Research article

Analyticity and uniqueness of the fractional electromagnetic boundary value problem

  • Received: 26 August 2023 Revised: 06 December 2023 Accepted: 25 December 2023 Published: 01 April 2024
  • This paper introduces a new study that examines the unique and analytical nature of the fractional solution to a fractional electromagnetic boundary value problem (BVP). This specific BVP is characterized by defining the tangential electromagnetic components. It has been proven that the analytical expressions for the fractional electromagnetic fields $ E^{\alpha} $, $ E^{*\alpha} $, $ H^{\alpha} $, and $ H^{*\alpha} $ do not vanish in any subregions $ \Omega_o^\alpha $ or $ \Omega^\alpha-\Omega_o^\alpha $. Furthermore, the unique solution makes $ E^{\alpha} = E^{*\alpha} $ and $ H^{\alpha} = H^{*\alpha} $ without singular fields at same region of the space. Analyticity of the fractional time-harmonic electromagnetic field within lossy or lossless dielectric regions is proven.

    Citation: A. Refaie Ali, Rashid Jan, H. Alotaibi, Nesreen A. Yaseen. Analyticity and uniqueness of the fractional electromagnetic boundary value problem[J]. Mathematical Modelling and Control, 2024, 4(1): 101-109. doi: 10.3934/mmc.2024009

    Related Papers:

  • This paper introduces a new study that examines the unique and analytical nature of the fractional solution to a fractional electromagnetic boundary value problem (BVP). This specific BVP is characterized by defining the tangential electromagnetic components. It has been proven that the analytical expressions for the fractional electromagnetic fields $ E^{\alpha} $, $ E^{*\alpha} $, $ H^{\alpha} $, and $ H^{*\alpha} $ do not vanish in any subregions $ \Omega_o^\alpha $ or $ \Omega^\alpha-\Omega_o^\alpha $. Furthermore, the unique solution makes $ E^{\alpha} = E^{*\alpha} $ and $ H^{\alpha} = H^{*\alpha} $ without singular fields at same region of the space. Analyticity of the fractional time-harmonic electromagnetic field within lossy or lossless dielectric regions is proven.



    加载中


    [1] N. Engheta, On the role of fractional calculus in electromagnetic theory, IEEE Antennas Propag. Mag., 39 (1997), 35–46. https://doi.org/10.1109/74.632994 doi: 10.1109/74.632994
    [2] V. E. Tarasov, Electromagnetic fields on fractals, Mod. Phys. Lett. A, 21 (2006), 1587–1600. https://doi.org/10.1142/S0217732306020974 doi: 10.1142/S0217732306020974
    [3] D. Baleanu, A. K. Golmankhaneh, A. K. Golmankhaneh, M. C. Baleanu, Fractional electromagnetic equations using fractional forms, Int. J. Theor. Phys., 48 (2009), 3114–3123. https://doi.org/10.1007/s10773-009-0109-8 doi: 10.1007/s10773-009-0109-8
    [4] M. Zubair, M. J. Mughal, Q. A. Naqvi, The wave equation and general plane wave solutions in fractional space, Prog. Electromagn. Res. Lett., 19 (2010), 137–146. https://doi.org/10.2528/PIERL10102103 doi: 10.2528/PIERL10102103
    [5] D. Baleanu, A. K. Golmankhaneh, A. K. Golmankhaneh, On electromagnetic field in fractional space, Nonlinear Anal., 11 (2010), 288–292. https://doi.org/10.1016/j.nonrwa.2008.10.058 doi: 10.1016/j.nonrwa.2008.10.058
    [6] A. R. Ali, M. N. Alam, M. W. Parven, Unveiling optical soliton solutions and bifurcation analysis in the space-time fractional Fokas-Lenells equation via SSE approach, Sci. Rep., 14 (2024), 2000. https://doi.org/10.1038/s41598-024-52308-9 doi: 10.1038/s41598-024-52308-9
    [7] M. Zubair, M. J. Mughal, Q. A. Naqvi, On electromagnetic wave propagation in fractional space, Nonlinear Anal., 12 (2011), 2844–2850. https://doi.org/10.1016/j.nonrwa.2011.04.010 doi: 10.1016/j.nonrwa.2011.04.010
    [8] X. Yang, D. Baleanu, H. M. Srivastava, Local fractional integral transforms and their applications, Academic Press, 2016. https://doi.org/10.1016/B978-0-12-804002-7.09994-0
    [9] X. Yang, D. Baleanu, G. Feng, New analytical solutions for Klein-Gordon and Helmholtz equations in fractal dimensional space, Proc. Romanian Acad., 18 (2016), 231–238.
    [10] C. Rong, B. Zhang, Fractional electromagnetic waves in circular waveguides with fractional-order inductance characteristics, J. Electromagn. Waves Appl., 33 (2019), 2142–2154. https://doi.org/10.1080/09205071.2019.1664335 doi: 10.1080/09205071.2019.1664335
    [11] T. P. Stefánski, J. Gulgowski, Fundamental properties of solutions to fractional-order Maxwell's equations, J. Electromagn. Waves Appl., 34 (2020), 1955–1976. https://doi.org/10.1080/09205071.2020.1801520 doi: 10.1080/09205071.2020.1801520
    [12] O. M. Abo-Seida, N. T. M. El-Dabe, A. R. Ali, G. A. Shalaby, Cherenkov FEL reaction with plasma-filled cylindrical waveguide in fractional $D$-dimensional space, IEEE Trans. Plasma Sci., 49 (2021), 2070–2079. https://doi.org/10.1109/TPS.2021.3084904 doi: 10.1109/TPS.2021.3084904
    [13] S. Khan, F. M. A. Khan, G. A. Noor, General solution for electromagnetic wave propagation in cylindrical waveguide filled with fractional space, Waves Random Complex Media, 33 (2023), 49–61. https://doi.org/10.1080/17455030.2021.1874076 doi: 10.1080/17455030.2021.1874076
    [14] O. M. Abo-Seida, N. T. El-Dabe, A. E. H. Naby, M. S. Ibrahim, A. R. Ali, Influence of diamond and silver as cavity resonator wall materials on resonant frequency, J. Commun. Sci. Inf. Technol., 1 (2023), 1–4. https://doi.org/10.21608/jcsit.2023.306699 doi: 10.21608/jcsit.2023.306699
    [15] M. U. M. Maya, M. N. Alam, A. R. Ali, Influence of magnetic field on MHD mixed convection in lid-driven cavity with heated wavy bottom surface, Sci. Rep., 13 (2023), 18959. https://doi.org/10.1038/s41598-023-45707-x doi: 10.1038/s41598-023-45707-x
    [16] N. T. El-Dabe, A. R. Ali, A. A. El-Shekhipy, Influence of thermophoresis on unsteady MHD flow of radiation absorbing Kuvshinski fluid with non-linear heat and mass transfer, Amer. J. Heat Mass Transfer., 2017. https://doi.org/10.7726/ajhmt.2017.1010 doi: 10.7726/ajhmt.2017.1010
    [17] X. Yang, Advanced local fractional calculus and its applications, World Science Publisher, 2012.
    [18] M. H. Khan, S. Islam, A. R. Ali, Certain results associated with lump and periodic-soliton solutions for (2+1)-D Calogero-Bogoyavlenskii-Schiff equation, J. Appl. Math. Stat. Anal., 4 (2023), 43–57. https://doi.org/10.5281/zenodo.8310669 doi: 10.5281/zenodo.8310669
    [19] O. M. Abo-Seida, N. T. El-Dabe, A. R. Ali, G. A. Shalaby, Far-Field, radiation resistance and temperature of Hertzian Dipole Antenna in lossless medium with momentum and energy flow in the Far-Zone, J. Adv. Phys., 18 (2020), 20–28. https://doi.org/10.24297/jap.v18i.8803 doi: 10.24297/jap.v18i.8803
    [20] N. T. M. El-Dabe, A. R. Ali, A. A. El-Shekhipy, G. A. Shalaby, Non-linear heat and mass transfer of second grade fluid flow with hall currents and thermophoresis effects, Appl. Math. Inf. Sci., 11 (2017), 267–280. https://doi.org/10.18576/amis/110133 doi: 10.18576/amis/110133
    [21] H. Nasrolahpour, A note on fractional electrodynamics, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 2589–2593. https://doi.org/10.1016/j.cnsns.2013.01.005 doi: 10.1016/j.cnsns.2013.01.005
    [22] F. A. A. El-Salam, Fractional approach of Maxwell equations in the curved space-time, J. Taibah Univ. Sci., 7 (2013), 173–179. https://doi.org/10.1016/j.jtusci.2013.04.005 doi: 10.1016/j.jtusci.2013.04.005
    [23] S. Caorsi, M. Raffetto, Uniqueness of the solution of electromagnetic boundary-value problems in the presence of lossy and piecewise homogeneous lossless dielectrics, IEEE Trans. Microwave Theory Tech., 46 (1998), 1353–1359. https://doi.org/10.1109/22.721135 doi: 10.1109/22.721135
    [24] O. M. Abo-Seida, Uniqueness solution for the boundary value problem defined by specifying the components of the electromagnetic field, Appl. Math. Comput., 132 (2002), 553–558. https://doi.org/10.1016/S0096-3003(01)00211-9 doi: 10.1016/S0096-3003(01)00211-9
    [25] O. M. Abo-Seida, Determination of the boundary value problem of the electromagnetic field over a closed regular boundary, Chaos Solitons Fract., 17 (2003), 843–846. https://doi.org/10.1016/S0960-0779(02)00480-0 doi: 10.1016/S0960-0779(02)00480-0
    [26] S. Islam, B. Halder, A. R. Ali, Optical and rogue type soliton solutions of the (2+1) dimensional nonlinear Heisenberg ferromagnetic spin chains equation, Sci. Rep., 13 (2023), 9906. https://doi.org/10.1038/s41598-023-36536-z doi: 10.1038/s41598-023-36536-z
    [27] X. Yang, A. Alsolami, A. R. Ali, An even entire function of order one is a special solution for a classical wave equation in one-dimensional space, Therm. Sci., 27 (2023), 491–495. https://doi.org/10.2298/TSCI221111008Y doi: 10.2298/TSCI221111008Y
    [28] A. R. Ali, N. T. M. El-Dabe, A. E. H. A. E. Naby, M. Ibrahim, O. M. Abo-Seida, EM wave propagation within plasma-filled rectangular waveguide using fractional space and LFD, Eur. Phys. J. Spec. Top., 232 (2023), 2531–2537. https://doi.org/10.1140/epjs/s11734-023-00934-1 doi: 10.1140/epjs/s11734-023-00934-1
    [29] R. K. Maurya, V. Devi, V. K. Singh, Multistep schemes for one and two dimensional electromagnetic wave models based on fractional derivative approximation, J. Comput. Appl. Math., 380 (2020), 112985. https://doi.org/10.1016/j.cam.2020.112985 doi: 10.1016/j.cam.2020.112985
    [30] R. K. Maurya, V. Devi, V. K. Singh, Stability and convergence of multistep schemes for 1D and 2D fractional model with nonlinear source term, Appl. Math. Modell., 89 (2021), 1721–1746. https://doi.org/10.1016/j.apm.2020.08.038 doi: 10.1016/j.apm.2020.08.038
    [31] A. P. Singh, R. K. Maurya, V. K. Singh, Analysis of a robust implicit scheme for spacetime fractional stochastic nonlinear diffusion wave model, Int. J. Comput. Math., 100 (2023), 1625–1645. https://doi.org/10.1080/00207160.2023.2207677 doi: 10.1080/00207160.2023.2207677
    [32] R. Jan, N. N. A. Razak, S. Boulaaras, K. Rajagopal, Z. Khan, Y. Almalki, Fractional perspective evaluation of chikungunya infection with saturated incidence functions, Alex. Eng. J., 83 (2023), 35–42. https://doi.org/10.1016/j.aej.2023.10.036 doi: 10.1016/j.aej.2023.10.036
    [33] A. Jan, S. Boulaaras, F. A. Abdullah, R. Jan, Dynamical analysis, infections in plants, and preventive policies utilizing the theory of fractional calculus, Eur. Phys. J. Spec. Top., 232 (2023), 2497–2512. https://doi.org/10.1140/epjs/s11734-023-00926-1 doi: 10.1140/epjs/s11734-023-00926-1
    [34] R. Jan, S. Qureshi, S. Boulaaras, V. T. Pham, E. Hincal, R. Guefaifia, Optimization of the fractional-order parameter with the error analysis for human immunodeficiency virus under Caputo operator, Discrete Contin. Dyn. Syst., 16 (2023), 2118–2140. https://doi.org/10.3934/dcdss.2023010 doi: 10.3934/dcdss.2023010
    [35] O. M. Abo-Seida, The analyticity of the electromagnetic field in an isotropic medium, Appl. Math. Comput., 127 (2002), 361–364. https://doi.org/10.1016/S0096-3003(01)00014-5 doi: 10.1016/S0096-3003(01)00014-5
    [36] S. Caorsi, M. Raffetto, Analyticity of electromagnetic fields in regions characterized by analytic dielectric parameters and analytic sources, IEEE Trans. Microwave Theory Tech., 45 (1997), 1805–1807. https://doi.org/10.1109/22.641760 doi: 10.1109/22.641760
    [37] A. R. Ali, K. Rafique, M. Imtiaz, R. Jan, H. Alotaibi, I. Mekawy, Exploring magnetic and thermal effects on MHD bio-viscosity flow at the lower stagnation point of a solid sphere using Keller box technique, Partial Differ. Equations Appl. Math., 9 (2024) 100601. https://doi.org/10.1016/j.padiff.2023.100601 doi: 10.1016/j.padiff.2023.100601
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(891) PDF downloads(81) Cited by(0)

Article outline

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog