Function spaces are significant in the study and application of mathematical inequalities. The objective of this article is to develop several new bounds and refinements for well-known inequalities that involve Hilbert spaces within a tensorial framework. Using self-adjoint operators in tensor Hilbert spaces, we developed Simpson type inequalities by using different types of generalized convex mappings. Our next step involved developing a variety of new variations of the Hermite and Hadamard inequalities using convex mappings with some special means, specifically arithmetic and geometric means. Furthermore, we developed a number of new fractional identities, which are used in our main findings, by using Riemann-Liouville integrals. In addition, we discuss some examples involving log convex functions and their consequences.
Citation: Zareen A. Khan, Waqar Afzal, Mujahid Abbas, Jongsuk Ro, Najla M. Aloraini. A novel fractional approach to finding the upper bounds of Simpson and Hermite-Hadamard-type inequalities in tensorial Hilbert spaces by using differentiable convex mappings[J]. AIMS Mathematics, 2024, 9(12): 35151-35180. doi: 10.3934/math.20241671
Function spaces are significant in the study and application of mathematical inequalities. The objective of this article is to develop several new bounds and refinements for well-known inequalities that involve Hilbert spaces within a tensorial framework. Using self-adjoint operators in tensor Hilbert spaces, we developed Simpson type inequalities by using different types of generalized convex mappings. Our next step involved developing a variety of new variations of the Hermite and Hadamard inequalities using convex mappings with some special means, specifically arithmetic and geometric means. Furthermore, we developed a number of new fractional identities, which are used in our main findings, by using Riemann-Liouville integrals. In addition, we discuss some examples involving log convex functions and their consequences.
[1] | C. Wang, L. Yang, M. Hu, Y. Wang, Z. Zhao, On-demand airport slot management: Tree-structured capacity profile and coadapted fire-break setting and slot allocation, Transp. Sci., 2024 (2024), 1–35. https://doi.org/10.1080/23249935.2024.2393224 doi: 10.1080/23249935.2024.2393224 |
[2] | J. Zhao, P. K. Wong, Z. Xie, X. Ma, X. Hua, Design and control of an automotive variable hydraulic damper using cuckoo search optimized PID method, Int. J. Auto. Tech., 20 (2019), 51–63. https://doi.org/10.1007/s12239-019-0005-z doi: 10.1007/s12239-019-0005-z |
[3] | W. Li, Z. Xie, J. Zhao, P. K. Wong, Velocity-based robust fault tolerant automatic steering control of autonomous ground vehicles via adaptive event triggered network communication, Mech. Syst. Signal Pr., 143 (2020), 106798. https://doi.org/10.1016/j.ymssp.2020.106798 doi: 10.1016/j.ymssp.2020.106798 |
[4] | Y. Hu, Y. Sugiyama, Well-posedness of the initial-boundary value problem for 1D degenerate quasilinear wave equations, Adv. Differential Equ., 30 (2024), 177–206. https://doi.org/10.57262/ade030-0304-177 doi: 10.57262/ade030-0304-177 |
[5] | Y. Cao, Z. Xie, W. Li, X. Wang, P. K. Wong, J. Zhao, Combined path following and direct yaw-moment control for unmanned electric vehicles based on event-triggered T-S fuzzy method, Int. J. Fuzzy Syst., 26 (2024), 2433–2448. https://doi.org/10.1007/s40815-024-01717-z doi: 10.1007/s40815-024-01717-z |
[6] | J. Liu, Z. Xie, J. Zhao, P. K. Wong, Probabilistic adaptive dynamic programming for optimal reliability-critical control with fault interruption estimation, IEEE T. Ind. Inform., 20 (2024), 10472105. https://doi.org/10.1109/TII.2024.3369714 doi: 10.1109/TII.2024.3369714 |
[7] | Z. Xie, S. Li, P. K. Wong, W. Li, J. Zhao, An improved gain-scheduling robust MPC for path following of autonomous independent-drive electric vehicles with time-varying and uncertainties, Vehicle Syst. Dyn., 2024 (2024), 1–27. https://doi.org/10.1080/00423114.2024.2351574 doi: 10.1080/00423114.2024.2351574 |
[8] | S. Chu, Z. Xie, P. K Wong, P. Li, W. Li, J Zhao, An improved gain-scheduling robust MPC for path following of autonomous independent-drive electric vehicles with time-varying and uncertainties, Vehicle Syst. Dyn., 60 (2022), 1602–1626. https://doi.org/10.1080/00423114.2020.1864419 doi: 10.1080/00423114.2020.1864419 |
[9] | J. Liu, Z. Xie, J. Gao, Y. Hu, J. Zhao, Failure characteristics of the active-passive damping in the functionally graded piezoelectric layers-magnetorheological elastomer sandwich structure, Int. J. Mech. Sci., 215 (2022), 106944. https://doi.org/10.1016/j.ijmecsci.2021.106944 doi: 10.1016/j.ijmecsci.2021.106944 |
[10] | K. Ma, Z. Xie, P. K. Wong, W. Li, S. Chu, J. Zhao, Robust Takagi-Sugeno fuzzy fault tolerant control for vehicle lateral dynamics stabilization with integrated actuator fault and time delay, J. Dyn. Syst., Meas. Control, 144 (2022), 021002. https://doi.org/10.1115/1.4052273 doi: 10.1115/1.4052273 |
[11] | Y. Xu, Z. Xie, J. Zhao, W. Li, P. Li, P. K. Wong, Robust non-fragile finite frequency H control for uncertain active suspension systems with time-delay using TS fuzzy approach, J. Frank. Inst., 358 (2021), 4209–4238. https://doi.org/10.1016/j.jfranklin.2021.03.019 doi: 10.1016/j.jfranklin.2021.03.019 |
[12] | T. Zhang, X. L. Shi, Q. Hu, H. Gong, K. Shi, Z. Li, Ultrahigh-performance Fiber-supported iron-based ionic liquid for synthesizing 3, 4-dihydropyrimidin-2-(1H)-ones in a cleaner manner, Langmuir, 18 (2024), 9579–9591. https://doi.org/10.1021/acs.langmuir.4c00332 doi: 10.1021/acs.langmuir.4c00332 |
[13] | H. Kara, H. Budak, M. A. Ali, M. Z. Sarikaya, Y. M. Chu, Weighted Hermite-Hadamard type inclusions for products of co-ordinated convex interval-valued functions, Adv. Differential Equ., 2021 (2021), 104. https://doi.org/10.1186/s13662-021-03261-8 doi: 10.1186/s13662-021-03261-8 |
[14] | W. Afzal, M. Abbas, D. Breaz, L. I. Cotîrlă, Fractional Hermite-Hadamard, Newton-Milne, and convexity involving arithmetic-geometric mean-type inequalities in Hilbert and mixed-norm Morrey spaces $\ell_{\mathtt{q}(\cdot)}\left(\mathtt{M}_{\mathtt{p}(\cdot) \mathtt{v}(\cdot)}\right)$ with variable exponents, Fractal Fract., 8 (2024), 1–32. https://doi.org/10.3390/fractalfract8090518 doi: 10.3390/fractalfract8090518 |
[15] | T. S. Du, Y. J. Li, Z. Q. Yang, A generalization of Simpson's inequality via differentiable mapping using extended $(s, m)$-convex functions, Appl. Math. Comput., 293 (2017), 358–369. https://doi.org/10.1016/j.amc.2016.08.045 doi: 10.1016/j.amc.2016.08.045 |
[16] | Z. A. Khan, W. Afzal, M. Abbas, J. S. Ro, A. A. Zaagan, Some well known inequalities on two dimensional convex mappings by means of pseudo $\mathcal{L-R}$ interval order relations via fractional integral operators having non-singular kernel, AIMS Math., 9 (2024), 16061–16092. https://doi.org/10.3934/math.2024778 doi: 10.3934/math.2024778 |
[17] | D. F. Zhao, M. A. Ali, G. Murtaza, Z. Y. Zhang, On the Hermite-Hadamard inequalities for interval-valued coordinated convex functions, Adv. Differential Equ., 2020 (2020), 570. http://dx.doi.org/10.1186/s13662-020-03028-7 doi: 10.1186/s13662-020-03028-7 |
[18] | S. Q. Hasan, Holders inequality $\rho$-mean continuity for existence and uniqueness solution of fractional multi-integrodifferential delay system, J. Math., 2020 (2020), 1–16. https://doi.org/10.1155/2020/1819752 doi: 10.1155/2020/1819752 |
[19] | M. Alomari, M. Darus, Co-ordinated s-convex function in the first sense with some Hadamard-type inequalities, Int. J. Contemp. Math. Sci., 3 (2008), 1557–1567. |
[20] | S. Sitho, M. A. Ali, H. Budak, S. K. Ntouyas, J. Tariboon, Trapezoid and Midpoint type inequalities for preinvex functions via quantum calculus, Mathematics, 9 (2021), 1666. https://doi.org/10.3390/math9141666 doi: 10.3390/math9141666 |
[21] | V. Stojiljković, R. Ramaswamy, O. A. A. Abdelnaby, S. Radenović, Some refinements of the tensorial inequalities in Hilbert spaces, Mathematics, 15 (2023), 925. https://doi.org/10.3390/sym15040925 doi: 10.3390/sym15040925 |
[22] | Z. A. Khan, W. Afzal, W. Nazeer, J. K. K. Asamoah, Some new variants of Hermite-Hadamard and Fejér-type inequalities for Godunova-Levin preinvex class of interval-valued functions, J. Math., 2024 (2024), 8814585. https://doi.org/10.1155/2024/8814585 doi: 10.1155/2024/8814585 |
[23] | P. O. Mohammed, I. Brevik, A new version of the Hermite-Hadamard inequality for Riemann-Liouville fractional integrals, Symmetry, 12 (2020), 610. https://doi.org/10.3390/sym12040610 doi: 10.3390/sym12040610 |
[24] | W. Afzal, D. Breaz, M. Abbas, L. I. Cotîrlă, Z. A. Khan, E. Rapeanu, Hyers-Ulam stability of $2D$-convex mappings and some related new Hermite-Hadamard, Pachpatte, and Fejér type integral inequalities using novel fractional integral operators via totally interval-order relations with open problem, Mathematics, 12 (2024), 1–33. https://doi.org/10.3390/math12081238 doi: 10.3390/math12081238 |
[25] | D. Khan, S. I. Butt, Superquadraticity and its fractional perspective via center-radius $cr$-order relation, Chaos Soliton. Fract., 182 (2024), 114821. https://doi.org/10.1016/j.chaos.2024.114821 doi: 10.1016/j.chaos.2024.114821 |
[26] | A. Fahad, Y. H. Wang, Z. Ali, R. Hussain, S. Furuichi, Exploring properties and inequalities for geometrically arithmetically-Cr-convex functions with Cr-order relative entropy, Inform. Sci., 662 (2024), 120219. https://doi.org/10.1016/j.ins.2024.120219 doi: 10.1016/j.ins.2024.120219 |
[27] | W. Afzal, W. Nazeer, T. Botmart, S. Treanţă, Some properties and inequalities for generalized class of harmonical Godunova-Levin function via center radius order relation, AIMS Math., 8 (2023), 1696–1712. http://dx.doi.org/10.3934/math.2023087 doi: 10.3934/math.2023087 |
[28] | W. Liu, F. F. Shi, G. J. Ye, D. F. Zhao, Some inequalities for $cr$-log-$h$-convex functions, J. Inequal. Appl., 2022 (2022), 160. https://doi.org/10.1186/s13660-022-02900-2 doi: 10.1186/s13660-022-02900-2 |
[29] | W. Afzal, M. Abbas, J. E. Macías-Díaz, S. Treanţă, Some H-Godunova-Levin function inequalities using center radius (Cr) order relation, Fractal Fract., 6 (2022), 1–14. https://doi.org/10.3390/fractalfract6090518 doi: 10.3390/fractalfract6090518 |
[30] | H. M. Srivastava, S. K. Sahoo, P. O. Mohammed, D. Baleanu, B. Kodamasingh, Hermite-Hadamard type inequalities for interval-valued preinvex functions via fractional integral operators, Int. J. Comput. Intell. Syst., 15 (2022), 8. https://doi.org/10.1007/s44196-021-00061-6 doi: 10.1007/s44196-021-00061-6 |
[31] | Y. Zhang, Multi-slicing strategy for the three-dimensional discontinuity layout optimization (3D DLO), Int. J. Numer. Anal. Met., 41 (2017), 488–507. https://doi.org/10.1002/nag.2566 doi: 10.1002/nag.2566 |
[32] | H. Kara, H. Budak, M. A. Ali, F. Hezenci, On inequalities of Simpsons type for convex functions via generalized fractional integrals, Commun. Fac. Sci. Univ., 71 (2022), 806–825. https://doi.org/10.31801/cfsuasmas.1004300 doi: 10.31801/cfsuasmas.1004300 |
[33] | M. A. Ali, H. Budak, Z. Zhang, H. Yildirim, Some new Simpson's type inequalities for coordinated convex functions in quantum calculus, Math. Method. App. Sci., 44 (2021), 4515–4540. https://doi.org/10.1002/mma.7048 doi: 10.1002/mma.7048 |
[34] | A. A. H. Ahmadini, W. Afzal, M. Abbas, E. S. Aly, Weighted Fejér, Hermite-Hadamard, and Trapezium-type inequalities for $(h_1, h_2)$-Godunova-Levin preinvex function with applications and two open problems, Mathematics, 12 (2024), 1–28. https://doi.org/10.3390/math12030382 doi: 10.3390/math12030382 |
[35] | A. A. Almoneef, A. A. Hyder, F. Hezenci, H. Budak, Simpson-type inequalities by means of tempered fractional integrals, AIMS Math., 8 (2023), 29411–29423. http://doi.org/10.3934/math.20231505 doi: 10.3934/math.20231505 |
[36] | M. A. Ali, M. Abbas, H. Budak, P. Agarwal, G. Murtaza, Y. M. Chu, New quantum boundaries for quantum Simpson's and quantum Newton's type inequalities for preinvex functions, Adv. Differential Equ., 2021 (2021), 64. http://doi.org/10.1186/s13662-021-03226-x doi: 10.1186/s13662-021-03226-x |
[37] | T. Saeed, W. Afzal, M. Abbas, S. Treanţă, M. D. la Sen, Some new generalizations of integral inequalities for Harmonical $cr$-$(h_1, h_2)$-Godunova-Levin functions and applications, Mathematics, 10 (2022), 1–16. https://doi.org/10.3390/math10234540 doi: 10.3390/math10234540 |
[38] | M. A. Khan, S. Z. Ullah, Y. M. Chu, The concept of coordinate strongly convex functions and related inequalities, RACSAM Rev. R. Acad. A, 113 (2019), 2235–2251. https://doi.org/10.1007/s13398-018-0615-8 doi: 10.1007/s13398-018-0615-8 |
[39] | H. Budak, H. Kara, M. A. Ali, S. Khan, Y. M. Chu, Fractional Hermite-Hadamard-type inequalities for interval-valued co-ordinated convex functions, Open Math., 19 (2021), 1081–1097. https://doi.org/10.1515/math-2021-0067 doi: 10.1515/math-2021-0067 |
[40] | A. Almutairi, A. Kılıçman, New refinements of the Hadamard inequality on coordinated convex function, J. Inequal. Appl., 2019 (2019), 1–9. https://doi.org/10.1186/s13660-019-2143-2 doi: 10.1186/s13660-019-2143-2 |
[41] | W. Afzal, N. M. Aloraini, M. Abbas, J. S. Ro, A. A. Zaagan, Hermite-Hadamard, Fejér and trapezoid type inequalities using Godunova-Levin Preinvex functions via Bhunia's order and with applications to quadrature formula and random variable, Math. Biosci. Eng., 21 (2024), 3422–3447. https://doi.org/10.3934/mbe.2024151 doi: 10.3934/mbe.2024151 |
[42] | K. Shebrawi, Numerical radius inequalities for certain 2 × 2 operator matrices II, Linear Algebra App., 523 (2017), 1–12. https://doi.org/10.1016/j.laa.2017.02.019 doi: 10.1016/j.laa.2017.02.019 |
[43] | J. Liang, G. Shi, Some means inequalities for positive operators in Hilbert spaces, J. Inequal. Appl., 2017 (2017), 14. https://doi.org/10.1186/s13660-016-1283-x doi: 10.1186/s13660-016-1283-x |
[44] | N. Altwaijry, S. S. Dragomir, K. Feki, Hölder-Type inequalities for power series of operators in Hilbert spaces, Axioms, 13 (2024), 172. https://doi.org/10.3390/axioms13030172 doi: 10.3390/axioms13030172 |
[45] | X. Zhang, M. Usman, A. R. Irshad, M. Rashid, Investigating spatial effects through machine learning and leveraging explainable AI for child malnutrition in Pakistan, ISPRS Int. J. Geo.-Inf., 13 (2024), 330. https://doi.org/10.3390/ijgi13090330 doi: 10.3390/ijgi13090330 |
[46] | Y. Wang, Z. H. Huang, L. Qi, Global uniqueness and solvability of tensor variational inequalities, J. Optimiz. Theory App., 177 (2018), 137–152. https://doi.org/10.1007/s10957-018-1233-5 doi: 10.1007/s10957-018-1233-5 |
[47] | Y. Zhang, R. Lackner, M. Zeiml, H. A. Mang, Strong discontinuity embedded approach with standard SOS formulation: Element formulation, energy-based crack-tracking strategy, and validations, Comput. Method. Appl. M., 287 (2015), 335–366. https://doi.org/10.1016/j.cma.2015.02.001 doi: 10.1016/j.cma.2015.02.001 |
[48] | W. Afzal, M. Abbas, O. M. Alsalami, Bounds of different integral operators in tensorial Hilbert and variable exponent function spaces, Mathematics, 12 (2024), 1–33. https://doi.org/10.3390/math12162464 doi: 10.3390/math12162464 |
[49] | J. Liu, Z. Xie, J. Zhao, P. K Wong, Probabilistic adaptive dynamic programming for optimal reliability-critical control with fault interruption estimation, IEEE Trans. Ind. Inf., 20 (2024), 8524–8535. https://doi.org/10.1109/TII.2024.3369714 doi: 10.1109/TII.2024.3369714 |
[50] | S. Dragomır, Refinements and reverses of tensorial and Hadamard product inequalities for self-adjoint operators in Hilbert spaces related to Young's result, Commun. Adv. Math. Sci., 7 (2024), 56–70. https://doi.org/10.33434/cams.1362711 doi: 10.33434/cams.1362711 |
[51] | V. Stojiljkovic, Twice differentiable Ostrowski type tensorial norm inequality for continuous functions of self-adjoint operators in Hilbert spaces, Eur. J. Pure Appl. Math., 16 (2023), 1421–1433. https://doi.org/10.29020/nybg.ejpam.v16i3.4843 doi: 10.29020/nybg.ejpam.v16i3.4843 |
[52] | V. Stojiljkovic, N. Mirkov, S. Radenovic, Variations in the tensorial trapezoid type inequalities for convex functions of self-adjoint operators in Hilbert spaces, Symmetry, 16 (2024), 121. https://doi.org/10.3390/sym16010121 doi: 10.3390/sym16010121 |
[53] | S. Wada, On some refinement of the Cauchy-Schwarz inequality, Linear Algebra Appl., 420 (2007), 433–440. https://doi.org/10.1016/j.laa.2006.07.019 doi: 10.1016/j.laa.2006.07.019 |
[54] | A. Koranyi, On some classes of analytic functions of several variables, T. Am. Math. Soc., 101 (1961), 520. https://doi.org/10.1090/S0002-9947-1961-0136765-6 doi: 10.1090/S0002-9947-1961-0136765-6 |
[55] | F. Hezenci, H. Budak, Fractional Newton-type integral inequalities by means of various function classes, Math. Method. Appl. Sci., 11 (2024), 10378. https://doi.org/10.1002/mma.10378 doi: 10.1002/mma.10378 |
[56] | M. U. Awan, M. A. Noor, T. Du, K. I. Noor, On M-convex functions, AIMS Math., 5 (2020), 2376–2387. http://dx.doi.org/10.3934/math.2020157 |
[57] | T. Sitthiwirattham, K. Nonlaopon, M. A. Ali, H. Budak, Riemann-Liouville fractional Newton's type inequalities for differentiable convex functions, Fractal Fract., 6 (2022), 175. https://doi.org/10.3390/fractalfract6030175 doi: 10.3390/fractalfract6030175 |
[58] | R. A. Ryan, Introduction to tensor products of Banach spaces, Springer Monographs in Mathematics, London: Springer, 2002. https://doi.org/10.1007/978-1-4471-3903-4 |