that the AMUB as derived from Theorem 1
surpasses that obtained in the previous work by Theorem 1
presented in [17, 18, 21, 28, 29]. Compared with Theorem 3
in [26], a larger AMUB is obtained when µ ranges from 0.45
to 0.55. When µ is 0.4, the result obtained is smaller than
that obtained by [26]. Importantly, the number of NVs
involved in Theorem 1, as shown in Table 2, is 16n2 + 12n,
which is less than the 79.5n2 + 13.5n reported in [26]. This
reduction in the number of NVs lowers the computational
complexity from a computation perspective.

Table 2. Computational complexity.

Approaches Number of DVs Number of LMIs

Th.1 [17] 15n2 + 16n 24
Th.1 [21] 39.5n2 + 29.5n 40
Th.1 [28] 15n2 + 11n 17
Th.1 [29] 87n2 + 41n 46
Th.3 [18] 79.5n2 + 13.5n 17
Theorem 1 16n2 + 12n 10

When µ = 0.4 and the initial states are 0.5, 0.8, -0.5,
and -0.8, the corresponding state trajectories are illustrated
in Figure 1. For µ = 0.4, the illustration shows that the
trajectories tend toward zero near the abscissa of around 350.
With µ = 0.55 and the same initial states, the state
trajectories are depicted in Figure 2, where they tend towards
zero near the abscissa of approximately 300.
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Figure 1. The state trajectories with µ = 0.4.
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Figure 2. The state trajectories with µ = 0.55.

5. Conclusions

A suitable asymmetric LKF has been constructed,
enabling us to demonstrate its positive definiteness without
the necessity for all matrix variables to be symmetric
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or positive-definite. Additionally, a novel combinatorial
optimization approach is employed to its full potential,
utilizing the linear combination of multiple inequalities
to identify the optimal arrangement and to process these
inequalities. Therefore, the conditions presented in this
study are shown to have less conservatism, and our newly
proposed technique exhibits tremendous potential in terms
of its theoretical and empirical capability to generate larger
maximum allowable delays in comparison to select recent
works in the literature. Furthermore, both theoretical
and quantitative analyses confirm that our method notably
reduces conservatism. Finally, the proposed method can be
effectively combined with the delay segmentation technique
to segment the delay interval into N segments for fine
processing, which will be further investigated in future work.
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