This paper introduces a new study that examines the unique and analytical nature of the fractional solution to a fractional electromagnetic boundary value problem (BVP). This specific BVP is characterized by defining the tangential electromagnetic components. It has been proven that the analytical expressions for the fractional electromagnetic fields $ E^{\alpha} $, $ E^{*\alpha} $, $ H^{\alpha} $, and $ H^{*\alpha} $ do not vanish in any subregions $ \Omega_o^\alpha $ or $ \Omega^\alpha-\Omega_o^\alpha $. Furthermore, the unique solution makes $ E^{\alpha} = E^{*\alpha} $ and $ H^{\alpha} = H^{*\alpha} $ without singular fields at same region of the space. Analyticity of the fractional time-harmonic electromagnetic field within lossy or lossless dielectric regions is proven.
Citation: A. Refaie Ali, Rashid Jan, H. Alotaibi, Nesreen A. Yaseen. Analyticity and uniqueness of the fractional electromagnetic boundary value problem[J]. Mathematical Modelling and Control, 2024, 4(1): 101-109. doi: 10.3934/mmc.2024009
This paper introduces a new study that examines the unique and analytical nature of the fractional solution to a fractional electromagnetic boundary value problem (BVP). This specific BVP is characterized by defining the tangential electromagnetic components. It has been proven that the analytical expressions for the fractional electromagnetic fields $ E^{\alpha} $, $ E^{*\alpha} $, $ H^{\alpha} $, and $ H^{*\alpha} $ do not vanish in any subregions $ \Omega_o^\alpha $ or $ \Omega^\alpha-\Omega_o^\alpha $. Furthermore, the unique solution makes $ E^{\alpha} = E^{*\alpha} $ and $ H^{\alpha} = H^{*\alpha} $ without singular fields at same region of the space. Analyticity of the fractional time-harmonic electromagnetic field within lossy or lossless dielectric regions is proven.
[1] | N. Engheta, On the role of fractional calculus in electromagnetic theory, IEEE Antennas Propag. Mag., 39 (1997), 35–46. https://doi.org/10.1109/74.632994 doi: 10.1109/74.632994 |
[2] | V. E. Tarasov, Electromagnetic fields on fractals, Mod. Phys. Lett. A, 21 (2006), 1587–1600. https://doi.org/10.1142/S0217732306020974 doi: 10.1142/S0217732306020974 |
[3] | D. Baleanu, A. K. Golmankhaneh, A. K. Golmankhaneh, M. C. Baleanu, Fractional electromagnetic equations using fractional forms, Int. J. Theor. Phys., 48 (2009), 3114–3123. https://doi.org/10.1007/s10773-009-0109-8 doi: 10.1007/s10773-009-0109-8 |
[4] | M. Zubair, M. J. Mughal, Q. A. Naqvi, The wave equation and general plane wave solutions in fractional space, Prog. Electromagn. Res. Lett., 19 (2010), 137–146. https://doi.org/10.2528/PIERL10102103 doi: 10.2528/PIERL10102103 |
[5] | D. Baleanu, A. K. Golmankhaneh, A. K. Golmankhaneh, On electromagnetic field in fractional space, Nonlinear Anal., 11 (2010), 288–292. https://doi.org/10.1016/j.nonrwa.2008.10.058 doi: 10.1016/j.nonrwa.2008.10.058 |
[6] | A. R. Ali, M. N. Alam, M. W. Parven, Unveiling optical soliton solutions and bifurcation analysis in the space-time fractional Fokas-Lenells equation via SSE approach, Sci. Rep., 14 (2024), 2000. https://doi.org/10.1038/s41598-024-52308-9 doi: 10.1038/s41598-024-52308-9 |
[7] | M. Zubair, M. J. Mughal, Q. A. Naqvi, On electromagnetic wave propagation in fractional space, Nonlinear Anal., 12 (2011), 2844–2850. https://doi.org/10.1016/j.nonrwa.2011.04.010 doi: 10.1016/j.nonrwa.2011.04.010 |
[8] | X. Yang, D. Baleanu, H. M. Srivastava, Local fractional integral transforms and their applications, Academic Press, 2016. https://doi.org/10.1016/B978-0-12-804002-7.09994-0 |
[9] | X. Yang, D. Baleanu, G. Feng, New analytical solutions for Klein-Gordon and Helmholtz equations in fractal dimensional space, Proc. Romanian Acad., 18 (2016), 231–238. |
[10] | C. Rong, B. Zhang, Fractional electromagnetic waves in circular waveguides with fractional-order inductance characteristics, J. Electromagn. Waves Appl., 33 (2019), 2142–2154. https://doi.org/10.1080/09205071.2019.1664335 doi: 10.1080/09205071.2019.1664335 |
[11] | T. P. Stefánski, J. Gulgowski, Fundamental properties of solutions to fractional-order Maxwell's equations, J. Electromagn. Waves Appl., 34 (2020), 1955–1976. https://doi.org/10.1080/09205071.2020.1801520 doi: 10.1080/09205071.2020.1801520 |
[12] | O. M. Abo-Seida, N. T. M. El-Dabe, A. R. Ali, G. A. Shalaby, Cherenkov FEL reaction with plasma-filled cylindrical waveguide in fractional $D$-dimensional space, IEEE Trans. Plasma Sci., 49 (2021), 2070–2079. https://doi.org/10.1109/TPS.2021.3084904 doi: 10.1109/TPS.2021.3084904 |
[13] | S. Khan, F. M. A. Khan, G. A. Noor, General solution for electromagnetic wave propagation in cylindrical waveguide filled with fractional space, Waves Random Complex Media, 33 (2023), 49–61. https://doi.org/10.1080/17455030.2021.1874076 doi: 10.1080/17455030.2021.1874076 |
[14] | O. M. Abo-Seida, N. T. El-Dabe, A. E. H. Naby, M. S. Ibrahim, A. R. Ali, Influence of diamond and silver as cavity resonator wall materials on resonant frequency, J. Commun. Sci. Inf. Technol., 1 (2023), 1–4. https://doi.org/10.21608/jcsit.2023.306699 doi: 10.21608/jcsit.2023.306699 |
[15] | M. U. M. Maya, M. N. Alam, A. R. Ali, Influence of magnetic field on MHD mixed convection in lid-driven cavity with heated wavy bottom surface, Sci. Rep., 13 (2023), 18959. https://doi.org/10.1038/s41598-023-45707-x doi: 10.1038/s41598-023-45707-x |
[16] | N. T. El-Dabe, A. R. Ali, A. A. El-Shekhipy, Influence of thermophoresis on unsteady MHD flow of radiation absorbing Kuvshinski fluid with non-linear heat and mass transfer, Amer. J. Heat Mass Transfer., 2017. https://doi.org/10.7726/ajhmt.2017.1010 doi: 10.7726/ajhmt.2017.1010 |
[17] | X. Yang, Advanced local fractional calculus and its applications, World Science Publisher, 2012. |
[18] | M. H. Khan, S. Islam, A. R. Ali, Certain results associated with lump and periodic-soliton solutions for (2+1)-D Calogero-Bogoyavlenskii-Schiff equation, J. Appl. Math. Stat. Anal., 4 (2023), 43–57. https://doi.org/10.5281/zenodo.8310669 doi: 10.5281/zenodo.8310669 |
[19] | O. M. Abo-Seida, N. T. El-Dabe, A. R. Ali, G. A. Shalaby, Far-Field, radiation resistance and temperature of Hertzian Dipole Antenna in lossless medium with momentum and energy flow in the Far-Zone, J. Adv. Phys., 18 (2020), 20–28. https://doi.org/10.24297/jap.v18i.8803 doi: 10.24297/jap.v18i.8803 |
[20] | N. T. M. El-Dabe, A. R. Ali, A. A. El-Shekhipy, G. A. Shalaby, Non-linear heat and mass transfer of second grade fluid flow with hall currents and thermophoresis effects, Appl. Math. Inf. Sci., 11 (2017), 267–280. https://doi.org/10.18576/amis/110133 doi: 10.18576/amis/110133 |
[21] | H. Nasrolahpour, A note on fractional electrodynamics, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 2589–2593. https://doi.org/10.1016/j.cnsns.2013.01.005 doi: 10.1016/j.cnsns.2013.01.005 |
[22] | F. A. A. El-Salam, Fractional approach of Maxwell equations in the curved space-time, J. Taibah Univ. Sci., 7 (2013), 173–179. https://doi.org/10.1016/j.jtusci.2013.04.005 doi: 10.1016/j.jtusci.2013.04.005 |
[23] | S. Caorsi, M. Raffetto, Uniqueness of the solution of electromagnetic boundary-value problems in the presence of lossy and piecewise homogeneous lossless dielectrics, IEEE Trans. Microwave Theory Tech., 46 (1998), 1353–1359. https://doi.org/10.1109/22.721135 doi: 10.1109/22.721135 |
[24] | O. M. Abo-Seida, Uniqueness solution for the boundary value problem defined by specifying the components of the electromagnetic field, Appl. Math. Comput., 132 (2002), 553–558. https://doi.org/10.1016/S0096-3003(01)00211-9 doi: 10.1016/S0096-3003(01)00211-9 |
[25] | O. M. Abo-Seida, Determination of the boundary value problem of the electromagnetic field over a closed regular boundary, Chaos Solitons Fract., 17 (2003), 843–846. https://doi.org/10.1016/S0960-0779(02)00480-0 doi: 10.1016/S0960-0779(02)00480-0 |
[26] | S. Islam, B. Halder, A. R. Ali, Optical and rogue type soliton solutions of the (2+1) dimensional nonlinear Heisenberg ferromagnetic spin chains equation, Sci. Rep., 13 (2023), 9906. https://doi.org/10.1038/s41598-023-36536-z doi: 10.1038/s41598-023-36536-z |
[27] | X. Yang, A. Alsolami, A. R. Ali, An even entire function of order one is a special solution for a classical wave equation in one-dimensional space, Therm. Sci., 27 (2023), 491–495. https://doi.org/10.2298/TSCI221111008Y doi: 10.2298/TSCI221111008Y |
[28] | A. R. Ali, N. T. M. El-Dabe, A. E. H. A. E. Naby, M. Ibrahim, O. M. Abo-Seida, EM wave propagation within plasma-filled rectangular waveguide using fractional space and LFD, Eur. Phys. J. Spec. Top., 232 (2023), 2531–2537. https://doi.org/10.1140/epjs/s11734-023-00934-1 doi: 10.1140/epjs/s11734-023-00934-1 |
[29] | R. K. Maurya, V. Devi, V. K. Singh, Multistep schemes for one and two dimensional electromagnetic wave models based on fractional derivative approximation, J. Comput. Appl. Math., 380 (2020), 112985. https://doi.org/10.1016/j.cam.2020.112985 doi: 10.1016/j.cam.2020.112985 |
[30] | R. K. Maurya, V. Devi, V. K. Singh, Stability and convergence of multistep schemes for 1D and 2D fractional model with nonlinear source term, Appl. Math. Modell., 89 (2021), 1721–1746. https://doi.org/10.1016/j.apm.2020.08.038 doi: 10.1016/j.apm.2020.08.038 |
[31] | A. P. Singh, R. K. Maurya, V. K. Singh, Analysis of a robust implicit scheme for spacetime fractional stochastic nonlinear diffusion wave model, Int. J. Comput. Math., 100 (2023), 1625–1645. https://doi.org/10.1080/00207160.2023.2207677 doi: 10.1080/00207160.2023.2207677 |
[32] | R. Jan, N. N. A. Razak, S. Boulaaras, K. Rajagopal, Z. Khan, Y. Almalki, Fractional perspective evaluation of chikungunya infection with saturated incidence functions, Alex. Eng. J., 83 (2023), 35–42. https://doi.org/10.1016/j.aej.2023.10.036 doi: 10.1016/j.aej.2023.10.036 |
[33] | A. Jan, S. Boulaaras, F. A. Abdullah, R. Jan, Dynamical analysis, infections in plants, and preventive policies utilizing the theory of fractional calculus, Eur. Phys. J. Spec. Top., 232 (2023), 2497–2512. https://doi.org/10.1140/epjs/s11734-023-00926-1 doi: 10.1140/epjs/s11734-023-00926-1 |
[34] | R. Jan, S. Qureshi, S. Boulaaras, V. T. Pham, E. Hincal, R. Guefaifia, Optimization of the fractional-order parameter with the error analysis for human immunodeficiency virus under Caputo operator, Discrete Contin. Dyn. Syst., 16 (2023), 2118–2140. https://doi.org/10.3934/dcdss.2023010 doi: 10.3934/dcdss.2023010 |
[35] | O. M. Abo-Seida, The analyticity of the electromagnetic field in an isotropic medium, Appl. Math. Comput., 127 (2002), 361–364. https://doi.org/10.1016/S0096-3003(01)00014-5 doi: 10.1016/S0096-3003(01)00014-5 |
[36] | S. Caorsi, M. Raffetto, Analyticity of electromagnetic fields in regions characterized by analytic dielectric parameters and analytic sources, IEEE Trans. Microwave Theory Tech., 45 (1997), 1805–1807. https://doi.org/10.1109/22.641760 doi: 10.1109/22.641760 |
[37] | A. R. Ali, K. Rafique, M. Imtiaz, R. Jan, H. Alotaibi, I. Mekawy, Exploring magnetic and thermal effects on MHD bio-viscosity flow at the lower stagnation point of a solid sphere using Keller box technique, Partial Differ. Equations Appl. Math., 9 (2024) 100601. https://doi.org/10.1016/j.padiff.2023.100601 doi: 10.1016/j.padiff.2023.100601 |