Research article

Random Caputo-Fabrizio fractional differential inclusions

  • Received: 22 April 2021 Accepted: 06 June 2021 Published: 22 June 2021
  • This paper deals with some existence and Ulam stability results for Caputo-Fabrizio type fractional differential inclusions with convex and non-convex right hand side. We employ some multi-valued random fixed point theorems and the notion of the generalized Ulam-Hyers-Rassias stability. Next we present two examples in the last section.

    Citation: Saïd Abbas, Mouffak Benchohra, Johnny Henderson. Random Caputo-Fabrizio fractional differential inclusions[J]. Mathematical Modelling and Control, 2021, 1(2): 102-111. doi: 10.3934/mmc.2021008

    Related Papers:

  • This paper deals with some existence and Ulam stability results for Caputo-Fabrizio type fractional differential inclusions with convex and non-convex right hand side. We employ some multi-valued random fixed point theorems and the notion of the generalized Ulam-Hyers-Rassias stability. Next we present two examples in the last section.



    加载中


    [1] S. Abbas, M. Benchohra, H. Gorine, Caputo-Fabrizio fractional differential equations in Fréchet spaces, Bulletin Transilvania Univ. Brașov, 13 (2020), 373–386.
    [2] S. Abbas, M. Benchohra, J.R. Graef, J. Henderson, Implicit Fractional Differential and Integral Equations: Existence and Stability, De Gruyter, Berlin, 2018.
    [3] S. Abbas, M. Benchohra, J. Henderson, Coupled Caputo-Fabrizio fractional differential systems in generalized Banach spaces, Malaya J. Math., 9 (2021), 20-25. doi: 10.26637/MJM0901/0003
    [4] S. Abbas, M. Benchohra, G.M. N'Guérékata, Topics in Fractional Differential Equations, Springer, New York, 2012.
    [5] S. Abbas, M. Benchohra, G.M. N'Guérékata, Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York, 2015.
    [6] S. Abbas, M. Benchohra, J.J. Nieto, Caputo-Fabrizio fractional differential equations with instantaneous impulses, AIMS Math., 6 (2021), 2932–2946. doi: 10.3934/math.2021177
    [7] S. Abbas, M. Benchohra, A. Petrusel, Ulam stabilities for the Darboux problem for partial fractional differential inclusions via Picard Operators, Electron. J. Qual. Theory Differ. Equ., 1 (2014), 1–13.
    [8] S. Abbas, M. Benchohra, S. Sivasundaram, Ulam stability for partial fractional differential inclusions with multiple delay and impulses via Picard operators, J. Nonlinear Stud., 20 (2013), 623–641.
    [9] S.M. Aydogan, J.F. Gomez Aguilar, D. Baleanu, S. Rezapour, M.E. Samei, Approximate endpoint solutions for a class of fractional $q$-differential inclusions by computational results, Fractals, 28 (2020), 2040029. doi: 10.1142/S0218348X20400290
    [10] F. Bekada, S. Abbas, M. Benchohra, Boundary value problem for Caputo–Fabrizio random fractional differential equations, Moroccan J. Pure Appl. Anal. (MJPAA), 6 (2020), 218–230. doi: 10.2478/mjpaa-2020-0017
    [11] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Frac. Differ. Appl., 1 (2015), 73–78.
    [12] C. Castaing, M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics 580, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
    [13] B.C. Dhage, Multi-valued condensing random operators and functional random integral inclusions, Opuscula Math., 31 (2011), 27–48. doi: 10.7494/OpMath.2011.31.1.27
    [14] S. Etemad, S. Rezapour, M.E. Samei, On fractional hybrid and non-hybrid multi-term integro-differential inclusions with three-point integral hybrid boundary conditions, Adv. Differ. Equ., 2020 (2020), 161. doi: 10.1186/s13662-020-02627-8
    [15] S. Etemad, S. Rezapour, M. E. Samei, On a fractional Caputo–Hadamard inclusion problem with sum boundary value conditions by using approximate endpoint property, Math. Methods Appl. Sciences, 43 (2020), 9719–9734. doi: 10.1002/mma.6644
    [16] A. Granas, J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.
    [17] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., 27 (1941), 222–224. doi: 10.1073/pnas.27.4.222
    [18] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.
    [19] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York, 2011.
    [20] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006.
    [21] S. Krim, S. Abbas, M. Benchohra, M. A. Darwish, Boundary value problem for implicit Caputo–Fabrizio fractional differential equations, Int. J. Difference Equ., 15 (2020), 493–510.
    [22] J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 87–92.
    [23] A. Nowak, Applications of random fixed point theorem in the theory of generalized random differential equations, Bull. Polish. Acad. Sci., 34 (1986), 487–494.
    [24] T. P. Petru, A. Petrusel, J.-C. Yao, Ulam-Hyers stability for operatorial equations and inclusions via nonself operators, Taiwanese J. Math., 15 (2011), 2169–2193.
    [25] Th. M. Rassias, On the stability of linear mappings in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300. doi: 10.1090/S0002-9939-1978-0507327-1
    [26] I. A. Rus, Ulam stability of ordinary differential equations, Studia Univ. Babes-Bolyai, Math., 4 (2009), 125–133.
    [27] I. A. Rus, Remarks on Ulam stability of the operatorial equations, Fixed Point Th., 10 (2009), 305–320.
    [28] M. E. Samei, V. Hedayati, S. Rezapour, Existence results for a fraction hybrid differential inclusion with Caputo-Hadamard type fractional derivative, Adv. Differ. Equ., 2019 (2019), 163. doi: 10.1186/s13662-019-2090-8
    [29] M. E. Samei, V. Hedayati, G. Khalilzadeh Ranjbar, The existence of solution for $k$-dimensional system of Langevin Hadamard-type fractional differential inclusions with $2k$ different fractional orders, Mediterr. J. Math., 17 (2020), 37. doi: 10.1007/s00009-019-1471-2
    [30] M. E. Samei, S. Rezapour, On a system of fractional q-differential inclusions via sum of two multi-term functions on a time scale, Bound. Value Probl., 2020 (2020), 135. doi: 10.1186/s13661-020-01433-1
    [31] M. E. Samei, S. Rezapour, On a fractional $q$-differential inclusion on a time scale via endpoints and numerical calculations, Adv. Differ. Equ., 2020 (2020), 460. doi: 10.1186/s13662-020-02923-3
    [32] V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg; Higher Education Press, Beijing, 2010.
    [33] S. M. Ulam, A Collection of Mathematical Problems, Interscience Publishers, New York, 1968.
    [34] Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.
    [35] Y. Zhou, Fractional Evolution Equations and Inclusions: Analysis and Control, Elsevier Science, 2016.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2499) PDF downloads(162) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog