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1. Introduction

The relationship between convexity and inequality is a rich subject of study with significant
applications in applied mathematics. Convex functions have characteristics that make it easier to derive
inequality and make them more useful for resolving practical issues. By utilizing the features of convex
functions, one can determine bounds, optimize functions, and evaluate behaviors that are critical in
mathematical, statistical, and economic settings. For instance, in economics, convexity in preferences
or utility functions can lead to inequalities that describe optimal allocations of resources [1]; in
numerical methods, inequalities derived from convex functions are used to estimate errors and improve
algorithms [2]; in information theory, particularly in estimating entropies and divergences [3]; in
statistics, help in understanding distributions and the behavior of systems under various constraints,
leading to insights [4]. In [5], the authors present various applications of convex optimization issues in
aerospace engineering. In [6], the authors demonstrate applications of convex optimization in signal
processing and digital communication. In [7], the authors present inequality problems in mechanics
and applications for convex and nonconvex energy functions. In [8], authors provide a convex analytic
approach to DC programming: Theory, methods, and applications. For some further recent applications
in various disciplines, we refer to [9—12].

Fractional convex integral inequalities combine the notions of convexity and fractional calculus,
providing several applications in advanced mathematical analysis. These results are very useful in
domains that require the analysis of non-local or memory-dependent processes, making them a strong
tool in both theoretical and applied mathematics. These inequalities play a key role in numerical
methods, particularly in the estimation of error bounds in numerical integration techniques such as
Simpson’s rule and the trapezoidal rule. Researchers have used various types of convex mappings,
integral operators such as classical, fractional and stochastic various order relations such as cr-order,
pseudo-order, left-right order and inclusion orders, and various other techniques to develop convex
integral inequalities. For instance, in [13], authors used convex symmetric coordinated functions
to create Hermite and Hadamard inequalities; in [14], authors used a fractional Riemann-Liouville
integral to create Newton type inequalities for differentiable convex mappings; in [15], authors created
Simpson type inequalities by using various function classes; and in [16], authors created Bullen-type
inequalities using generalized fractional integrals. In [17], authors refined Young’s inequality with
several interesting applications, and in [18], authors developed Holder’s inequality by utilizing mean
continuity to solve delay differential equations and demonstrate their uniqueness. Authors in [19]
used differentiable s-convex mappings to create Ostrowski type inequalities, whereas authors in [20]
employed quantum integral operators to develop midpoint and trapezoid type inequalities. Stojiljkovi’c
et al. [21] provided modifications to the tensorial inequalities in Hilbert spaces. Zareen et al. [22]
created several novel versions of Hermite-Hadamard and Fejér-type inequalities for the Godunova-
Levin preinvex class of interval-valued functions. In [23], the authors established a novel version
of the Hermite-Hadamard inequality for Riemann-Liouville fractional integrals. In [24], the authors
established new extensions of Hermite-Hadamard inequalities for generalized fractional integrals.
In [25], the authors created Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities using
fractional integral operators. In [26,27], the authors created fractional integral versions of the Hermite-
Hadamard type inequality for generalized cr-convexity. For further detail, we refer to [28-31].

Simpson’s inequality is a significant result in numerical analysis and calculus, particularly in the
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context of approximating definite integrals. Simpson’s rule, which is the foundation of Simpson’s
inequality, was named after the mathematician Thomas Simpson, who popularized it in the 18th
century. The rule provides a method for estimating the integral of a function by approximating it with
a quadratic polynomial. Specifically, it states that for a function J that is continuous on the interval
[€, v], the integral can be approximated as [32]:

e Simpson’s % rule, often known as the quadrature formula:
f S(mdm ~ = (3(0) +43 (52)+ 30).
e Simpson’s % rule, often known as Simpson’s second formula:

f S(x)drm; ~ [S(e)+38(263+ U)+35(6+32U)+3(v)].

As shown below, the three-point Simpson-type inequality is the most widely used Newton-Cotes
quadrature.

Theorem 1.1. (See [32]) Let 3 : [e,v] — R be a continuous mapping, and assume that ||53(4)||oo =
SUP,: cc.) |3 (4)(7r,-)| < oo. Then, the inequality stated below holds true:

‘é |36 +45(22) + 5w - —f S(n,)dn,' < 2880 L) -

This approximation becomes exact for polynomials of degree three or less. Researchers have used
a variety of methods to investigate Simpson’s inequality. For example, in [33], authors used g-class
integral operators and coordinated convex type mappings to show several new bounds; in [34], authors
used various fractional integral operators for differentiable mappings and found various enhanced
bounds; in [35], authors used the idea of preinvex mappings in conjunction with quantum calculus
to show some refinement and reversal; in [36], authors used the concept of tempered fractional integral
operators; and in [37], authors used multiplicative calculus to find a variety of bounds and reversals for
these kind of inequalities. For additional information on these kinds of related outcomes, readers are
directed to [38—41] and the references therein.

Operator inequalities are extensions of familiar numerical inequalities to the realm of linear
operators acting on Hilbert spaces. These inequalities play a crucial role in various fields, including
functional analysis, matrix theory, quantum mechanics, and optimization. Many authors have
recently investigated classical inequalities in the context of operators on Hilbert spaces. For instance,
authors employed bounded linear operators in Hilbert spaces in [42] to create numerical radius-type
inequalities, and authors produced multiple means inequalities for positive linear operators in Hilbert
spaces in [43]; in [44], authors developed Holder-type inequalities for power series with several
interesting applications in Hilbert spaces; and in [45], authors studied variational problem associated
with inequalities and graphs in Hilbert spaces. See [46—49] for further results on a similar kind
connected to developed results.

Silvestru Sever Dragomir [50] presented several new novel modifications and refinements of
Young’s results in tensorial framework.
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Theorem 1.2. (See [50]) Let H be a Hilbert space. If the self-adjoint operators & and ¢ satisfy the
conditions 0 < k1 < &, ¢ < k», for some constants Ky, k», then

.)(§2®1+1®¢2

K
0< Fﬂ'i(l—ﬂ'l >

-¢04)
2
<U-m)E 1 +ml®p—&E™ Q¢
2 2
s% _(1_ﬂi)(§ 1+1®¢ —§®¢).
1

2

Corollary 1.1. (See [31]) Let 3, ® be continuous maps on A. If &, ¢; are self adjoint operators in
Hilbert spaces and rj,s; >0, € {1,...,k}, then

(Zss%][§ﬁ¢@ﬂ[2a5@mwmmm)

4Zaﬂmﬁ%ﬂ

i=1

[memﬁ@m@J

i=1

2 [Z ri¢(£5)3 (§j)] ® [Z s:3(5) ‘D(¢j)] + [Z ;¢ (&) @ (£5)

j=1 i=1 j=1

Vuk Stojiljkovic [51] created the Ostrowski type inequality by applying twice differentiable
mappings to continuous functions on self-adjoint operators in Hilbert space.

Theorem 1.3. (See [51]) Assume that & and ¢ are self-adjoint operators with associated sepctrums
SP), SP(¢) C A. Let 3 be a continous function on A, we have

1
f J(A-m)éR1 +m1 @ p)dr; — I (W)
0

(1®¢—§®1)2 [f 25,,(( %)§®1+El®¢)dﬂi

A (e

+ 7
2” ) 1 ®¢)d7r,-].
Shuhei employed positive semidefinite operators on a Hilbert space to derive the following double

inequality.

Theorem 1.4. (See [53]) Let & and ¢ be positive as well as semidefinite operators with associated
sepctrums SP(&), SP(p) C A. Then,

(#) ® (¢#9) < 5 {(E0¢) ® (£ ¢) + (§07¢) ® (£ )}

I_‘l\)lb—*

FlE®P) + (8.

This study is novel and significant as mathematical inequalities by using Hilbert spaces in tensor
frameworks are very rarely developed so this study will open up a whole new avenue in inequality
theory. Additionally, we use several new interesting fractional identities to find upper bounds
for Simpson inequality using convex and differentiable mappings. We also give some interesting
applications and implications of transcendental functions.
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Our motivation to create a new and enhanced version of different inequalities in tensorial Hilbert
spaces comes mostly from the works of [31,51,55]. The use of fresh approaches and viewpoints, which
have almost ever been covered in a few papers, significantly broadens and enriches inequality theory.
The work is organized into four sections, starting with the topic’s preliminary introduction and relevant
definitions. In Section 2, we develop many significant identities and lemmas that are employed in the
main discoveries. In Section 3, we use numerous significant fractional identities to build a Simpson
type inequality for differentiable convex mappings. In Section 4, we provide examples and remarks
for transcendental functions. In Section 5, we discuss the main findings and some future possible work
related to these results.

2. Preliminaries

In this section, we will go over some fundamental ideas related to function spaces, fractional
identities, and certain arithmetic operations on tensor Hilbert spaces. Some fundamental ideas are
not completely addressed here, thus we refer to [31].

Definition 2.1. (See [58]) An inner product on a complex linear space X is a map (-,-) : X X X — C.
A Hilbert space, generally represented as H is an inner product space that is also complete. The inner
product of two elements 7;;, 71, in X is denoted by (rr;;, 7). For all vectors m;;, 1, 13 € X and scalars
A € C, we have

(M + mip, miz) = iy, i) + {Mip + 7i3)

(Amiy, ) = A{mjp, min)

(i1, i) = {Mjn, i)

(mig, ) =20, (my,my) =0 m; =0.

Definition 2.2. (See [58]) A bilinear mapping J : &€ X ¢ — P and a tensor product of & with ¢ provide
a Hilbert space P, such that

e the collection of all vectors J(e,v)(e € &, u € @) is a total subset of P; its closed linear span is
equal to P;

o (B (m,mp) | B (3, my)) = (my | mp) (i | mig) for my, 7 € &, mi3, mig € ¢. If (P,T) is a tensor
product of £ and ¢, it is common to write e ® v instead of J (e, v), and £® ¢ in place of P. A tensor
product of & with ¢ is a Hilbert space & ® ¢ and a mapping (€, v) — € @ v of £ X ¢ into G® ¢ such
that

(M +7p)®V=m; @V +Tp®V
1e)®@v=Ae®V)

EQR(Mp+myy) =€®@mMiz + €RQmin
eR (V) = Ae® V).

Let 3 : A; X... X As — R be a bounded function defined in terms of the product of intervals.
Assume that S = (Sy,...,Sy) is an m-tuple of self-adjoint operators associated with Ey, ..., Eg Hilbert
spaces. Then,
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Si:f miidE; (1)
Az

is the spectra of possible operators for i = 1,...,s; following [53], we define S; as follows:

S(S],..., Sm)::f f S(Nil,...,ﬂil)dEl(7Ti1)®...®dEz(7T,‘m).
Aq Ag

If the dimensions of the Hilbert spaces are finite, integration processes can be condensed to
finite summations, making functional calculus more easily applied to real-valued functions. This
construction [53] extends Koranyi’s [54] concept for functions of two variables. It has the characteristic

that

J(S1,...,89)=3,(5)®...9 I (Sy),

whenever J can be partitioned as a product of one varaible mappings J(ay,...

Ji1(ay)...Js(ap). On the interval A, if J is sub(super)-multiplicative, then
J(ev) > (2)T(e)I(v) for all ev € [0, o0)
and if J is continuous on [0, o), then
FJERP) > ()T () ® T(p) forall &, ¢ > 0.

This leads to the conclusion that, if

&= €dE(e) and ¢ = vdF(v)
[0,00) [0,00)

are the spectral resolutions of ¢ and ¢, then
JER @) = f J(ev)dE(e) ® dF(v)
[0,00) J[0,00)

for the J continuous function on [0, o).
Recall the geometric operator mean for the positive operators &, ¢ > 0

shto = £ (69 ) £,
where p € [0, 1] and
g = £ (e ) P g,
By the definitions of # and ®, we have

EHp = p#E and (§#9) ® (#E) = (£ @ PIH(P ® £).

Consider the subsequent characteristic of the tensorial product:

(éB) ® (da) = (£ ® P)(B® ),

H a-m) =
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that holds V &, ¢, 8, @ € B(v). If we take 8 = £ and @ = ¢, then we get
£ =(Ee¢)’
Through induction, we have
& ® ¢* = (£ ® ¢)° for natural number o > 0.

Specifically,
Ee1=¢®1) and1®¢” =(1®¢)7

for all o > 0. Additionally, we note that the 1 ® ¢ and € ® 1 are commutative with each other:

¢ehdep)=(1pEl)=E4¢.

Moreover, for any two natural numbers oy, 05,

D1 @P)7 =107 (@17 =" ®¢7".
Definition 2.3. (See [52]) A mapping J : A € R — R is stated to be convex (concave) on A, if

IJme+ (1 -m)v) < >)m3(€) + (1 —m)I(v)

holds for all ,v € A and &; € [0, 1].

Definition 2.4. (See [52]) A mapping J : A — R is stated to be quasi-convex, if
I((1 = m)e + mv) < max{I(v), J(e)} = %(S(U) + J(e) + |T(v) — D(e)|)
forall e,v € Aand x; € [0, 1].

Identities for Riemann-Liouville fractional integrals

In this part, we formulate fractional identities using the Riemann-Liouville fractional integral
formulation and apply them to the main results.

Definition 2.5. (See [55]) Let J : [e,v] — R be a continuous function on [€,v]. For k > 0, the
Riemann-Liouville integrals are represented as:

1

Je, 8(p) = m

f W(so — &) "' I(e)ds,

for e < p <wvand
1 1
5 30) = s [ ey e
') Jy
for € < p < v, where I is the gamma function.
Lemma 2.1. Let J : [e,v] — R be a continuous function on [€, v].

e For any ¢ € (€,v), we have
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Jo 3(p) + 4, T(p) = e+ D) [(p — &) T(&) + (v - 9)T(9)]

f (p — &) T (e)de - f (e- go)S(g)dg]

Proof. Since J : [e,v] — R is a continuous function on [¢, v], the integrals become:

r(K+ 1

f@(g/o — &)Y’ (g)de and fu(e - 0) T (e)de,
€ 1Y

exist and integrating by parts, we have

0 1 0
f (p — &) T'(e)de = T f (p — &) ' I(e)de - (p —€)I(e)
€ k) Je

1
I'k+1) I'(k+1)

= J§+S(S{)) -

1 K
Tt 1)(50 — €)' 3(e),

for e < p <wvand

1 : K/ _ _ b kel
F(K+1)L‘(8—g{))5(8)d8 Tk + )( 9)I(v) F() (8 ) J(e)de

= T 1)(u - 9)YI() - J5_I(p),

for € < p < v. From (2.2), we have

(9 — ) T(e) + f (9 —&)F'(e)de.

J§+S(50)_r( D T(x +1)

For € < p < v and from (2.3), we have

(v -

Js_J(p) =

I'(x +1)

We obtain the necessary conclusion in (2.1) by considering Eqgs (2.4) and (2.5).

2.1)

(2.2)

(2.3)

(2.4)

(2.5)

O

Corollary 2.1. If J : [, v] — R is a continuous function on [€, v], we get the following double equality

for the midpoint of intervals:

ol oo (3
1 J(e)+ I (v)

T2 Tk + 1) 2

! f:;” (G;U —S)K J'(e)de — f:u (8— sz)K 5’(8)d8]

T+ D ”

2
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and

J’§+U J(e) + Jm I

1 €+vU
T 2Tk + 1) ( 2 )(“_6)
T+ 1) ﬁ;(g - )T (e)de - fez(a - E)KS’(s)ds} : (2.6)

Proof. For € < €¥ < v and from (2.6), we have

J’;Ty_ﬁ(e)= 1 (e+v

21Tk + 1)~ \ 2 T(x +1)
_ 1 €+v (v — e)<H!
T 21Tk + 1) ( 2 )( g C2<H(k + 1)

f B (g — €)Y (g)ds}
fol g ((1 _ e+ (izv)n) dzr,-] Qe

Jw-or-

For € < % < v and from (2.6), we have
B 3 1 €+v p
Y30 = 25 r (5 )w-ors Tlx +1) f v E)S(S)dgl

s ()00 - SR [ v (- m () s om)en] . o

3. The main results

In this part, we use new fractional identities to find upper bounds for Simpson type inequalities
involving differentiable convex mappings and various generalized convex mappings.

Lemma 3.1. Let ¢ and ¢ be self-adjoint operators with SP(&) C Ay and SP(p) C A,. Suppose that
3,9 are continuous on A, ®, 3 are continuous on N,, and ¢ is convex on A. Then sum of intervals
H A1) + 3(A,) has the following equality:

(BORL+100@)NeIE) @1+ 11 I(¢))
= f f (3() + D(e)p(F(v) + T(€))dEy, ® dFp,, 3.1
A Iag
where & and ¢ have the spectral resolutions

g:f vdE(v) and(ﬁ:f edF(e).
A A
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Proof. According to Stone-Weierstrass, any continous function can be represented in terms of a
polynomial sequence, hence simply checking its equivalence is adequate. Consider ¢(u) = "', If
o7 1s a natural number, then we have

J:= f (Ss(u)+c1>(e))e<’9<“>+f‘<f>>”‘dEAlczuju:Az

f f (5(v)+(D(6))ZC‘T2 [P (5@ 4R, @ dF,,
Ay

0'1_0

_ Zc(,z f f (I() + D))" M AR, ® dF s,

o
= Z ce: [ f I ()el?! N2 SO R, @ dF
A N

f f O ()l 4E,, @ dF,
1 2
Ay

f I ()N IO R, @ dFy,
A Ao

= 5(§)e[19(§)]”2 ® AS@I T _ (5(5) ® 1)e([ﬁ(é_’)](rz@[s((ﬁ)]{rzﬂrl)
= (J(&) ® 1)el7@O172eD) (18[3(6)72771)

= (S(é‘:) ® l)e(ls\(f)@])”z €(1®8(¢))‘r2_"'1

f f POI P (e)e™ 1™ ™ dEy, ® dF
2
A
= PO o (q)(¢) P I@172 01) ~(l® (D(@)e([ﬂ(xf)]”Z®[5(¢)]‘72"”)

= (1 ® O(¢))e 17OV (1813171

= (1 ® q)(¢))e(l9(f)®l)‘72 e(l@f}((ﬁ))u'z—a-l

Observe that

and

where ¢@©®D and ¢193@) commute with each other. Therefore,

o2
I=0EO®1+100(9) Z C2 MR 103727

o1=0

= (JE) ® 1 + 1 ® D(p))e @21 +8IN)
O

Lemma 3.2. Let ¢ and ¢ be self-adjoint operators with SP(&) C Ay and SP(p) C A,. Suppose that
3,9 are continuous on Ay, ®, 3 are continuous on A,, and ¢ is convex on A. Then product of intervals
HA) + 3(A,) has the following equality:

P(3() ® DY) (&) ® I(9)) = fA fA P(IW)P()x () I(€)dEe ® dF, (3.2)
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where & and ¢ have the spectral resolutions

g:f vdE(v) andqﬁ:f edF(e).
Ay Ay

Proof. According to Stone-Weierstrass, any continous function can be represented in terms of a
polynomial sequence, hence simply checking its equivalence is adequate. Let two non-negative
mappings ¢(u) = e, x(u) = ¢*"', where 0| and o, are each natural numbers. Then, one has

f (efe”)*(efe”)'dE, ® dF,, = f [e€172[e"]7%[e]° ' [e"]° ' dE, ® dF,,
A I,

A IN,
= L f; [€]72[€€]7 [€V]7?[€"]”' dE, ® dF,, = ([e.f](rz [eg]gl) 2 ([e(p]gz [€¢]0—1)
- ([ef]gz ® [e¢]02) ([eg]m ® [e“’]m) = (£ @) (f ® )™

and the equality (3.2) is proven.

3.1. Simpson type inequalities utilizing self-adjoint operators on Hilbert spaces

Lemma 3.3. Assume & and ¢ are two self-adjoint operators with SP(¢) C A and SP(¢) C A. Let 3 be
a convex mapping on A. Then, the equality stated below holds true:

[ B+ e 5((15))]

feetes) S [ oo (22

ER1+10¢ (l—ﬂi)’((v—e) (1 -7 1+
e e Uf‘((z)f@“(—z Jroe)an|

_les-¢9l jj(nf—%)[8'(1®§%+1®§(1—%))—5'(1®¢%+1®¢(1_%))

+£1(7r,-[(—1)[3'(1®§%+1®§(1—%))— (1®¢ +1®¢(1—5))”dm (3.3)

Proof. Take into account the following result from 2024 [55], which refines Simpson type inequalities
in the fractional framework via differentiable convex mappings.

Let 3 : [e,v] — R be a differentiable mapping (€, v) such that 3’ € L;([e,v]). Then, the following
double equality holds true:

k=1
%[S(e)+33(6+32v)+38(263+ U)+5(v)] M[J _9(6) + 5, 3W)

(2§®1+1®¢)+§8(§®1+2®¢)
8

o[- Dlrk o535 - e
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f(n —1) (2 +61——))— (v2+v(l—%))Hdm]. (3.4)

By using substitution from Eqs (2.7) and (2.8), we have

1 €+ 2v 2e + v 2Tk + 1) 1 €+v
§[5(6)+33( . )+35( : )+3(u)]— o | T ( : )(v o
7T:-(('U _ E)K+l

T2k + 1) fol Ej/((1_”")H(E;v)”")d’r"]+2K—1r(1;<+1)S(E;v)(”_e)K
e (0= () o)
<[ —zt)[s (G oer-3)- (5 o=
f(n —1) (Z+e(1-5))-3 (v2+v(1——)H ] (3.5)

By making several simplifications, we may have

RCR —5(6+2”)+§s(263”) §90)
-[s(5)- 22 @fs(( ). <>>
e o)
i (#—i)[w@ (1—%>>—w<v%+v<l—%>>]dm
[0 Gee-3)-s 05 (-] 0o

Assume that the spectral resolutions of & and ¢ are

£= fA vdE(v) and ¢ = fA edF(e).
Taking, [, [, over dE. ® dF, in (3.5), we get
ff( 3(e) + —5(6”") —5(26+U)+;8(v))dE & dF,
L2 05 e oon
Sk fz“—“ SR T
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[ L L = (el -3 (6 o=
; ﬁl (= 1) [S’ (e% ; 6(1 - %)) _y (U% ; v(l - %))] ]dm]dEe ® dF,. 3.7)

AIMS Mathematics Volume 9, Issue 12, 35151-35180.



35164

Considering Lemma 3.1 and Fubini’s theorem, we have

ffﬁ(v)dEe ®dF, = (3@ D),

ol
| [ st e dr, = a0 30,
FE[o(6- 3 o
L 2o
oS (228
L)
N

)
A e T e R
(S (e—+6(1——) 5'( —+v(1——))))dﬂidEE®dFU
:(5’(5@15’”@5(1—5’))— (1®¢—+1®¢(1—5))))dn, (3.8)

Taking the same technique into consideration, we have

ffu—e[fg(ﬂik_%)[g (e% 6(1—7§))—8’(U%+u(1—7§))]dn,-
f(zr,—l) 9 ( G re(1-5)) -5 (5 +v(1- z))]d”]dEfQ@dF”
sueol] [l Niafioctsros-5)-s1osksronfi-2)

1 K ’ T T i T
+f§ (r, —1)[8 (1®§5+1®§(1—5))—8 (1®¢5 1®¢(1—5))”dﬂ,~. (3.9)
Using Eqgs (3.20) and (3.21) in (3.7), we get the needed result. O

Theorem 3.1. Assume & and ¢ are two self-adjoint operators with SP(¢) C A and SP(¢p) C A. Let J
Ao - SUPgep |5’(K)| < co. Then, we have

2 2

AIMS Mathematics Volume 9, Issue 12, 35151-35180.



35165

ERl1+1®¢\ mw-of M, m; 11 ® ¢

Sl e e VAR (LR o
ER1+1®¢\ (U-m)w-of (M, ((1-m 1+

o i e e e VAR (G R e UL

||1®¢ §®1||((K+1) 3421 (I )+2K+1+(K+2)*3K(
4 (6k +6) - 3« Bk +3) - 3«

Proof. Considering Lemma 3.3 and applying the triangle inequality, we arrive at

2 1+1 1+2
((S(.f)@l) (M)-FSS(M) _(1®5(¢)))

. _[3(§®1;1®¢)_ﬂf(v4— €) [fol 3’((1_%)5691+(m12®¢))dﬂi]
+S(f®l+l®¢) (1- ﬂ’Z(v_e)[ﬁlS’((%)f@l+(%)l®¢)dﬂi”'

<Bets §®1”Hf““[ 1®§ 1@ 2) 5'(1®¢’§+1®¢(1—%))
+f (nf—l) 8’(1®§—’+1®.§(1—E"))—S'(lw’g+1®¢(1—%))”de

_leg- §®1||”f( ) 1ol +106(1-7))- 9 (106% + 104 (1- 7)) ani

N N

+]

)

A+ A,+o0

; f (n — 1)[5’(1®§E’+1®§2—m5)— (1®¢ +1®¢(1 —5))] dr|. (3.10)
3
Observe that, by Lemma 3.1
‘(S'(l@fﬁ”@g(l —%))—5’(1®¢ﬁ+1®¢(1 —%)))'
T T T
e—+el—5)) 5(Uz+v(1 2)))‘dE ® dF,,.
As by convexity, we have
(G +e(1-3)) <
forall T €[0,1] and €, v € A.
Taking fA fA over dE, ® dF,, we get
(1@5 +1®§1—— ' e—+e ))‘dE ® dF,
< | A,+°°ff (3.11)
A JA

Similarly, we get

S’(1®¢%+1®¢(1—§))‘:£L
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(3.12)

L,

Considering Eq (3.10), it now follows that
2

N

Tt ==

0 4
: T ; T ;

K=D[T1eé= +1 1-=)|-9(1®¢s= +1 1-= ;

f(”’ )S( o5 +106(1-3))-5 (1007 +100( 2))]““

s o [ )]
(f(n, _ 1) ([ (1®§ +1®§(1—§))dn, (1®¢ +l®¢(1—5))dﬂ,

3’(1@5%“@5(1—%))— (1®¢ +1®¢(1—3))dn,

I1®¢—-E@ 1
4

|

(1®¢ +1®¢(1—§))d7r,

)

||1®¢ ERQN[f(k+1) 342 , 2l 4 (k +2) - 3 ,
4 (6K + 6) 3K (I S A, 400 + | S ) + (3K + 3) . 3/( ( A,+00 + | S A,+oo) :
(3.13)
Using Eq (3.13) in (3.10), we get needed output. O

Theorem 3.2. Assume & and ¢ are two self-adjoint operators with SP(£) € A and SP(¢p) C A. Let 3
be differentiable as well as convex |S’| on A. Then, the following inequality holds true:

1 3_(2401+1®¢ E@1+2®¢
H(g(ﬁ(g)@lwgs(f% SS(f) —(1®5(¢)))

E@1+10¢\ mw-of ', T il ®¢
[o(E=5EE)- TR (- Fee (B on

Ky, _ 1 — 7. .
+5(§®1+1®¢)_(1—”9(U E)fS’((12n1)6®1+(%)1®¢)dm]
0

))

_lieg-¢oll 3IHKK2 4 293 4 D43 4 Bk - 3K 4 5. 3K (|
- 4 3(k + 1)(6K + 6)

Proof. By assuming that |S’| is convex on A, we have

(-3)
+((-3)

v (G e(1-5) =5l

Similarly, we get

(%
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Taking fA fA over dE, ® dF,, then we get

' eﬁ + e(l _ %))‘ dE, ® dF,

ff |5 (e)| -Z |8 (6)|dE ® dF,

Tiely @]+ (1 ——)|8 ©|e1. (3.14)

If we apply the norm in (3.29), then we have

| )

S'(l ®g% +1 ®g(1 - ﬂ)
Similarly, we get

2
ey @)+ (1-2) @] o

<Dl +(1-Z) 5@l

V(1063 +100(1-3)|
<|Frels @+ ((1-5))v@le

<Fl@l+((1-3))lv@l.

Using the norm in (3.5) and considering the triangle inequality, we have

2%l +1 3 142
”( SO 1)+ —S(§®2+ ®¢)+§S(M) —(1®5(¢)))

E@l+1ee) mu-of M, i Tl ®¢

B ey e VAR (R R G 1B
ER1+10¢\ (-m)w-of (M, ((1-m 1+

S e R e LA (e R S RO

ed- §®1||( fj(m“—%)[ﬁ’(l@f%+1®§(1—%))—3’(1®¢72+1®¢(1—%))dm

f(n —1): (1®gﬁ+1®§(1—’§))— (1®¢ +1®¢(1—5))]dﬂ)

es- §®H% »ﬂ __H

[ 1962 +1a¢ 1—5))d7r

b3l

+ %1®|S’(¢)| 1—— |8(¢)|®1

[ 1®§ SRy 1—3))

)

(1®¢ +1®¢(1—3))dn

|I1®¢ ER 1|
= 4

Liely (g)| (1——')|5'(g)|®1

Af

AIMS Mathematics Volume 9, Issue 12, 35151-35180.

T , Tt ,
H(HEI o3 @|+(1-3)[5@|o1

(1®¢ +1®¢(1—3))dﬂ
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T T ’
+|31e +(1—5)|8(¢)|®1)
_ 1+k,,2 Kk+3 k+3 LK LK
S||1®q§ ER 3Kk + 2k + 2 + 8k -3“+5-3 ( ) . (3.15)
4 3%(k + 1)(6k + 6)
O

Remark 3.1. In Theorem 3.2, if we set k = 1 and tensorial arithmetic operations are degenerated, we
get Remark 3 from [57].

Theorem 3.3. Assume & and ¢ are two self-adjoint operators with SP(£) € A and SP(¢p) C A. Let J
be differentiable as well as quasi convex

2 1+1 1+2
” (5(5)@)1) _S(M)_FSS(M) _(1®5(¢)))

ERl+1®¢\ mw-of (', n; 11 ®¢
o) e (- e (1 oo

ER1+1®¢\ (-m)w-of (M, ((1-m 1+m;
i ey R Al (e EIN e IES

||1®¢ EQN(3-3“K>+8-2k+82+8k-3+5 -3
4 3¢ (K+1)(48K+48)
x ( ).

®1-1®
Proof. By assuming that |5’| is quasi convex on A, we have
(o(G e(r-3)-v (5 +o(-3)
(o(Gre-5) v (F o[- F)) s 50501+

V1e[0,1]and €,v € A.
Taking fA fA over dE, ® dF, yields:

R e el
e—+e 1—5))—8 (v£+v(1—£)))‘dE ® dF,
SzfAfA

2 2 2
1
:E(

Applying the norm in the above inequality result gives

R1+1®

<

+ 13 @) - 15 e)l),

+119'@)| - 13'(e)ll) dE, ® dF,

+I3@le1- 10T @)

[lo:(1065 ~106(1-F))-5 (1063 +100(1-3))
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®1+18|3 ()| +I1T®Iel-1® |S’(¢)II)H

1 ’
< 5(

1 ’
<5l

Using the norm in (3.5) and considering triangular inequality, we have

2 1+1 3 1+2
l|( JE 1)+ (M)+§5(M) _(1®5(¢)))

).

1-1®

R1+1®

2 2

._[3(§®1-;1®q§)_ﬂf(v4—6)[j:8,((l_g)g@l_l_(ni 2®¢))dm]
+S(§®1;1®¢)_(1—ﬂiﬁ(v—e)[ﬁls,((l;m)g(gl+(1;ni)l®¢)dﬂi]
s”1®¢f®1”( Lg(nik—%)[ﬁ’(l®§%+l®§(l—%))—S'(l®¢%+l®¢(l—%))dm
; ﬁl(m"—1):5’(1®§E+1®§(1—%))— (1®¢ +1®¢(1—§))]an)

S||1<§a¢—§®1||( ; 5,(1®¢§+1®¢(1_%))%

W oot o3

(1®¢ +1®¢1—— H
s [

|

(/"

[ 1@l +1®§(1 - 5))0175

)

+§( )
1
+(ﬁ(7rf—l) (E( )
1

s(lv@ler+1e ®1-18(3©|))

<||1®¢—§®1||(3-3KK2+8-2KK+8.2K+8K-3K+5-3K)

= 4 3 (k+ 1) (48 k + 48)

x 1-18|3©))- (3.16)
O

3.2. Hermite-Hadamard inequality involving arithmetic-geometric mean type convexity

Lemma 3.4. Assume & and ¢ are two self-adjoint operators with SP(£) C A and SP(¢p) C A. Let 3 be
convex on A. Then, the equality stated below holds true:

(@1+18¢ 2081-¢81)
2 (Vv — Ve)?
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:(\/1®¢— VE® 1)?
4

1
[f A=-2m))T (1 -m)@1+7m1®¢)|dn,. (3.17)
0

Proof. Considering [56, Lemma 4.1] based on a differentiable convex mapping, then one has

5(6)+3(v)_ 2 f“
5 Vo ver J. J(o)do

I(e) + J(v) 2(v - €) !
= 5 - Vo - Ver fo I((1 - m)e + mv))dn;

_ 2 1
:@U (1 = 27)F (1 = m)e + mw)]dr, . (3.18)
0

Assume that the spectral resolutions of £ and ¢ are

&= fvdE(v) and ¢ = fedF(e).
A A

Taking [, [, over dE, ® dF, in (3.18), we have

J(e) + I() 2(v —€) !
L.&[—Z ]dEE®dFU—m£££ I((1 - m))e + mv))dr,dE, ® dF,,
— 2 1
:—(\/_ 1 Vo ff[f (1 =27)3" (1 — )€ + mv)]dn,dE, ® dF,,. (3.19)
A JalJo

Considering Lemma 3.1 and Fubini’s theorem, we have

ffs(v)dEe ® dFv = (S(‘ﬁ) ® 1)7
A JA
1 1
fff I((1 - m))e + mv))dr,dE, @ dF, = f J(A-nm)p®1 +m @ 1&))dn;,
AJA Jo 0
ffﬁ(e)dEE ®dF, = (1 ® J(¥)). (3.20)
A JA

Taking the same technique into consideration, we have

Mff[f (1-2m)9" (1 —7T,')E+7T,'V)] d;dE. ® dF,
AJA 0

4
_ 2 1
= (\/1 ®¢ 1 \/§® D [f (I=27NIF (A -7m)éRT + 7131 ®¢)] drm;. (3.21)
0
Using Eqgs (3.20) and (3.21) in (3.19), we get needed output. O
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Theorem 3.4. Assume & and ¢ are two self-adjoint operators with SP(£) C A and SP(¢p) C A. Let 3
be differentiable on A with | 5’”Aoo '= SUp,.x 5'(K)| < co. Then, we have

E81+189¢ 2¢81-¢81)
2 (Vo - Ve

_(VTeg- Ee (19 -
- 4 2

Proof. Using the triangle inequality and the operator norm of the previously derived Lemma 3.4, we
may obtain

Considering Lemma 3.1, we obtain

(8I(ﬂi§®1+(1_ﬂi>l®¢)‘:ff
AJA

As by convexity, we have

1
f J(A-m)éR 1 +mg @ 1))dn;
0
@)

. (3.22)

(8l+18¢ 2081-¢81)
2 (Vo — Ve

1®¢— 1?2 !
s(‘/ ¢4‘/§ )fo||<<1—2n,->>||||5'(<1—m>§®1+n,-1®¢||dn,-. (3.23)

1
f I -m)éx 1 +me® 1))dn;
0

(8'me+ (1 —m)v)| dE. ® dF,.

|(3’(Jri6 + (1 —m;) v)l < ||5’

A,+00
forall ; € [0,1] and €, v € A.
Taking fA fA over dE, ® dF,, then we have

|tng®l+ﬂ_ﬂol®wkifjﬁ

AJA

. f f dE, ® dF, = |5, . (3.24)
A JA

from which we further get

(3 (mrie) + (1 —m;)v) | dE ® dF,

1
l:MU—memﬁﬁﬂ—ﬂ0§®1+ml®@Mm

1 K K 1 1-«
A,+oo£ H((l —m) - )Hdﬂi = m(2—2 )

Using Eqgs (3.24) and (3.25) in (3.32), we get the needed result. O

N N

<|

(3.25)

A+oo ”

Theorem 3.5. Assume & and ¢ are two self-adjoint operators with SP(£) € A and SP(¢) C A. Let 3
be differentiable as well as convex |5’ on A. Then, the inequality stated below is true:

E81+180¢ 2¢81-¢01)
2 (Vo - Ve

_(VTeg- Ee (19 <
- 4 4

1
f J(A-m)éR 1 +mg @ 1))dr;
0
3@))

. (3.26)
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Proof. By assuming that |5’| is convex on A, we have

€)+ (1 - m)v)| <7

+ (1= m)|3'(e)|

for all for ; € [0, 1] and €, v € A.
Taking fA fA over dE. ® dF,, we get

'(Sl(ﬂi(§®1)+(1_ﬂi)1®¢)|:ff‘(s,(ﬂ'i(e)"'(l_ﬂi)v)|dEe®dFv
A JA

1

|5'((1 -m)é®1+ml ®¢)| <(1-m)

<(-m Vs (3.27)

namely

®1l+m|3@)|el (3.28)

for all 7r; € [0, 1]. If we take the norm in (3.28), then we get

(I -m)E@l+ml @) <1 -m) ®1+m |3 @)1
<A -m)||T@| +m |3 @) (3.29)

Again, using the triangle inequality and the operator norm of the previously derived Lemma 3.4, we
obtain

(8l+18¢ 2081-£81)
2 (Vo= ey

cWles ¢g®1> fIl((l-2m>>||||3'((1—m)§®1+”i1®¢”d”f
|
(\/ ®¢ - \/§® 1y f”(l 27rl)|| 7r,| )

1
f 3((1 —7T,')6®1 +7T[¢®1))d7'l'i
0

_7Tz)|

_(x/1®¢—\/§®1)2(
Bl 4 4

(3.30)

O

Remark 3.2. In Theorem 3.5, if tensorial arithmetic operations are degenerated, we obtain the
Theorem 3.2 provided in [56].

Theorem 3.6. Assume & and ¢ are two self-adjoint operators with SP(¢) € A and SP(¢p) C A. Let 3
be differentiable as well as quasi convex

(8l+18¢ 2081-¢81)

f I -m)éR 1 +mep® 1))dn;

2 (Vo = Ve
(VI®d— JE®T? 1 ol ,
S 4‘/ 1+K(z—zl )5( ®l+1® ®1-18 (3

(3.31)
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1
|9 (i (e) + (1 = m) )] < 5 (|9

+ 113’ @)l - 15 (ll)

for all for ; € [0, 1] and €, v € A.
Taking fA fA over dE, ® dF, yields

‘(S,(ﬂ'i(§® 1)+(1 —7T,')1®¢)|
(V) + (1 - m) v)| dE. ® dF,

- AJA
1
S—ff(|8’(v)|+

=3 (1

+19'@)| - 13'(e)ll) dE, ® dF,

R1+1®

+IF@Ie1-10(F @)

l\)l'—‘

for all ; € [0, 1].
By using the norm of the inequality above, we get the following:

H (I (mED+(1-m)1ee)
1 ’
< 5(
1
<5

Using the triangle inequality and applying the norm of the previously derived Lemma 3.4, we may
obtain

R1+1®

HIT©le1- 1813 @)

®1+1® ®1-18 |3

H§®1+1®¢_2(¢®1—g®1)
(Vo - ey

1 _ 12 1
BCUEY «/§® ) f 1 -

1
f J((1-m)éR 1+ mgp @ 1))dnr;
0

2Z)IIB (A - 7)€@ 1+ ml @ ¢lidn;

(led- Vf@ D f (1 = 27| (7 ) ||3'©)|)) dr;
(\/1 Q¢ — \/§® 1)2
g 4 fo (1= 27 H5 )”
(\/1®¢—\/§®1)2 1 (2 21—K)1( RI1I+1®
= N 2 |>.
4 1 2
o (3.32)
O
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4. Examples and consequences

For an exponential function, if self-adjoint operators & and ¢ commute, we obtain
el = 96t = p&H0).

Further, if ¢ is invertible and €, v € R with € < v, then

Further, if ¢ — £ is invertible, then we have

1 1 !
f S (1=0E4KD) 4 — f KO- o€ Qi = ( f e(K@_‘f))dK) ¢
0 0 0

¢-¢ p—¢
Corollary 4.1. Assume & and ¢ are two self-adjoint operators with SP(&) C A and SP(¢) C A. Let I
be a differentiable and convex mapping on A, with k = % Then, by Theorem 3.1 we have

H( 3@+ (M)+§S(M)

1
3 > +2o(de 5(¢)))

8
EQR1+1®¢ ﬂf(v—é) b, m; Tl ®¢
e e A (R IR o

E@1+1®¢\ (-m)iw—-eo] (o, ((1-m 1+
o e B e A (e e S K|

Neg-co(l) 3 +28 25+ (1) 34
s ( @3 (||5||A+m)+T(||f‘||A+m)

Corollary 4.2. Assume & and ¢ are two self-adjoint operators with SP(¢) € A and SP(¢p) C A with
I3

< 0o. Then, by Theorem 3.4 we have

A,00

(8l+1@9 2081-¢81)
2 (Vu—+e? Jo

1® ® 1)1
< WIB- DL (o 2l ewp], . @n

1
exp((1 —m)é® 1 +mp® 1))dn;

Corollary 4.3. Assume & and ¢ are two self-adjoint operators with SP(€) C A and SP(¢) C A. Let 3
be differentiable quasiconvex on A with k = % Then, by Theorem 3.3 we have

H( (nE© 1)+ _1 (W) 81 (W) —(1®ln(¢)))
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ER1+1®¢\ mw-of m; 11 ® ¢

.—[m( : )— ) UO In ((1—3)§®1+( . ))dﬂi]
ER1+10¢\ U-m)yw-of (., ((1-m 1+

m(Et o) G [ (57w (571 o)on |

3 ||1®¢_g®1||(3‘3 +8-25 14827 +81. 3545 . 33)

W=
wl—

1
3

3 (3) (45 4+ 48)

1
9

4
x([In'©)|e1+1e]n @] +|n'@]|e1 -1 ') )

5. Conclusions and future remarks

The tensor Hilbert space and its inequalities are important topics in mathematical and physics fields
such as functional analysis and quantum mechanics. The first step in this note was to develop two
important lemmas by using the Stone-Weierstrass theorem, which can be used to support our main
findings. Our next step was to build different variations of the Simpson and Hermite-Hadamard
inequalities using two different kinds of convex mappings. These results were obtained using spectral
resolution of Hilbert spaces containing self-adjoint operators. Furthermore, we established upper
bounds for these inequalities and provided further examples and consequences for transcendental
functions using various types of extended convex mappings. This paper contributes to mathematical
inequality theory by exploring inequalities supporting tensor Hilbert spaces, which is a rare topic in
the literature. In the future, we will advise readers, motivated by these results, to try to develop results
by using quantum fractional integral inequalities as well as fuzzy-valued mappings and fuzzy normed
spaces instead of the standard norm.
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