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Abstract: This paper mainly considered the finite-time lag synchronization for two-layer complex networks with impulsive effects.
Different types of controllers were designed to achieve the lag synchronization of two-layer complex networks. Several sufficient
conditions on lag synchronization in the sense of finite time were derived. The time for synchronization was also estimated. It is
important to note that synchronization time was influenced by the initial value, as well as the impulses and impulse sequence. This
implied that different impulse effects result in varying synchronization times. Additionally, desynchronizing impulses can extend the
synchronization time, whereas synchronizing impulses have the opposite effect. Finally, a numerical example was presented to showcase
the practicality and validity of the proposed theoretical criteria.
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1. Introduction

In the past two decades, complex networks have gained
significant attention for their prevalence in various real-
world applications. Numerous accomplishments [1–6] have
been made in this field. In fact, the research on isolated
and single networks has been very extensive, and multiple
types of interactive networks have been neglected. However,
in realistic complex networks, the nodes in networks can
participate in a variety of interactions, and this multiple
interaction can have not only a simple additive effect on its
dynamics and the network structure. For example, people
in a society constitute their social network of relationships
through their friendships, family relationships, and work-
related acquaintances [7]. In a two-layer neural network,
both electrical and chemical synapses can transmit neuronal
information [8]. Even protein transcriptional regulation,
metabolic synthesis, and signaling in cells require multiple

layers of interactions and regulations [9]. Obviously, the
different interactions in the above cases cannot be simply
superimposed, so the multilayer network model is more
suitable for dealing with such problems. In 2010, Mucha
introduced the concept of multilayer networks for the first
time [10], sparking scholarly interest in the study of this
interconnected network paradigm. Therefore, this paper
carries out research under the framework of the multilayer
network model.

The study of complex networks mainly focuses on their
topology and dynamics. As a dynamical phenomenon
observed in networks, synchronization has received
extensive attention and continuous research. According
to different practical meanings, complete synchronization,
generalized synchronization, phase synchronization, and
lag synchronization have been studied [11–17]. Lag
synchronization, among the types mentioned earlier, refers
to the synchronization of one node’s state with another
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node’s state at a specific time in the past. This phenomenon
is commonly observed in systems such as laser and
electronic networks. It has been proved that it is an
applicable strategy from the perspective of engineering
applications of secure communication and concurrent
image processing [18]. For example, in video calling
networks, the sounds and images received at time t are
emitted by the originator at time t − τ. Moreover, the
synchronization of multilayer networks has rapidly attracted
people’s attention. Many types of synchronization, such as
complete, intralayer, interlayer, and cluster synchronization,
have been defined and studied [19–24], which make the
research of network science more concrete and realistic.
Interlayer synchronization means that the corresponding
nodes between layers are synchronized, and some results
have been achieved. In [25], the relationship between the
network structure of the two-layer network and its interlayer
synchronization was explored. The essential requirements
for interlayer synchronization to exist and be achieved
were analytically derived in [26]. However, there are few
results on lag synchronization in the interlayer for multilayer
networks.

In all kinds of synchronization behavior research, it
is always hoped to realize synchronization as soon as
possible. The synchronization rate is an important
index used to measure synchronization performance. In
most current research on closed-loop systems, the fastest
achievable synchronization rate is exponential. This
limitation arises due to the necessity of maintaining
Lipschitz continuity within the closed-loop system. As a
result, synchronization typically falls under the category
of infinite-time synchronization, where convergence occurs
over an extended period. From a practical standpoint, the
lifespan of a man-machine system is finite. Therefore,
in engineering applications aimed at enhancing economic
benefits and work efficiency, achieving synchronization
in finite time is highly desirable. This finite-time
synchronization goal is crucial for optimizing system
performance within practical constraints and time lines.
Based on the above scenario, people are concerned about
the finite time synchronization. Finite-time synchronization
ensures the fastest synchronization convergence time, but
it also effectively suppresses disturbances and exhibits

robustness in the face of uncertainties. Therefore,
synchronization of finite time has been extensively studied
for multilayer networks [27–33]. For example, the
relationship between topological structure, multiple weights,
internal coupling mode, coupling strength, and cross-layer
was established in [27]. The event-triggered intermittent
control approach was discussed for achieving finite-time
interlayer synchronization in multilayer networks [28]. By
designing two different controllers and constructing the
Lyapunov function, the bound of the synchronization time
of finite time lag synchronization was estimated in [31].

In addition, it is worth noting that during the network
synchronization process, the transmission of the signal
will inevitably have a sudden discrete change at specific
moments, leading to impulsive phenomena [34]. These
impulses within the target network can have different effects:
Desynchronizing impulses may disrupt synchronization,
synchronizing impulses may enhance synchronization, and
inactive impulses may have no impact on the existing
synchronization state. Understanding and managing these
impulses is crucial in ensuring the stability and efficiency of
network synchronization processes [35–37]. In recent years,
various different control methods have been developed
for finite-time synchronization [38–41], such as feedback
control, adaptive control, impulsive control, sliding mode
controller, and so on. The primary objective when designing
a controller for finite-time synchronization is to achieve
synchronization within a specific time period. However,
it can be challenging to meet additional criteria, such
as a straightforward and practical controller structure and
the avoidance of chattering phenomena. In many cases,
considering all these conditions simultaneously in finite-
time synchronization controller design is difficult. Designers
often face trade-offs and prioritize the achievement of finite-
time synchronization over other considerations. Based on
the above considerations, finite time controllers are designed
in this paper to realize the finite-time lag synchronization of
two-layer complex networks.

This paper aims to investigate finite-time lag
synchronization in two-layer complex networks with
impulsive effects, distinguishing between synchronizing
and desynchronizing impulses. Two types of Lyapunov
functions and controllers are proposed, resulting in several
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synchronization conditions. The key contributions are
outlined as follows: First, the focus on lag synchronization
in two-layer networks is a novel contribution in the field,
given the early stages of research in this area. Second,
considering finite-time lag synchronization in two-layer
networks, the paper addresses both synchronizing and
desynchronizing impulses distinctly. Third, the paper
successfully tackles and resolves the challenge of bounded
controller implementation, enhancing practicality and
convenience in real-world applications.

2. Preliminaries

Let Z+ denote the set of positive integers. R and R+
denote the set of real numbers and the set of all positive
real numbers. Rn and Rn×m represent n-dimensional and
n × m-dimensional real spaces equipped with the Euclidean
norm | · |. λmin(A) and λmax(A) denote the minimum and
maximum eigenvalues of matrix A, respectively. A > 0
(A < 0) means that the matrix A is a symmetric and positive
(negative) definite matrix. The notation A−1, AT represents
the inverse and the transpose of A. I is the identity matrix
with appropriate dimensions. For any interval Q ⊆ R and
any set Ω ⊆ Rk, 1 ≤ k ≤ n, let C(Q,Ω) ={v: Q → Ω

be a continuous function} and PC(Q,Ω)={v: Q → Ω be
bounded and continuous everywhere except at finite number
of points t, at which v(t−), v(t+) exist and v(t+) = v(t)}.
K={b(·) ∈ C(R+,R+) | b(0) = 0, b(δ) > 0 for δ > 0, and
b is strictly increasing in δ},

K∞ = {b(·) ∈ K | b(m)→ ∞ as m→ ∞}.

The right-upper Dini derivative of f (t) is defined as

D+ f (t) = lim
h→0+

sup
1
h

[ f (t + h) − f (t)].

Notation ⋆ represents the symmetric part in a matrix.
Consider the following two-layer complex networks,

which is consisted of N nodes in each layer:
ẋi(t) = f (xi(t)) + c1

N∑
j=1

ai jHx j(t) + c2Γ(yi(t) − xi(t)),

ẏi(t) = f (yi(t)) + c1
N∑

j=1
ai jHy j(t) + c2Γ(xi(t) − yi(t)),

(2.1)

where xi = (xi1, · · · , xin)T ∈ Rn and yi = (yi1, · · · , yin)T ∈ Rn

are the state variables of the i (i = 1, · · · ,N)th node of the

x-layer and y-layer, respectively. Function

f (·) = ( f1(·), · · · , fn(·))T

is the self-dynamics of each node. The constants c1 and
c2 are intralayer coupling strength and inter-layer coupling
strength.

H = diag{h1, h2, · · · , hn} > 0

and

Γ = diag{γ1, h2, · · · , hn} > 0

represent inner coupling matrices.

A = (ai j) ∈ RN×N

is the outer-coupling configuration matrix. If there exists a
link from i to j (i , j), then the corresponding entry ai j

should be greater than zero (ai j > 0); otherwise, ai j = 0
(i , j). Additionally, aii is defined as the negative sum of
the out-weights (weights of outgoing edges) from node i,
excluding the self-loop weight, i.e.,

aii = −

N∑
j=1, j,i

ai j.

This paper considers the y-layer network as the following
system involving impulses:

ẏi(t) = f (yi(t)) + c1
N∑

j=1
ai jHy j(t) + c2Γ(xi(t)

−yi(t)) + ui(t), t ∈ [tk−1, tk),
∆yi(tk) = D(yi(t−k ) − xi(t−k − τ)), k ∈ Z+,

(2.2)

with the initial value yi(s) = ϕi(s), s ∈ [−τ, 0] and the initial
value for the x-layer network as xi(s) = ϕ̂i(s), s ∈ [−τ, 0].
Here, τ is a positive constant,

∆yi(tk) = yi(tk) − yi(t−k ),

and D denotes the impulse matrix. The sequence {tk}k∈Z+
denotes impulse time sequence, which strictly increases over
the interval R+. We represent such a sequence by the set
F , and represent a subset of F by FM . The impulse time
sequence of FM satisfies

0 < ti < ti+1 < ∞, i = 1, · · · ,M − 1,
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abbreviated by {tk}M , where M represents the total number
of impulse points. To achieve lag synchronization, external
inputs ui(t) need to be applied to the nodes of the y-layer
network.

Define the lag synchronization errors

ζi(t) = yi(t) − xi(t − τ).

The interlayer errors system is obtained
ζ̇i(t) = g(ζi(t)) � F(ζi(t)) + c1

N∑
j=1

ai jHζ j(t) − c2Γζi(t)

+c2Γ(xi(t) − yi(t − τ)) + ui(t), t , tk,

ζi(tk) = h(ζi(t−k )) � (I + D)ζi(t−k ), k ∈ Z+,

(2.3)

with the initial condition

ζi(s) = ϕi(s) − ϕ̂i(s − τ), s ∈ [−τ, 0]

and
F(ζi(t)) = f (yi(t)) − f (xi(t − τ)),

where i = 1, · · · ,N. Let

ζ(t) = (ζT
1 (t), ζT

2 (t), · · · , ζT
N(t))T ,

ζ(s) = ϕ̄(s) = (ζT
1 (s), ζT

2 (s), · · · , ζT
N(s))T , s ∈ [−τ, 0].

Definition 2.1. [38] For a given constant τ > 0 and impulse

time sequence {tk} ∈ F , network (2.1) is said to be a finite-

time lag synchronization if there exists time T > 0 such that

lim
t→T
|ζi(t)| = lim

t→T
|yi(t) − xi(t − τ)| = 0

and

|ζi(t)| ≡ 0, if t ≥ T, i = 1, 2, · · · ,N,

where the synchronizing time T is related to ζi(s) and F .

Remark 2.1. Definition 2.1 explains the concept of finite-
time lag synchronization, in which two-layer networks
achieve finite-time lag synchronization from time 0 to
T . Synchronization time T is related to the initial value
condition and the impulse time sequence. Specifically,
when τ = 0, the network (2.1) can realize interlayer
synchronization between layers within time T .

Definition 2.2. For any vector

w = (w1, · · · ,wn)T ∈ Rn

and constant α, the following definitions are given

S (w) = (sign(w1), · · · , sign(wn))T ,

D(w) = diag{|w1|
α, · · · , |wn|

α}.

Assumption 2.1. Assuming the existence of certain

constants li > 0, it can be stated that for a given nonlinear

function fi(·), the following inequality holds:

| fi(v1) − fi(v2)| ≤ li|v1 − v2|,

where fi(0) = 0, i = 1, · · · , n, and v1, v2 ∈ R. Let

L = diag{l1, · · · , ln}.

Lemma 2.1. [42] (Synchronizing impulses) If there exist

K-class functions ψ1 and ψ2, locally Lipschitz continuous

function V(ζi): Rn → R+, and some positive constants α,

0 < µ < 1, µ < γ < 1, 0 < λ < 1, such that

ψ1(|ζi|) ≤ V(ζi) ≤ ψ2(|ζi|),

V(h(ζi)) ≤ µ
1

1−λ V(ζi),

D+V[ζi(t)]g(ζi(t)) ≤ −αVλ(ζi(t)), t , tk,

(2.4)

holds, where

ζi(t) = ζi(t, φ)

is the solution of system (2.3) with φ ∈ U, U ⊆ Cτ as an

open set containing origin, then system (2.3) is finite time

stable over any class F . In particular, let {tk}M ∈ FM and

tM ≤ γ
M−1 (γ − µ)

1 − µ
V1−λ(φ(0))
α(1 − λ)

.

Thus, the settling time determined by initial value φ ∈ U

and impulse time sequence {tM
k } ∈ FM has the following

boundary:

T ({tk}M , φ) ≤ γM V1−λ(φ(0))
α(1 − λ)

.

In addition, system (2.3) can achieve globally finite time

stable with impulse time sequence {tk} ∈ F , if ψ1 ∈ K∞

and U = Cτ.

Lemma 2.2. [42] (Desynchronizing impulses) Set

Ūσ = {ζi ∈ Rn : |ζi| ≤ σ}

for positive contant σ. System (2.3) can achieve finite

time stable over the class of impulse time sequence F , if

there exist K-class functions ψ1 and ψ2, locally Lipschitz

continuous function V(ζi): Rn → R+, and constants β ∈

Mathematical Modelling and Control Volume 4, Issue 1, 71–85.



75

[1,∞), η ∈ (0, 1), α > 0 such that (2.4) holds, and the

impulse time sequence {tk} ∈ F satisfies

min
k∈Z+

 tk
µk−1 ≥

ψ1−λ
2 (σ)

α(1 − λ)

 := N0 < +∞.

Moreover, the bound of settling time is the following:

T ({tk}, φ) ≤ µN0−1 ψ
1−λ
2 (σ)

α(1 − λ)
, ∀φ ∈ Ūσ,∀{tk} ∈ F ,

where N0 depends on {tk}.

3. Main results

This section explores the design of various controllers
to realize finite-time lag synchronization of the
network (2.1), considering both synchronizing impulses and
desynchronizing impulses.

3.1. Synchronizing impulses

Theorem 3.1. Assume that there are some positive constants

δ, β ∈ (0, 1), γ ∈ (β, 1), constant −1 < µ < 1, matrices

Pn×n > 0, Qn×n > 0, and real matrix Wn×n such that

(i)

 Φ IN ⊗ P

⋆ −IN ⊗ Q

 < 0,

(ii) (I + D)T P(I + D) ≤ β
2

1−µ P,

where

Φ = IN ⊗ (LQL − 2c2PΓ)+ 2c1A⊗ PH − IN ⊗W − IN ⊗WT .

Then, the two-layer networks (2.1) realize finite-time

lag synchronization with the class F under the following

controllers:

ui(t) = u(1)
i (t) + u(2)

i (t).

For later use, we define

U(2)(t) = (u(2)T
1 (t), u(2)T

2 (t), · · · , u(2)T
n (t))T .

Their expressions are the following:
u(1)

i (t) = −c2Γ(xi(t) − yi(t − τ)),
U(2)(t) = −(IN ⊗ P−1)[(IN ⊗W)ζ(t)

+ 1
2δλ

1+µ
2

max(P)D(ζ(t))S (ζ(t))].

(3.1)

In particular, let {tk}M ∈ FM and

tM ≤ γ
M−1 (γ − β)

1 − β
2λ

1−µ
2

max(P)|ϕ̄|1−µ

δ(1 − µ)
,

then, the lag synchronization time satisfies

T ({tk}M , ϕ̄) ≤ γM 2λ
1−µ

2
max(P)|ϕ̄|1−µ

δ(1 − µ)
, (3.2)

which is determined by initial state ϕ̄ ∈ U and impulse time

sequence {tM
k }.

Proof. With the guidance of Lyapunov functions, we
consider

V(t) = ζT (t)(IN ⊗ P)ζ(t) =
N∑

i=1

ζT
i (t)Pζi(t). (3.3)

As t ∈ [tk−1, tk) for k ∈ Z+, the Dini derivative of V(t) along
system (2.3) is

D+V(t) =2
N∑

i=1

ζT
i (t)Pζ̇i(t)

=2
N∑

i=1

ζT
i (t)P[F(ζi(t)) + c1

N∑
j=1

ai jHζ j(t)

− c2Γζi(t) + c2Γ(xi(t) − yi(t − τ) + ui(t)] (3.4)

=2
N∑

i=1

ζT
i (t)PF(ζi(t)) + 2c1

N∑
i=1

N∑
j=1

ai jζ
T
i (t)PHζ j(t)

− 2c2

N∑
i=1

ζT
i (t)PΓζi(t) + 2

N∑
i=1

ζT
i (t)Pu(2)

i (t).

From Assumption 2.1, one may obtain

2
N∑

i=1

ζT
i (t)PF(ζi(t)) ≤

N∑
i=1

ζT
i (t)PQ−1Pζi(t)

+

N∑
i=1

FT (ζi(t))QF(ζi(t))

≤

N∑
i=1

ζT
i (t)PQ−1Pζi(t) (3.5)

+

N∑
i=1

ζT
i (t)LQLζi(t)

=ζT (t)[IN ⊗ (PQ−1P)]ζ(t)

+ ζT (t)[IN ⊗ (LQL)]ζ(t)

=ζT (t)[IN ⊗ (PQ−1P + LQL)]ζ(t).
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Therefore, combined with the above content (3.3)–(3.5),
it holds that

D+V(t) ≤ζT (t)[IN ⊗ (PQ−1P + LQL)]ζ(t)

+ 2ζT (t)[c1A ⊗ (PH)]ζ(t)

− 2c2ζ
T (t)[IN ⊗ (PΓ)]ζ(t) + 2ζT (t)(IN ⊗ P)U(2)(t)

=ζT (t)[IN ⊗ (PQ−1P + LQL − 2c2PΓ) (3.6)

+ 2c1A ⊗ (PH)]ζ(t)) + 2ζT (t)(IN ⊗ P)U(2)(t)

≤ − δ(ζT (t)(IN ⊗ P)ζ(t))
1+µ

2

= − δV
1+µ

2 (t).

When t = tk, k ∈ Z+, we can obtain

V(tk) = ζT (tk)(IN ⊗ P)ζ(tk)

= ζT (t−k ){IN ⊗ [(I + D)T P(I + D)]}ζ(t−k )

≤ β
2

1−µ ζT (t−k )(IN ⊗ P)ζ(t−k )

≤ β
2

1−µ V(t−k ).

(3.7)

It can be easily found that (3.6) and (3.7) satisfy Lemma 2.1.
Therefore, the network (2.1) under the controller (3.1)
achieves finite-time lag synchronization on any class of
impulse time sequences. Moreover, the synchronizing
time (3.2) is derived. □

In what follows, another Lyapunov function is constructed
to obtain the finite-time lag synchronization of the
network (2.1) under synchronizing impulses. The special
case considered is

D = diag{d1, d2, · · · , dn} < 0, d j ∈ (−1, 0)

for all j = 1, · · · , n.

Theorem 3.2. Suppose that there are some positive

constants k1, k2, δ, γ, β, 0 < β < 1, β < γ < 1, constant

−1 < µ < 1, and diagonal matrix Pn×n > 0, such that

λmax(I + D) ≤ β
2

1−µ ,

then the network (2.1) can achieve finite-time lag

synchronization on any class F with the following

controller:

ui(t) = u(1)
i (t) + u(2)

i (t) + u(3)
i (t),

where

u(1)
i (t) = −c2Γ(xi(t) − yi(t − τ)),

u(2)
i (t) =


ū(2)T

1 (t)
ū(2)T

2 (t)
...

ū(2)T
n (t)


·Wi,

u(3)
i (t) = − δ2 P−1S (ζi(t))[2S T (ζi(t))Pζi(t)]

1+µ
2 ,

(3.8)

with

ū(2)
j (t) = (u1 j, u2 j, · · · , uN j)T ∈ RN

= −
k1

2
p jl2jS (ζ̄ j(t))ζT

j (t)S (ζ̄ j(t)) −
1

2k1 p j
ζ̄ j(t)

−
c1k2

2
h̄AAT S (ζ̄T

j (t))ζ̄T
j (t)S (ζ̄ j(t)) −

c1

2k2
h̄ζ̄ j(t),

Wi = (0 · · · 1 · · · 0)T ∈ RN ,

where Wi is the vector with 0, except the ith element is 1,

ζ̄ j = (ζ1 j, · · · , ζN j)T ∈ RN

denotes the column vector composed of the jth row elements

of all

ζi(t)(i = 1, · · · ,N)

and

h̄ = max
1≤ j≤n

h j.

Particularly, let

{tk}M ∈ FM

and

tM ≤ γ
M−1 (γ − β)

1 − β
2

3−µ
2 λ

1−µ
2

max|ϕ̄|
1−µ

δ(1 − µ)
,

then, the lag synchronization time determined by initial

value ϕ̄ ∈ U and impulse time sequence

{tk}M ∈ FM

has the bound of

T ({tk}M , ϕ̄) ≤ γM 2
3−µ

2 λ
1−µ

2
max|ϕ̄|

1−µ

δ(1 − µ)
. (3.9)
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Proof. Consider the following Lyapunov function

V(t) = 2
N∑

i=1
ζT

i (t)PS (ζi(t)). (3.10)

For t ∈ [tk−, tk), the Dini-derivative of V(t) along the solution
of (2.3) is given by

D+V(t) =2
N∑

i=1

ζT
i (t)PṠ (ζi(t)) + 2

N∑
i=1

ėT
i (t)PS (ζi(t))

=2
N∑

i=1

S T (ζi(t))Pζ̇i(t)

=2
N∑

i=1

S T (ζi(t))P[F(ζi(t)) + c1

N∑
j=1

ai jHζ j(t)

− c2Γζi(t) + c2Γ(xi(t) − yi(t − τ)) + ui(t)]

≤2
N∑

i=1

S T (ζi(t))PLζi(t)

+ 2c1

N∑
i=1

N∑
j=1

ai jS T (ζi(t))PHζ j(t) (3.11)

− 2c2

N∑
i=1

S T (ζi(t))PΓζi(t)

+ 2c2

N∑
i=1

S T (ζi(t))PΓ(xi(t) − yi(t − τ))

+ 2
N∑

i=1

S T (ζi(t))Pui(t)

=2
N∑

i=1

S T (ζi(t))PLζi(t)

+ 2c1

N∑
i=1

N∑
j=1

ai jS T (ζi(t))PHζ j(t)

− 2c2

N∑
i=1

S T (ζi(t))PΓζi(t) + 2
N∑

i=1

S T (ζi(t))Pu(2)
i (t).

For all ζi(t) ∈ Rn, it can be seen that

ζT
i (t)ζi(t) ≤ (ζT

i (t)S (ζi(t)))2.

One obtains that when |ζ̄ j(t)| , 0,

2
N∑

i=1

S T (ζi(t))PLζi(t)

≤

N∑
i=1

[S T (ζi(t))P2L2S (ζi(t)) · k1ζ
T
i (t)S (ζi(t))

+ ζT
i (t)ζi(t) · k−1

1
1

ζT
i (t)S (ζi(t))

] (3.12)

≤ k1

N∑
i=1

S T (ζi(t))P2L2S (ζi(t)) · ζT
i (t)S (ζi(t))

+
1
k1

N∑
i=1

ζT
i (t)S (ζi(t)),

and

2c1

N∑
i=1

N∑
j=1

ai jS T (ζi(t))PH1ζ j(t)

= 2c1

n∑
j=1

p jh jS T (ζ̄ j(t))Aζ̄ j(t)

≤ c1

n∑
j=1

p jh j[S T (ζ̄ j(t))AAT S (ζ̄ j(t)) · k2ζ̄
T
j (t)S (ζ̄ j(t))

+ ζ̄T
j (t)ζ̄ j · k−1

2
1

ζ̄ j(t)T S (ζ̄ j(t))
] (3.13)

≤ c1

n∑
j=1

p jh j[S T (ζ̄ j(t))AAT S (ζ̄ j(t)) · k2ζ̄
T
j (t)S (ζ̄ j(t))

+
1
k2
ζ̄T

j (t)S (ζ̄ j(t))].

Moreover, when ζ̄ j = 0, the following hold:

2
N∑

i=1

S T (ζi(t))PLζi(t)

= k1

N∑
i=1

S T (ζi(t))P2L2S (ζi(t)) · ζT
i (t)S (ζi(t)) (3.14)

+
1
k1

N∑
i=1

ζT
i (t)S (ζi(t)) = 0

and

2c1

N∑
i=1

N∑
j=1

ai jS T (ζi(t))PH1ζ j(t)

= c1

n∑
j=1

p jh j[S T (ζ̄ j(t))AAT S (ζ̄ j(t)) · k2ζ̄
T
j (t)S (ζ̄ j(t))

+
1
k2
ζ̄T

j (t)S (ζ̄ j(t))] = 0.

(3.15)

From the definition of S (x), one has

S T (ζi(t))S (ζi(t)) =

 ϱ ∈ {1, · · · , n}, |ζi(t)| , 0,
0, |ζi(t)| = 0.
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Combining analysis and (3.10)–(3.15) within the interval t ∈

[tk−1, tk), one has that

D+V(t) ≤k1

N∑
i=1

S T (ζi(t))P2L2S (ζi(t)) · ζT
i (t)S (ζi(t))

+
1
k1

N∑
i=1

ζT
i (t)S (ζi(t))

+ c1

n∑
j=1

p jh j[S T (ζ̄ j(t))AAT S (ζ̄ j(t)) · k2ζ̄
T
j (t)S (ζ̄ j(t))

+
1
k2
ζ̄T

j (t)S (ζ̄ j(t))] − 2c2

N∑
i=1

S T (ζi(t))PΓζi(t)

+ 2
n∑

j=1

p jS T (ζ̄ j(t))ū
(2)
j (t) + 2

N∑
i=1

S T (ζi(t))Pu(3)
i (t)

≤2
N∑

i=1

S T (ζi(t))Pu(3)
i (t)

=δ

N∑
i=1

S T (ζi(t))S (ζi(t))[2S T (ζi(t))Pζi(t)]
1+µ

2

≤ − δ[2
N∑

i=1

S T (ζi(t))Pζi(t)]
1+µ

2

= − δV(t)
1+µ

2 .

(3.16)

When t = tk, k ∈ Z+, we can obtain

V(tk) = 2
N∑

i=1

ζi(t−k )T (I + D)PS ((I + D)ζi(t−k ))

≤ 2λmax(I + D)
N∑

i=1

ζT
i (t−k )PS (ζi(t−k ))

≤ 2β
2

1−µ

N∑
i=1

ζT
i (t−k )PS (ζi(t−k ))

= β
2

1−µ V(t−k ).

(3.17)

Based on Lemma 2.1, combining (3.16) and (3.17) can
deduce that the network (2.1) under the controller (3.8) and
any class of impulse time sequence F can achieve finite-
time lag synchronization. Meanwhile, the synchronizing
time (3.9) is satisfied. □

Remark 3.1. In the demonstration of Theorem 3.1,
inequalities (3.7) indicate that for a given µ, we need to find
the smallest β to satisfy

(I + D)T P(I + D) ≤ β
2

1−µ P

to be close enough. It is noteworthy that ζ̄ j(t)T S (ζ̄ j(t))
is introduced in the proof of Theorem 3.2. In previous

research, the sign function has been found to be crucial when
addressing finite-time problems. In addition, by comparing
the synchronizing time of Theorems 3.1 and 3.2, and without
impulses, it has been observed that the presence of γM leads
to a reduction in the synchronizing time, and the value of M

is directly associated with the number of impulses. In other
words, the synchronizing impulses play a role in promoting
network synchronization.

3.2. Desynchronizing impulses

In the following, additional results on finite-time lag
synchronization for two-layer complex networks are given
with an emphasis on the impact of impulsive disturbance;
the impulses produce opposite shocks, the desynchronizing
impulses.

Theorem 3.3. Suppose that there exist constants β ∈ [1,∞),
δ > 0, σ > 0, and µ ∈ (−1, 1), matrices Pn×n > 0, Qn×n > 0,

and real matrix Wn×n such that

(i)

 Φ IN ⊗ P

⋆ −IN ⊗ Q

 < 0,

(ii) (I + D)T P(I + D) ≤ β
2

1−µ P,

where

Φ = IN ⊗ (LQL − 2c2PΓ)+ 2c1A⊗ PH − IN ⊗W − IN ⊗WT .

Then, the two-layer network (2.1) for the class F with the

controller (3.1) can achieve finite time lag synchronization,

where impulse time sequence {tk} ∈ F satisfies

min
j∈Z+

 t j

β j−1 ≥
2λ

1−µ
2

max(P)σ1−µ

δ(1 − µ)

 := N0 < +∞.

Furthermore, the synchronizing time has the following

boundary:

T ({tk}, ϕ̄) ≤ βN0−1 2λ
1−µ

2
max(P)σ1−µ

δ(1 − µ)
, ∀ϕ̄ ∈ Uσ,∀{tk} ∈ F ,

where N0 depends on {tk}.

Next, another finite-time lag synchronization under
impulsive disturbance is presented based on the Lyapunov
function form in Theorem 3.2 considering the special case

D = diag{d1, d2, · · · , dn} > 0, j = 1, 2, · · · , n.

Mathematical Modelling and Control Volume 4, Issue 1, 71–85.



79

Theorem 3.4. Suppose that there exist positive constants

k1, k2, δ, σ, β, and β > 1, constant µ ∈ (−1, 1), and diagonal

matrix Pn×n > 0, such that

λmax(I + D) ≤ β
2

1−µ I,

then the two-layer networks (2.1) achieve finite-time lag

synchronization with any class F under the controller (3.8),

where {tk} ∈ F satisfies

min
j∈Z+

 t j

β j−1 ≥
2

3−µ
2 λ

1−µ
2

max(P)σ
1−µ

2

δ(1 − µ)

 := N0 < +∞.

Furthermore, synchronizing time is bounded by

T ({tk}, ϕ̄) ≤ βN0−1 2
3−µ

2 λ
1−µ

2
max(P)σ

1−µ
2

δ(1 − µ)
, ∀ϕ̄ ∈ Uσ,∀{tk} ∈ F ,

where N0 depends on {tk}.

Remark 3.2. It is worth noting that a special feedback
control structure ζi

|ζi |
2 in ui is introduced in the controller

designing for existing results. The controller ui has a clear
drawback, which is defined even though ζi = 0. It becomes
challenging to judge whether ui remains bounded when
the errors of networks approach zero. As a result, these
controllers face limitations in their application to finite-
time lag synchronization problems. The controllers (3.1)
and (3.8) designed in this article can effectively solve
this problem and are also suitable for the case involving
impulses.

The conclusions obtained from Theorems 3.3 and 3.4
show that the desynchronizing impulses have an
inhibitory effect on synchronization and can prolong
the synchronization time.

4. Numerical examples

This segment offers an example to demonstrate the
efficacy of the proposed finite-time lag synchronization
results. We consider two scenarios: one with synchronizing
impulses and the other with desynchronizing impulses.

Example 4.1. The modeling of complex networks is often
used in various fields, such as traffic analysis and disease

spread. In this context, let’s consider the two-layer complex
networks (2.1) described below:

ẋi(t) = f (xi(t)) + c1
3∑

j=1
ai jHx j(t) + c2Γ(yi(t) − xi(t)),

ẏi(t) = f (yi(t)) + c1
3∑

j=1
ai jHy j(t) + c2Γ(xi(t) − yi(t)),

(4.1)

with

A =


−1 1 0
1 −2 1
0 1 −1

 ,

H =


0.4 0 0
0 0.5 0
0 0 0.3

 ,

Γ =


0.5 0 0
0 0.4 0
0 0 0.3

 ,
c1 = 0.3, c2 = 0.5, and

f (xi(t)) =


−a a 0
b −1 0
0 0 −c




xi1

xi2

xi3

 +


0
−xi1xi3

xi1xi2

 , (4.2)

where a = 10, b = 28, c = 8
3 . In simulations, the initial

conditions for the node states are taken as

x1(0) = (1, 3, 0.5)T , x2(0) = (1, 3,−3)T , x3(0) = (−1, 2, 2)T .

Next, consider the y-layer network involving impulses in
the form of

ẏi(t) = f (yi(t)) + c1
3∑

j=1
ai jHy j(t) + c2Γ(xi(t) − yi(t)),

t ∈ [tk−1, tk),
∆yi(tk) = D(yi(t−k ) − xi(t−k − τ)), k ∈ Z+,

(4.3)

with the initial value

y1(0) = (−1,−2,−1.5)T , y2(0) = (2,−3, 3)T

and
y3(0) = (−1, 0.5, 1)T .

In the simulation, the lag synchronization of τ = 0.2
is considered. Figure 1 shows the lag synchronization
errors without control and impulses, then the x-layer state
trajectories are shown in Figure 2.
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Figure 1. Trajectories of lag synchronization
errors between (4.1) and (4.3) without control and
impulses.
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Figure 2. Trajectories of the x-layer network (4.1)
without control and impulses.

Case 1. In what follows, consider when the impulses have
a facilitating effect on lag synchronization. Select δ = 0.9,
µ = 0.2, β = 0.5, and γ = 0.7 and note the impulse matrix

D =


−0.6 0 0

0 −0.6 0
0 0 −0.6

 .
Based on Theorem 3.1, the feasible solution can be derived:

P =


0.3573 0 0

0 0.3538 0
0 0 0.3604

 ,

W =


0.9350 0 0

0 0.9394 0
0 0 0.9848

 .
Therefore, the errors system can achieve finite-time lag
synchronization under the controller (3.1) over the impulse
time sequence, where synchronization time is bounded by

T ({tk}M , ϕ̄) ≤ 0.7M · 1.84 · |ϕ̄|0.8.

When M = 2, there is

T ({tk}M , ϕ̄) ≤ 5.85.

Under the same conditions, when considering the network
without impulses, the synchronizing time can be estimated
as

T ({tk}M , ϕ̄) ≤ 11.94.

The lag synchronization errors with controller (3.1) and
without/with the synchronizing impulses are depicted
in Figures 3 and 4. It can be seen that the
synchronizing impulses can effectively shorten the network
synchronization time. Figure 5 is given to show the
corresponding state trajectories of the two-layer network
with controller (3.1), from which it can be seen that the
network is lag synchronization with τ = 0.2.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

9.07

Figure 3. Trajectories of lag synchronization
errors between (4.1) and (4.3) with control and
without impulses.
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Figure 4. Trajectories of lag synchronization
errors between (4.1) and (4.3) with control and
impulses.
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Figure 5. The upper graph shows the trajectories
of the x-layer network and the y-layer network
without impulses and control; the bottom graph
shows the trajectories of the x-layer network and
the y-layer network with synchronizing impulses
and control.

Case 2. Next, the situation when the impulses have an
inhibitory effect on the lag synchronization is explored. In
this case, let’s select µ = 0.4, δ = 0.9, and β = 1.2, and
choose impulse matrix

D =


0.3 0 0
0 0.3 0
0 0 0.3

 ,

and impulse time sequence tk = 2.3k. Based on
Theorem 3.3, the following is the derivation of a feasible
solution

P =


0.2535 0 0

0 0.2501 0
0 0 0.2563

 ,

W =


0.9337 0 0

0 0.9358 0
0 0 0.9698

 .
Hence, the error system can achieve finite-time lag
synchronization with the controller (3.1), where
synchronizing time is bounded by

T ({tk}, ϕ̄) ≤ 24.81.

Under the same conditions, when considering the network
without impulses, the synchronizing time can be estimated
as

T ({tk}M , ϕ̄) ≤ 9.97.

The lag synchronization errors with controller (3.1) and
without/with the desynchronizing impulses are shown in
Figures 6 and 7. It can be found that the desynchronizing
impulses can extend the network synchronizing time. As
indicated in Figure 8, the corresponding state trajectories of
the two-layer network with controller (3.1) are given, from
which it can be seen that the network is lag synchronized
with τ = 0.2.
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Figure 6. Trajectories of lag synchronization
errors between (4.1) and (4.3) with control and
without desynchronizing impulses.
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Figure 7. Trajectories of lag synchronization
errors between (4.1) and (4.3) with control and
desynchronizing impulses.
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Figure 8. The upper graph shows the trajectories
of the x-layer network and the y-layer network
without impulses and control; the bottom graph
shows the trajectories of the x-layer network
and the y-layer network with desynchronizing
impulses and control.

5. Conclusions

This article investigates finite-time lag synchronization
problems for two-layer complex networks with impulses.
Employing finite-time control and impulsive control theory,
several conditions are derived to guarantee the finite-time
lag synchronization of two-layer complex networks. The
impact of synchronizing and desynchronizing impulses is

analyzed, and multiple memory controllers are introduced
to facilitate synchronization. Additionally, we calculate the
synchronizing times of synchronizing and desynchronizing
impulses affecting the model under consideration. A
numerical example is presented to illustrate the practical
significance of the proposed results, showcasing how
impulses can alter the settling time of synchronization in
two-layer complex networks. However, the structure of
the two-layer network studied in this paper has a certain
particularity, and the controller designed is related to the
delay state of both layers. Therefore, realizing finite-time lag
synchronization of multilayer networks with coupling delay
is a future work.
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24. Y. Li, X. Wu, J. Lu, J. Lü, Synchronizability of duplex
networks, IEEE Trans. Circuits Syst. II, 63 (2015), 206–
210. https://doi.org/10.1109/TCSII.2015.2468924

25. X. Wu, Y. Li, J. Wei, J. Zhao, J. Feng, J. Lu, Inter-
layer synchronization in two-layer networks via variable
substitution control, J. Franklin Inst., 357 (2020), 2371–
2387. https://doi.org/10.1016/j.jfranklin.2019.12.019

26. R. Sevilla-Escoboza, I. Sendiña-Nadal, I. Leyva,
R. Gutiérrez, J. M. Buldú, S. Boccaletti, Inter-
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