This paper deals with some existence and Ulam stability results for Caputo-Fabrizio type fractional differential inclusions with convex and non-convex right hand side. We employ some multi-valued random fixed point theorems and the notion of the generalized Ulam-Hyers-Rassias stability. Next we present two examples in the last section.
Citation: Saïd Abbas, Mouffak Benchohra, Johnny Henderson. Random Caputo-Fabrizio fractional differential inclusions[J]. Mathematical Modelling and Control, 2021, 1(2): 102-111. doi: 10.3934/mmc.2021008
This paper deals with some existence and Ulam stability results for Caputo-Fabrizio type fractional differential inclusions with convex and non-convex right hand side. We employ some multi-valued random fixed point theorems and the notion of the generalized Ulam-Hyers-Rassias stability. Next we present two examples in the last section.
[1] | S. Abbas, M. Benchohra, H. Gorine, Caputo-Fabrizio fractional differential equations in Fréchet spaces, Bulletin Transilvania Univ. Brașov, 13 (2020), 373–386. |
[2] | S. Abbas, M. Benchohra, J.R. Graef, J. Henderson, Implicit Fractional Differential and Integral Equations: Existence and Stability, De Gruyter, Berlin, 2018. |
[3] | S. Abbas, M. Benchohra, J. Henderson, Coupled Caputo-Fabrizio fractional differential systems in generalized Banach spaces, Malaya J. Math., 9 (2021), 20-25. doi: 10.26637/MJM0901/0003 |
[4] | S. Abbas, M. Benchohra, G.M. N'Guérékata, Topics in Fractional Differential Equations, Springer, New York, 2012. |
[5] | S. Abbas, M. Benchohra, G.M. N'Guérékata, Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York, 2015. |
[6] | S. Abbas, M. Benchohra, J.J. Nieto, Caputo-Fabrizio fractional differential equations with instantaneous impulses, AIMS Math., 6 (2021), 2932–2946. doi: 10.3934/math.2021177 |
[7] | S. Abbas, M. Benchohra, A. Petrusel, Ulam stabilities for the Darboux problem for partial fractional differential inclusions via Picard Operators, Electron. J. Qual. Theory Differ. Equ., 1 (2014), 1–13. |
[8] | S. Abbas, M. Benchohra, S. Sivasundaram, Ulam stability for partial fractional differential inclusions with multiple delay and impulses via Picard operators, J. Nonlinear Stud., 20 (2013), 623–641. |
[9] | S.M. Aydogan, J.F. Gomez Aguilar, D. Baleanu, S. Rezapour, M.E. Samei, Approximate endpoint solutions for a class of fractional $q$-differential inclusions by computational results, Fractals, 28 (2020), 2040029. doi: 10.1142/S0218348X20400290 |
[10] | F. Bekada, S. Abbas, M. Benchohra, Boundary value problem for Caputo–Fabrizio random fractional differential equations, Moroccan J. Pure Appl. Anal. (MJPAA), 6 (2020), 218–230. doi: 10.2478/mjpaa-2020-0017 |
[11] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Frac. Differ. Appl., 1 (2015), 73–78. |
[12] | C. Castaing, M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics 580, Springer-Verlag, Berlin-Heidelberg-New York, 1977. |
[13] | B.C. Dhage, Multi-valued condensing random operators and functional random integral inclusions, Opuscula Math., 31 (2011), 27–48. doi: 10.7494/OpMath.2011.31.1.27 |
[14] | S. Etemad, S. Rezapour, M.E. Samei, On fractional hybrid and non-hybrid multi-term integro-differential inclusions with three-point integral hybrid boundary conditions, Adv. Differ. Equ., 2020 (2020), 161. doi: 10.1186/s13662-020-02627-8 |
[15] | S. Etemad, S. Rezapour, M. E. Samei, On a fractional Caputo–Hadamard inclusion problem with sum boundary value conditions by using approximate endpoint property, Math. Methods Appl. Sciences, 43 (2020), 9719–9734. doi: 10.1002/mma.6644 |
[16] | A. Granas, J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003. |
[17] | D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., 27 (1941), 222–224. doi: 10.1073/pnas.27.4.222 |
[18] | S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001. |
[19] | S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York, 2011. |
[20] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006. |
[21] | S. Krim, S. Abbas, M. Benchohra, M. A. Darwish, Boundary value problem for implicit Caputo–Fabrizio fractional differential equations, Int. J. Difference Equ., 15 (2020), 493–510. |
[22] | J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 87–92. |
[23] | A. Nowak, Applications of random fixed point theorem in the theory of generalized random differential equations, Bull. Polish. Acad. Sci., 34 (1986), 487–494. |
[24] | T. P. Petru, A. Petrusel, J.-C. Yao, Ulam-Hyers stability for operatorial equations and inclusions via nonself operators, Taiwanese J. Math., 15 (2011), 2169–2193. |
[25] | Th. M. Rassias, On the stability of linear mappings in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300. doi: 10.1090/S0002-9939-1978-0507327-1 |
[26] | I. A. Rus, Ulam stability of ordinary differential equations, Studia Univ. Babes-Bolyai, Math., 4 (2009), 125–133. |
[27] | I. A. Rus, Remarks on Ulam stability of the operatorial equations, Fixed Point Th., 10 (2009), 305–320. |
[28] | M. E. Samei, V. Hedayati, S. Rezapour, Existence results for a fraction hybrid differential inclusion with Caputo-Hadamard type fractional derivative, Adv. Differ. Equ., 2019 (2019), 163. doi: 10.1186/s13662-019-2090-8 |
[29] | M. E. Samei, V. Hedayati, G. Khalilzadeh Ranjbar, The existence of solution for $k$-dimensional system of Langevin Hadamard-type fractional differential inclusions with $2k$ different fractional orders, Mediterr. J. Math., 17 (2020), 37. doi: 10.1007/s00009-019-1471-2 |
[30] | M. E. Samei, S. Rezapour, On a system of fractional q-differential inclusions via sum of two multi-term functions on a time scale, Bound. Value Probl., 2020 (2020), 135. doi: 10.1186/s13661-020-01433-1 |
[31] | M. E. Samei, S. Rezapour, On a fractional $q$-differential inclusion on a time scale via endpoints and numerical calculations, Adv. Differ. Equ., 2020 (2020), 460. doi: 10.1186/s13662-020-02923-3 |
[32] | V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg; Higher Education Press, Beijing, 2010. |
[33] | S. M. Ulam, A Collection of Mathematical Problems, Interscience Publishers, New York, 1968. |
[34] | Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014. |
[35] | Y. Zhou, Fractional Evolution Equations and Inclusions: Analysis and Control, Elsevier Science, 2016. |