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Abstract: This paper considers the input-to-state stability (ISS) of delayed systems with bounded-delay impulses, where the delays in
impulses are arbitrarily large but bounded. A novel Halanay-type inequality with delayed impulses and external inputs is proposed to
deeply evaluate the effects of delayed impulses on ISS of delayed systems. Then, we obtain some delay-independent ISS criteria for the
addressed delayed systems by using Lyapunov method. Particularly, by applying a new analysis technique, the current study enriches the
Halanay-type inequalities and further improve the results derived in [1]. Two illustrative examples are presented to validate theoretical
results.
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1. Introduction

There have been extensive studies characterizing the
effects of external inputs on the dynamical behaviors of
a control system, and many important notions have been
proposed. One of them is the concept of input-to-state
stability (ISS), proposed in [2], which is widely studied
by numerous investigators. In past decades, substantial
progress has been achieved on ISS for various systems, such
as discrete systems, networked control systems and hybrid
systems [3–10].

Thousands of impulsive systems, a type of hybrid
systems, have been formulated to naturally describe systems
subject to abrupt changes and have attracted much attention
during last decades [11–15]. Up to now, many interesting
results on impulsive systems have been reported [12,16–20].
With more and more applications of impulsive systems with
external inputs, the ISS concept of impulsive systems was
introduced in [21], and further investigated in [1, 22, 23].
Recently, the ISS concept was generalized to more nonlinear
systems and the effect of delayed impulses on ISS property

was investigated in [1]. In addition, it is known that the time
delay should be considered in engineering and biological
control systems to describe delayed feedbacks, samplings
and outputs [24]. Especially, more and more investigators
are interested in studying the dynamic behaviors of delayed
systems and numerous significant results have been derived
[12, 25–27]. Sometimes delay plays a significant role on
system dynamics and false inference would be obtained if
ignoring it [28]. Considering this aspect, impulsive control
systems with delay are formulated. Correspondingly, the
ISS concept has been extended and extensive studies have
been reported for this type of systems [29, 30].

It is worth noting that in many practical cases such as
neural networks and biological systems, the delay may
be time-varying and cannot be accurately measured, and
the bound of the delay may be a priori unknown due
to some uncertainties [13, 31]. Many interesting results
have been obtained for the case that both continuous
dynamics and discrete dynamics incorporates delays [30,
32], and especially, the effect of arbitrarily bounded delay
in continuous dynamics has been studied, such as [22,
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33]. However, very few results have been reported for
systems with bounded-delay impulses, where the delays in
impulses are time-varying and arbitrarily large but bounded.
Here we briefly mention some studies on ISS of nonlinear
systems with delayed impulses, which are closely related
to the current study. It was shown in [1] that for the
case that delay-free continuous dynamics are ISS, original
stabilizing impulses may turn to be destabilizing if delays
in impulses are considered, and correspondingly, it may
lead to instability of the whole system if the impulses
occur too frequently. Further, ISS of systems with delays
occurring in both continuous dynamics and impulses were
well investigated in [30], and particularly, the case of
bounded-delay impulses can be addressed by using the
method of Lyapunov-Krasovskii functionals (see Theorem
4 in [30]).

Technically speaking, the construction of a valid
Lyapunov-Krasovskii functional often requires certain
experience. In comparison with this method, the method
of Halanay-type inequality firstly proposed in [34], may
derive tractable and concise conditions applicable in many
cases (see [35, 36]). As we know, Halanay-type inequality
has been extensively developed in the past decades, and
it has also been verified to be a useful technique in the
stability analysis of impulsive delayed differential systems
[13, 36]. Thus, it is our belief that an insightful extension
of Halanay-type inequality with delayed impulses and
external inputs, for new ISS stability criteria, is worthy of
investigation. In addition, for some specific delays, such
as fast varying delay and discontinuous delay, it is more
effective to handle by using the method of Halanay-type
inequality than that of Lyapunov-Krasovskii functional [37].
Hence, our objective is to establish some simple ISS criteria
for systems with bounded-delay impulses by applying a
Halanay-type inequality with delayed impulses and external
inputs. Furthermore, we note that further investigation can
be performed on the effect of delayed impulses on ISS
property of the system in [1] with the aid of new analytic
methods. In particular, by using the proposed Halanay-
type inequality, some tractable ISS criteria for systems with
bounded-delay impulses can be established and the details
will be discussed in Section 3.

We aim to analyze the ISS property of delayed systems

with bounded-delay impulses, where the delays in impulses
are arbitrarily large but bounded. In terms of a new
Halanay-type inequality and a more relaxed assumption,
some sufficient conditions under which the ISS property of
the impulsive delayed system can be achieved are proposed.
Compared with existing work, our obtained results further
reveal the essential effect of delayed impulses on ISS
property and the main contributions of this study are listed
below.

1. A new Halanay-type inequality involving delayed
impulses and external inputs is proposed. By using this
inequality, we investigate the ISS of delayed systems
with bounded-delay impulses and further derive some
simple ISS criteria, which are easy to check to some
degree. We present an example to show that both
the continuous dynamics and discrete dynamics should
be ISS when concerning the effect of bounded-delay
impulses.

2. For the case that the continuous dynamics are ISS and
impulses are stabilizing when the delays in impulses are
equal to zero, it is shown that the impulses may become
destabilizing if these delays become larger. More
interestingly, we prove that in this case, ISS property of
the whole system can be ensured for arbitrary impulsive
instant sequence provided the delays in impulses are
bounded, which greatly extends the conclusions in [1].

3. Note that in existing literatures, the delays in impulses
are often assumed to be constant or satisfy some
restrictive conditions. In fact, the current study shows
that only the boundedness of the delays in impulses
is sufficient, greatly relaxing the assumptions for ISS.
Compared with relevant results in [30], our conditions
for ISS are simple and easy to check in a sense due
to the avoidance of the construction of Lyapunov-
Krasovskii functional.

The remainder of this paper is arranged as follows. In
Section 2, the problem is formulated, and necessary
notations and definitions are presented. The main results
are derived in Section 3. Two numerical examples and a
brief conclusion are presented in Section 4 and Section 5,
respectively.
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2. Preliminaries

In this paper, let R, R+ and Z+, stand for the set of real
numbers, nonnegative real numbers and positive integers,
respectively. In addition, Rn and Rn×m denote the n-
dimensional and n×m-dimensional real spaces, respectively.
We denote Euclidean norm by | · |. The notation max{a, b}
stands for the maximum of real numbers a and b. Let
PC([a, b],Rn) = {φ : [a, b] → Rn is continuous everywhere
except at finite number of instants t, at which φ(t+), φ(t−)
exist and φ(t+) = φ(t)}, where φ(t+) = lims→t+ φ(s) and
φ(t−) = lims→t− φ(s), and the norm is defined by ‖φ‖[a,b] =

supa≤θ≤b |φ(θ)|, where a, b ∈ R, a < b. Further, denote by
PC([a,∞),Rn) the set of functions ψ : [a,∞) → Rn such
that ψ|[a,b] ∈ PC([a, b],Rn) for all b > a, where ψ|[a,b] is a
restriction of ψ on interval [a, b]. For convenience, let ‖φ‖ν
denote ‖φ‖[−ν,0], for φ ∈ PC([−ν, 0],Rn) and given ν > 0.
Suppose that x ∈ PC([−ν,∞),Rn), and for every t ≥ t0, we
define xt ∈ PC([−h, 0],Rn) by xt(s) := x(t + s) for −h ≤ s ≤

0; xt− ∈ PC([−τ, 0],Rn) is defined as xt− (s) = x((t + s)−), for
s ∈ [−τ, 0], where ν = max{h, τ}.

Consider following impulsive delayed system:
ẋ(t) = f (t, xt, u(t)), t ≥ t0 ≥ 0, t , tk,

x(t) = g(t, xt− , u(t−)), t = tk, k ∈ Z+,

x(t0 + s) = φ(s), − ν ≤ s ≤ 0,

(2.1)

where x(t) is the system state and its right-hand derivative
is denoted by ẋ(t); u ∈ PC([t0,∞),Rm) is the locally
bounded external input; φ ∈ PC([−ν, 0],Rn) is the initial
condition. Denote f : R+ × PC([−h, 0],Rn) × Rm → Rn

and g : R+ × PC([−τ, 0],Rn) × Rm → Rn, which satisfies
f (t, 0, 0) = g(t, 0, 0) = 0. One may observe that the delay
bounds in continuous dynamics and impulses are different,
and it is of significance to investigate the effects of these
two type of delays, respectively (see [32]). Particularly,
Zeno phenomenon means that there exist an accumulation
point by which an infinite number of impulses persistently
occur. To avoid Zeno phenomenon, we denote by t0 the
initial instant, and assume that impulsive instant sequence
{tk} satisfies 0 ≤ t0 < t1 < · · · < tk → +∞, as k → +∞.
Given u(t) ∈ PC([t0,∞),Rm), define f ∗(t, ψ) = f (t, ψ, u(t))
and suppose f ∗ meets all the necessary conditions in [38]
to guarantee that system (2.1) admits a unique solution

x(t, t0, φ) in a maximal interval [t0−ν, t0 +b∗) for every initial
condition φ ∈ PC([−ν, 0],Rn), where b∗ ∈ (0,+∞].

Definition 2.1. Suppose that

I) V : [t0 − ν,∞)×Rn → R+ is continuous in the intervals

[tk−1, tk) × Rn and V(t, v) → V(t−k , u) as (t, v) → (t−k , u),
where k ∈ Z+;

II) V(t, x) is locally Lipschitzian in x and V(t, 0) ≡ 0, ∀ t ∈

R+.

Then, such a function V is said to be of the classV0.

Definition 2.2 ( [29, 39]). Let V ∈ V0. Its upper right-hand

derivative of Valong with state trajectories of system (2.1)
is defined by:

D+V(t, ψ(0)) = lim sup
r→0+

1
r

[V(t + r, ψ(0) + r f (t, ψ, u(t)))

− V(t, ψ(0))],

for ψ ∈ PC([−ν, 0],Rn).

In this study, note that impulsive instant sequences {tk}
can be arbitrary and the delay in impulses depends on the
state evolution over some previous time period that is only
assumed to be bounded. Note that in the previous results,
the impulsive instants and delays in impulses are assumed to
satisfy some conditions, such as average impulsive interval
condition and constant delay in impulses (see [19,1]). To be
specific, it assumes that there exist positive numbers Ta and
N0 such that

T − t
Ta

+ N0 ≥ N(T, t) ≥
T − t

Ta
− N0, ∀T ≥ t ≥ t0, (2.2)

where N(T, t) stands for the number of impulsive instants
of sequence {tk} in the interval (t,T ]. Clearly, compared
with such conditions in the previous results, the condition
in current study is weaker and ISS analysis for system (2.1)
is more challenging. For convenience, we call such delayed
impulses the bounded-delay impulses and denote Fab the set
of delayed impulses such that {tk} are arbitrary and the delay
bound τ < +∞.

We call a function α : R+ → R+ is of the class K ,
provided it is continuous, strict increasing and satisfies
α(0) = 0. Further, we call α is of the class K∞ if it is of the
classK and satisfies lim

t→+∞
α(t) = +∞. In addition, a function
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β : R+ × R+ → R+ is of the class KL provided β(r, t) ∈ K
for every fixed t ≥ 0 and β(r, t) is strictly decreasing to zero
as t → +∞ for every fixed r ≥ 0.

Definition 2.3 ( [30]). Given an impulsive instant sequence

{tk} and the delay bound τ, system (2.1) is said to be input-

to-state stable if there exist functions β ∈ KL and γ ∈ K∞
such that, for every initial condition φ ∈ PC([−ν, 0],Rn) and

every input u(t) ∈ PC([t0,∞),Rm), the solution to system

(2.1) satisfies

|x(t)| ≤β(‖φ‖ν, t − t0) + γ(‖u‖[t0,t]), ∀t ≥ t0.

Moreover, we call system (2.1) uniformly input-to-state

stable over the class Fab provided that it is input-to-state

stable for each sequence {tk} and delay bound τ in Fab,

and functions β, γ are independent on the choices of these

sequences.

3. Main results

In this section, we will firstly propose a new Halanay-type
inequality involving delayed impulses and external inputs.
Then, based on this inequality, some valid criteria for ISS
of impulsive delayed system (2.1) are obtained. Moreover,
some comparisons with existing results are presented in
detail.

First, consider the following Halanay-type inequality with
delayed impulses and external inputs:

D+V(t) ≤ −λ1V(t) + λ2 sup
−h≤θ≤0

V(t + θ) + ϕ(|u(t)|),

t ≥ t0, t , tk,

V(tk) ≤ ω1V(t−k ) + ω2 sup
−τ≤s≤0

V((tk + s)−) + ϕ(|u(t−k )|),

k ∈ Z+,
(3.1)

where V ∈ PC([t0−ν,∞),R+), u(t) ∈ PC([t0,∞),Rm), ϕ ∈ K
and parameters λ1, λ2, h, ω1, ω2, τ ∈ R+. Particularly,
ϕ(|u(t)|) describes the potential impact of external inputs on
the decay of function V .

Especially, a function V ∈ PC([t0 − ν,∞),R+) is called a
solution of (3.1) if V satisfies inequality (3.1) for all t ≥ t0.

Before giving the new ISS criteria, we firstly propose
two useful lemmas in this study by applying a new analysis
technique.

Lemma 3.1. Suppose that λ1 > λ2 > 0. Construct F (t) =

V(t)eε(t−t0), for t ∈ [t0 − ν,∞), where V ∈ PC([t0 − ν,∞),R+)
is a solution of (3.1) and ε ∈ (0, ε̂) with ε̂ satisfying that

−λ1 + λ2eε̂h + ε̂ < 0. (3.2)

If there exists t∗ ∈ [tk−1, tk) for certain k ∈ Z+ such that

F (t∗) , 0 and F (θ) ≤ F (t∗), θ ∈ [t0 − ν, t∗), (3.3)

then it follows that

D+F (t)|t=t∗ <
[
−ζV(t∗) + ϕ(|u(t∗)|)

]
eε(t

∗−t0), (3.4)

where ζ = − 1
2 (−λ1 + λ2eεh + ε).

Proof. Using (3.2) and (3.3), we can observe that

D+F (t)|t=t∗

=D+V(t)|t=t∗eε(t
∗−t0) + εV(t∗)eε(t

∗−t0)

≤

[
−λ1V(t∗) + λ2 sup

−h≤θ≤0
V(t∗ + θ) + ϕ(|u(t∗)|)

]
× eε(t

∗−t0) + εV(t∗)eε(t
∗−t0)

≤ − λ1F (t∗) + λ2 sup
−h≤θ≤0

F (t∗ + θ)eεh

+ ϕ(|u(t∗)|)eε(t
∗−t0) + εF (t∗)

≤
[
−λ1 + λ2eεh + ε

]
F (t∗) + ϕ(|u(t∗)|)eε(t

∗−t0)

< − ζF (t∗) + ϕ(|u(t∗)|)eε(t
∗−t0)

=
[
−ζV(t∗) + ϕ(|u(t∗)|)

]
eε(t

∗−t0).

This completes the proof. �

Lemma 3.2. Assume that λ1 > λ2 > 0, ω1 > 0, ω2 > 0
and ω1 + ω2 := ω ∈ (0, 1). Select proper ε > 0, ζ > 0 such

that (3.2) is satisfied. Further, let δ ≥ 1 satisfy that δ ≥ 1−ω
ε+ζ

,

which leads to

1 − ω − δε − δζ ≤ 0. (3.5)

Then, any solution V ∈ PC([t0 − ν,∞),R+) of (3.1)
satisfies that

V(t) ≤V̄(t0)$k−1e−ε(t−t0) +
δ

1 − ω
ϕ(‖u‖[t0,t]),

for t ∈ [tk−1, tk), k ∈ Z+, where V̄(t0) := sup
s∈[t0−ν,t0]

V(s) and

$ := max{1, ω1 + ω2eετ}.
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Proof. Clearly, it is equivalent to show that

[
V(t) −

δ

1 − ω
ϕ(‖u‖[t0,t])

]
eε(t−t0) ≤ V̄(t0)$k−1, (3.6)

for t ∈ [tk−1, tk), k ∈ Z+. To prove (3.6), we define

Γk = V̄(t0)$k−1

and an auxiliary function

Ξ(t) =

[
V(t) −

δ

1 − ω
ϕ(‖u‖[t0,t])

]
eε(t−t0),

for all t ∈ [tk−1, tk), k ∈ Z+. Hence, we turn to prove
that Ξ(t) ≤ Γk, for all t ∈ [tk−1, tk), k ∈ Z+. To begin
with, when k = 1, we shall prove Ξ(t) ≤ Γ1 = V̄(t0),
t ∈ [t0, t1). Clearly, we can check that Ξ(t0) ≤ Γ1. If the
afore-mentioned inference for k = 1 is not correct, then there
emerges t∗ ∈ [t0, t1), such that Ξ(t∗) = Γ1, Ξ(θ) ≤ Γ1, for all
θ ∈ [t0 − ν, t∗) and D+Ξ(t∗) ≥ 0. Due to Ξ(t∗) = Γ1 ≥ 0, it
yields that

V(t∗) ≥
δ

1 − ω
ϕ(‖u‖[t0,t∗]). (3.7)

Further, from

Ξ(t∗) = Γ1 ≥ Ξ(θ), θ ∈ [t0 − ν, t∗),

one can observe that for θ ∈ [t0 − ν, t∗),

[
V(t∗) −

δ

1 − ω
ϕ(‖u‖[t0,t∗])

]
eε(t

∗−t0)

≥

[
V(θ) −

δ

1 − ω
ϕ(‖u‖[t0,θ])

]
eε(θ−t0),

which implies

V(t∗)eε(t
∗−t0) ≥ V(θ)eε(θ−t0),

since function ϕ(‖u‖[t0,t]) is monotonically increasing with
respect to time t. Hence, it follows that F (t∗) ≥ F (θ), θ ∈
[t0 − ν, t∗) and by using Lemma 3.1, we can further conclude
that (3.4) holds. Recall the monotonically increasing
property of function ϕ(‖u‖[t0,t]), it leads to D+ϕ(‖u‖[t0,t]) ≥ 0
(or D+ϕ(‖u‖[t0,t]) = +∞) for all t ≥ t0. Then, by utilizing

(3.4), (3.5) and (3.7), it follows that

D+Ξ(t)|t=t∗

=D+F (t)|t=t∗ −
δε

1 − ω
eε(t

∗−t0)ϕ(‖u‖[t0,t∗])

−
δ

1 − ω
eε(t

∗−t0)D+ϕ(‖u‖[t0,t])|t=t∗

<[−ζV(t∗) + ϕ(‖u‖[t0,t∗])]e
ε(t∗−t0)

−
δε

1 − ω
eε(t

∗−t0)ϕ(‖u‖[t0,t∗])

= − ζ[V(t∗) −
δ

1 − ω
ϕ(‖u‖[t0,t∗])]e

ε(t∗−t0)

+ (1 −
δε

1 − ω
−

δζ

1 − ω
)ϕ(‖u‖[t0,t∗])e

ε(t∗−t0)

≤(
1 − ω − δε − δζ

1 − ω
)ϕ(‖u‖[t0,t∗])e

ε(t∗−t0)

≤0.

Thus, it derives a contradiction to D+Ξ(t∗) ≥ 0. Next, we
assume that (3.6) holds for all k ≤ N for certain N ∈ Z+.
Then, we shall prove that (3.6) still holds for k = N + 1,
i.e., Ξ(t) ≤ ΓN+1, t ∈ [tN , tN+1). First, when t = tN , due to
the monotonically increasing property of Γk on k ∈ Z+, it
follows from the assumption that

Ξ(tN)

=

[
V(tN) −

δ

1 − ω
ϕ(‖u‖[t0,tN ])

]
exp(ε(tN − t0))

≤

[
ω1V(t−N) + ω2 sup

−τ≤s≤0
V((tN + s)−) + ϕ(|u(t−N)|)

−
δ

1 − ω
ϕ(‖u‖[t0,tN ])

]
exp(ε(tN − t0))

≤

[
ω1ΓNexp(−ε(tN − t0)) +

ω1δ

1 − ω
ϕ(‖u‖[t0,tN ])

+ ω2ΓNexp(−ε(tN − τ − t0)) +
ω2δ

1 − ω
ϕ(‖u‖[t0,tN ])

+ ϕ(|u(t−N)|) −
δ

1 − ω
ϕ(‖u‖[t0,tN ])

]
exp(ε(tN − t0)).

(3.8)

Since δ ≥ 1 and 0 < ω1 + ω2 = ω < 1, we can conclude that

ω1δ

1 − ω
+

ω2δ

1 − ω
+ 1 −

δ

1 − ω
=

(1 − ω)(1 − δ)
1 − ω

≤ 0. (3.9)

Then, due to (3.9) and the fact ϕ(|u(t−N)|) ≤ ϕ(‖u‖[t0,tN ]),
estimate (3.8) can be further deduced that

Ξ(tN) ≤ω1ΓN + ω2eετΓN

≤$ΓN

=ΓN+1.
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If there emerges some t ∈ [tN , tN+1) satisfying that Ξ(t) >
ΓN+1, then we can choose a proper t̂ ∈ [tN , tN+1) such that
Ξ(t̂) = ΓN+1, Ξ(θ) ≤ ΓN+1, θ ∈ [t0 − ν, t̂), and D+Ξ(t̂) ≥
0. Now, by applying Lemma 3.1 again, we can conclude
that D+Ξ(t̂) < 0, and this is a contradiction to D+Ξ(t̂) ≥ 0.
Therefore, by the method of mathematical induction, (3.6)
is shown to be true for all k ∈ Z+. This concludes the proof.

�

Next, based on Halanay-type inequality (3.1) and Lemma
3.2, some tractable ISS criteria for system (2.1) are derived.

Theorem 3.1. Assume that there exist function V ∈ V0,

functions α1, α2 ∈ K∞, ϕ ∈ K , and parameters λ1 > λ2 > 0,

ω1 > 0, ω2 > 0 with ω1 + ω2 = ω ∈ (0, 1) such that the

following conditions hold

(H1) α1(|x|) ≤ V(t, x) ≤ α2(|x|);

(H2) D+V(t, ψ(0)) ≤ −λ1V(t, ψ(0))

+ λ2 sup
−h≤θ≤0

V(t + θ, ψ(θ)) + ϕ(|u(t)|), t , tk;

(H3) V(t, g(t, ψ, u)) ≤ ω1V(t−, ψ(0))

+ ω2 sup
−τ≤s≤0

V((t + s)−, ψ(s)) + ϕ(|u|),

for all t ≥ t0, x ∈ Rn, u ∈ Rm and ψ ∈ PC([−ν, 0],Rn), where

k ∈ Z+. Then, system (2.1) is uniformly input-to-state stable

over the class Fab.

Proof. For simplicity, we set V(t) = V(t, x(t)). For arbitrary
given h ∈ R+ and τ ∈ R+, which are bounded, we can
select sufficiently small ε > 0, ζ > 0 and sufficiently
large δ ≥ 1 such that (3.2), (3.5) and ω1 + ω2eετ ≤ 1 are
satisfied. Clearly, it follows from conditions H2 and H3 that
all conditions of Lemma 3.2 hold. Hence, by using Halanay-
type inequality (3.1) and Lemma 3.2, it holds that

V(t) ≤V̄(t0)e−ε(t−t0) +
δ

1 − ω
ϕ(‖u‖[t0,t]), (3.10)

for all t ≥ t0, where V̄(t0) := sup
s∈[t0−ν,t0]

V(s, x(s)). Then,

condition H1 together with (3.10) imply that

|x(t)| ≤α−1
1 (α2(‖φ‖ν)e−ε(t−t0)) + α−1

1 (
δ

1 − ω
ϕ(‖u‖[t0,t]))

:=β(‖φ‖ν, t − t0) + γ(‖u‖[t0,t]), t ≥ t0,

(3.11)

for every initial condition φ ∈ PC([−ν, 0],Rn). Thus, system
(2.1) is uniformly input-to-state stable over the class Fab.
This completes the proof. �

Remark 3.1. Clearly, it follows from (3.5) and (3.11) that
the ultimate bound of system state depends on coefficient
ω and the size of external input to some degree. To be
specific, the ultimate bound of system state may become
smaller when either ω or the size of external input becomes
less. Furthermore, when there is no external input, the
sufficient condition for Lyapunov stability of system (2.1)
with u(t) ≡ 0 can be derived. Hence, the obtained results
enrich the work on Lyapunov stability of nonlinear systems
with delayed impulses to a certain degree.

In particular, in order to better compare with the results in
[1], we consider the case that there is no delay in continuous
dynamics and derive the following result.

Corollary 3.1. Assume that there exist function V ∈ V0,

functions α1, α2 ∈ K∞, ϕ ∈ K , and parameters λ1 > 0,

ω1 > 0, ω2 > 0 with ω1 + ω2 = ω ∈ (0, 1) such that H1, H3

and the following condition hold

(H̄2) D+V(t, ψ(0)) ≤ −λ1V(t, ψ(0)) + ϕ(|u(t)|), t , tk;

for all t ≥ t0, x ∈ Rn, u ∈ Rm and ψ ∈ PC([−ν, 0],Rn), where

k ∈ Z+. Then, system (2.1) is uniformly input-to-state stable

over the class Fab.

Remark 3.2. One may observe from Theorem 3.1 and
Corollary 3.1 that both continuous dynamics and discrete
dynamics are required to be ISS. However, note that
due to the occurrence of delays in impulses, the original
stabilizing impulses may turn to be destabilizing ones if
the sizes of delays and impulsive intervals break through
certain constraints, which can be also found in [1]. More
importantly, when the delays in impulses are arbitrarily
finite, the destabilizing effect of such delayed impulses, i.e.,
the bounded-delay impulses, may be more dramatic. In fact,
it is necessary to consider the conditions H2 and H3 with
λ1 > λ2 > 0, ω ∈ (0, 1) for the case of bounded-delay
impulses. In particular, we take the following simple system
without external input as an example to show the influence
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of such delayed impulses. Consider systemẋ(t) = −ax(t), t ≥ 0, t , tk,

x(tk) = bx(tk−1), k ∈ Z+,
(3.12)

with initial condition x(t0) = x0 , 0, where a > 0, b > 0 and
the delays in impulses can be regarded as τk ≡ (tk − tk−1)−.
Clearly, such delayed impulses is of bounded-delay impulses
if supk∈Z+

{tk − tk−1} < ∞. One can check that the solution to
system (3.12) satisfies

x(t) = x0bk−1e−a(t−tk−1), t ∈ [tk−1, tk).

It follows that x(tk) = x0bk, which implies that system (3.12)
is unstable for arbitrary b > 1. Especially, system (3.12)
is stable but not asymptotically stable if b = 1. Hence, in
order to overcome the difficulty that the delays in impulses
are arbitrarily finite and guarantee the system achieve
asymptotical stability, we need to impose the condition 0 <

b < 1. Based on the above analysis, one may conclude
that when investigating the ISS of delayed systems with
bounded-delay impulses by Halanay-type inequality (3.1),
conditions λ1 > λ2 > 0 and ω ∈ (0, 1) in Theorem 3.1 are
necessary to some degree.

Remark 3.3. Recently, some significant work on ISS of
nonlinear systems with delayed impulses has been reported,
such as [1,30]. Note that [1] has studied the effect of delayed
impulses on ISS, but the effect of delayed impulses was
not well revealed. To be specific, it was shown in [1] that
the occurrence of delay in impulses may make impulses
destabilizing even if coefficient ω ∈ (0, 1). Moreover, [1]
claimed that in this case, system (2.1) may become unstable
if the impulses occur too frequently. In the same situation,
we conclude that these delayed impulses do not destroy
the ISS property of system (2.1) provided that the delays
in impulses are bounded, irrespective of the frequency of
impulses via our results. Different from the previous results
(e.g., [1,20]), the current study mainly focuses on the case of
bounded-delay impulses, where the delay bound can be an
any finite value; and further, the addressed impulsive instant
sequence can be arbitrary. Thus, the obtained results may
be conservative for the case of delay that is very small or
satisfies some specific conditions.

Remark 3.4. By using Lyapunov-Krasovskii functional
method, [30] has derived some useful ISS criteria for
time-delay systems with delayed impulses, and the case
of bounded-delay impulses can be addressed as well (see
Theorem 4 in [30]). For one thing, however, the construction
of Lyapunov-Krasovskii functionals is critical in utilizing
these results in [30] and there exists no rule on how to
select such functionals. For another thing, our results admit
different bounds for the delays in continuous dynamics and
impulses, which is more general than that considered in
[30]. Particularly, these results remain valid for delay-free
systems with delayed impulses when h = 0, such as [1, 23];
delayed systems with delay-free impulses when τ = 0, such
as [22, 33].

4. Numerical examples

To demonstrate the effectiveness and less restrictiveness
of the obtained results, two numerical examples are
presented in this section. Especially, the first example is an
extension of that considered in [1].

Example 4.1. Discuss the following system

ẋ(t) = − sat(x(t)) + a sat(x(t − h)) + b sat(u(t)), t , tk,

x(t) =%x((t − τk)−) + β sat(u(t−)), t = tk,

(4.1)

where |a|+|b| < 1, |%|+|β| < 1, 2(1−|a|−|b|) > |a|; sat(·) stands
for the well-known saturation function, that is sat(x) = 1

2 (|x+

1| − |x − 1|). Select Lyapunov function

V(x) =

x2, |x| ≤ 1,

e2(|x|−1), |x| > 1.

If |x| ≤ 1, we can see∇V(x)· f ≤ −(2−|a|−|b|)V(x)+|a|V(x(t−
h)) + |b|u2. If |x| > 1, ∇V(x) · f ≤ −2(1 − |a| − |b|)V(x). It
follows from above two cases that ∇V(x) · f ≤ −2(1 − |a| −
|b|)V(x) + |a|V(x(t − h)) + |b|u2, ∀ x a.e., ∀u, which leads
to H2 with λ1 = 2(1 − |a| − |b|), λ2 = |a|. At impulsive
instants, if |%x +β sat(u)| ≤ 1, V(g(x, u)) = (%x +β sat(u))2 ≤

%2V + 2|β||u| + 3β2u2; If |%x + β sat(u)| > 1, we can check
that |x| > (1 − |β|)/|%| > 1. Hence, V(g(x, u)) = exp(2(|%x +

β sat(u)|−1)) ≤ exp(2|%||x|+2|β|−2)) ≤ ω0V(x), whereω0 :=
exp(−2(1− |β| − |%|)). Denote ϕ(s) = 2|β|s + (3β2 + |b|)s2, and
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then H3 holds with ω1 = 0 and ω2 = ω0 ∨ %
2. By utilizing

Theorem 3.1, we can conclude that system (4.1) is uniformly
input-to-state stable over the class Fab. Specifically, choose
parameters a = 0.4, b = 0.5, % = 0.5, β = 0.1, h = 2 and
τk = 3 + (−1)k + 1

k2 , tk = k, k ∈ Z+. Clearly, all conditions of
Theorem 3.1 hold, and hence we can conclude that system
(4.1) is uniformly input-to-state stable over the class Fab.
Dynamical behaviors of system (4.1) with external input
u(t) = 2 sin(14πt) are shown in Figure 1(a). In particular,
dynamical behaviors of system (4.1) with input u(t) = 0 are
shown in Figure 1(b).

Remark 4.1. Actually, this example with a = 0 is the one
considered in [1]. It is worth noting that in order to acquire
the uniform ISS of system (4.1) for arbitrary impulsive
instant sequence, conditions τk ≡ τ and 2τ(1− |b|) ≤ − lnω2

should be satisfied in [1]. While in this case, our results only
require that supk∈Z+

{τk} < +∞, i.e., the delays in impulses
are bounded. Hence, this example shows that our results
require milder condition to some degree.

The second example studies the ISS property of time-
varying neural networks with distributed delayed impulses,
which is adopted from [30, 33] with slight changes.

Example 4.2. Consider following neural networks ẋ1(t)
ẋ2(t)

 =

 −6 0
0 −6.5

  x1(t)
x2(t)


+

 1 + cos t −1 − cos t

0.4 − 0.4 sin t −0.4 + 0.4 sin t

  tanh(x1(t))
tanh(x2(t))


+

 0.2+0.2 sin t
(1+t)0.5

0.2+0.2 sin t
(1+t)0.6

0.5−0.5 cos t
(1+t)0.5

−0.5+0.5 cos t
(1+t)0.6


 tanh(x1(t − h(t)))

tanh(x2(t − h(t)))


+ J(t), t , tk, t ≥ 0,

(4.2)

subject to impulses

x(tk) =
1
2

x(t−k ) +
1
4

∫ tk

tk−τ
x(s)ds +

1
4

J(t−k ), (4.3)

where h(t) = 2 − sin(t2), J = (u1(t), u2(t))T and τ = 1.
Consider Lyapunov function V(t, x(t)) = |x1(t)| + |x2(t)|, and
set V(t) := V(t, x(t)) for convenience. Then, we can derive
the derivative of V along the system trajectories of system

Time(s)
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x(t
)

-1.2
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-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

(a) State trajectories of system (4.1) with external input u(t) =

2 sin(14πt).
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-0.2
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(b) State trajectories of system (4.1) with zero input u(t) = 0.

Figure 1. Simulations of Example 1.

(4.2)-(4.3) and the change at impulsive instants as follows:

D+V(t) ≤ −3.2V(t) + 1.4V(t − h(t))

+ ϕ(|J(t)|), t , tk,

V(tk) ≤
1
2

V(t−k ) +
1
4

sup
−τ≤s≤0

V((tk + s)−)

+
1
4
ϕ(|J(t−k )|), k ∈ Z+,

where ϕ(|J(·)|) = |u1(·)| + |u2(·)|.

It follows that λ1 = 3.2, λ2 = 1.4, ω1 = 1
2 , ω2 = 1

4 and
all conditions in Theorem 3.1 are satisfied. Hence, we can
conclude that system (4.2)-(4.3) is input-to-state stable for
arbitrary impulsive instant sequences. Especially, we set tk =

0.2k and simulation results for system (4.2)-(4.3) with J(t) =

(sin(−16πt), cos(−16πt))T and J(t) = (0, 0)T are shown in
Figure 2(a) and Figure 2(b), respectively.

Compared with the results in [23] and [33], both the delay
effects in continuous dynamics and impulses are considered
in our results. Different from the method of Lyapunov-
Krasovskii functional in [30], a new Halanay-type inequality
(3.1) is proposed to analyze the ISS property of nonlinear
systems with bounded-delay impulses. To some extent,
our results are simple and easy to verify since they avoid
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(a) State trajectories of system (4.2)-(4.3) with input J =

(sin(−16πt), cos(−16πt))T .

Time(s)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x(t
)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x
1
(t)

x
2
(t)

(b) State trajectories of system (4.2)-(4.3) with J = 0.

Figure 2. Simulations of Example 2.

constructing a Lyapunov-Krasovskii functional. In addition,
when the delay in continuous dynamics is fast varying (e.g.,
h(t) = 2 − sin(t2) in this example), the method of Halanay
inequality shows more effectiveness than the method of
Lyapunov-Krasovskii functional [37]. Hence, compared
with the relevant results in [30], the conditions in our results
are easier to check in this sense, and can be applied to deal
with more complicated time-varying delays.

5. Conclusions

In this paper, the ISS property of delayed systems with
bounded-delay impulses was explored, where the delays in
impulses may be arbitrarily large but bounded. Particularly,
a new Halanay-type inequality subject to bounded-delay
impulses and external inputs was proposed as a theoretical
tool to establish the results. It was shown that under
certain conditions, the ISS property can be guaranteed for
delayed systems with bounded-delay impulses regardless
of both the size of this bound and the frequency of
impulses. Finally, theoretical results were validated by two
numerical examples. An interesting topic is to apply the
theoretical results to the synchronization problem of time-

delay complex networks with delayed impulses.
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