In this paper, the definition of the hyper-dual Moore-Penrose generalized inverse of a hyper-dual matrix is introduced. Characterizations for the existence of the hyper-dual Moore-Penrose generalized inverse are given, and a formula for the hyper-dual Moore-Penrose generalized inverse is presented whenever it exists. Least-squares properties of the hyper-dual Moore-Penrose generalized inverse are discussed by introducing a total order of hyper-dual numbers. We also introduce the definition of a dual matrix of order $ n $. A necessary and sufficient condition for the existence of the Moore-Penrose generalized inverse of a dual matrix of order $ n $ is given.
Citation: Qi Xiao, Jin Zhong. Characterizations and properties of hyper-dual Moore-Penrose generalized inverse[J]. AIMS Mathematics, 2024, 9(12): 35125-35150. doi: 10.3934/math.20241670
In this paper, the definition of the hyper-dual Moore-Penrose generalized inverse of a hyper-dual matrix is introduced. Characterizations for the existence of the hyper-dual Moore-Penrose generalized inverse are given, and a formula for the hyper-dual Moore-Penrose generalized inverse is presented whenever it exists. Least-squares properties of the hyper-dual Moore-Penrose generalized inverse are discussed by introducing a total order of hyper-dual numbers. We also introduce the definition of a dual matrix of order $ n $. A necessary and sufficient condition for the existence of the Moore-Penrose generalized inverse of a dual matrix of order $ n $ is given.
[1] | M. A. Clifford, Preliminary sketch of biquaternions, Proc. London Math. Soc., 4 (1871), 381–395. https://doi.org/10.1112/plms/s1-4.1.381 doi: 10.1112/plms/s1-4.1.381 |
[2] | J. Angeles, The dual generalized inverses and their applications in kinematic synthesis, In: J. Lenarcic, M. Husty, Latest advances in robot kinematics, Springer, 2012. https://doi.org/10.1007/978-94-007-4620-6_1 |
[3] | J. Angeles, The application of dual algebra to kinematic analysis, In: J. Angeles, E. Zakhariev, Computational methods in mechanical systems, Springer, 1998, 3–31. https://doi.org/10.1007/978-3-662-03729-4_1 |
[4] | Y. Gu, J. Luh, Dual-number transformation and its applications to robotics, IEEE J. Robot. Autom., 3 (1987), 615–623. https://doi.org/10.1109/JRA.1987.1087138 doi: 10.1109/JRA.1987.1087138 |
[5] | Y. Jin, X. Wang, The application of the dual number methods to Scara kinematics, International Conference on Mechanic Automation and Control Engineering, 2010, 3871–3874. https://doi.org/10.1109/MACE.2010.5535409 |
[6] | E. Pennestrì, R. Stefanelli, Linear algebra and numerical algorithms using dual numbers, Multibody Sys. Dyn., 18 (2007), 323–344. https://doi.org/10.1007/s11044-007-9088-9 doi: 10.1007/s11044-007-9088-9 |
[7] | E. Pennestrì, P. Valentini, Linear dual algebra algorithms and their application to kinematics, Multibody Dyn., 2009,207–229. https://doi.org/10.1007/978-1-4020-8829-2_11 |
[8] | H. Heiß, Homogeneous and dual matrices for treating the kinematic problem of robots, IFAC Proc. Volumes, 19 (1986), 51–55. https://doi.org/10.1016/S1474-6670(17)59452-5 doi: 10.1016/S1474-6670(17)59452-5 |
[9] | E. Pennestrì, P. Valentini, D. de Falco, The Moore-Penrose dual generalized inverse matrix with application to kinematic synthesis of spatial linkages, J. Mech. Des., 140 (2018), 102303. https://doi.org/10.1115/1.4040882 doi: 10.1115/1.4040882 |
[10] | F. Udwadia, Dual generalized inverses and their use in solving systems of linear dual euqations, Mech. Mach. Theory, 156 (2021), 104158. https://doi.org/10.1016/j.mechmachtheory.2020.104158 doi: 10.1016/j.mechmachtheory.2020.104158 |
[11] | D. de Falco, E. Pennestrì, F. Udwadia, On generalized inverses of dual matrices, Mech. Mach. Theory, 123 (2018), 89–106. https://doi.org/10.1016/j.mechmachtheory.2017.11.020 doi: 10.1016/j.mechmachtheory.2017.11.020 |
[12] | F. Udwadia, E. Pennestrì, D. de Falco, Do all dual matrices have dual Moore-Penrose generalized inverses? Mech. Mach. Theory, 151 (2020), 103878. https://doi.org/10.1016/j.mechmachtheory.2020.103878 |
[13] | H. Li, H. Wang, Weak dual generalized inverse of a dual matrix and its applications, Heliyon, 9 (2023), e16624. https://doi.org/10.1016/j.heliyon.2023.e16624 doi: 10.1016/j.heliyon.2023.e16624 |
[14] | H. Wang, T. Jiang, Q. Ling, Y. Wei, Dual core-nilpotent decomposition and dual binary relation, Linear Algebra Appl., 684 (2024), 127–157. https://doi.org/10.1016/j.laa.2023.12.014 doi: 10.1016/j.laa.2023.12.014 |
[15] | H. Wang, J. Gao, The dual index and dual core generalized inverse, Open Math., 21 (2023), 20220592. https://doi.org/10.1515/math-2022-0592 doi: 10.1515/math-2022-0592 |
[16] | H. Wang, Characterizations and properties of the MPDGI and DMPGI, Mech. Mach. Theory, 158 (2021), 104212. https://doi.org/10.1016/j.mechmachtheory.2020.104212 doi: 10.1016/j.mechmachtheory.2020.104212 |
[17] | J. Zhong, Y. Zhang, Dual group inverses of dual matrices and their applications in solving systems of linear dual equations, AIMS Math., 7 (2022), 7606–7624. https://doi.org/10.3934/math.2022427 doi: 10.3934/math.2022427 |
[18] | J. Zhong, Y. Zhang, Dual Drazin inverses of dual matrices and dual Drazin-inverse solutions of systems of linear dual equations, Filomat, 37 (2023), 3075–3089. https://doi.org/10.2298/FIL2310075Z doi: 10.2298/FIL2310075Z |
[19] | J. Fike, Numerically exact derivative calculations using hyper-dual numbers, 3rd Annural Student Joint Workshop in Simulation-Based Engineering and Design, 2009. |
[20] | J. Fike, J. Alonso, The development of hyper-dual numbers for exact second-derivative calculations, 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2011. |
[21] | J. Fike, S. Jongsma, J. Alonso, E. van der Weida, Optimization with gradient and Hessian information calculated using hyper-dual numbers, 29th AIAA Applied Aerodynamics Conference, 2011. |
[22] | A. Cohen, M. Shoham, Application of hyper-dual numbers to multibody kinematics, J. Mech. Robot., 8 (2016), 011015. https://doi.org/10.1115/1.4030588 doi: 10.1115/1.4030588 |
[23] | A. Cohen, M. Shoham, Application of hyper-dual numbers to rigid bodies equations of motion, Mech. Mach. Theory, 111 (2017), 76–84. https://doi.org/10.1016/j.mechmachtheory.2017.01.013 doi: 10.1016/j.mechmachtheory.2017.01.013 |
[24] | Ç. Ramis, Y. Yaylı, İ. Zengin, The application of Euler-Rodrigues formula over hyper-dual matrices, Int. Electron. J. Geom., 15 (2022), 266–276. https://doi.org/10.36890/iejg.1127216 doi: 10.36890/iejg.1127216 |
[25] | G. Yüca, Y. Yaylı, Hyper-dual matrices and dual transformations, J. Geom. Phys., 175 (2022), 104473. https://doi.org/10.1016/j.geomphys.2022.104473 doi: 10.1016/j.geomphys.2022.104473 |
[26] | G. Wang, Y. Wei, S. Qiao, Generalized inverses: theory and computations, Springer, 2018. http://doi.org/10.1007/978-981-13-0146-9 |
[27] | G. Marsaglia, G. P. H. Styan, Equalities and inequalities for ranks of matrices, Linear Multilinear Algebra, 2 (1974), 269–292. https://doi.org/10.1080/03081087408817070 doi: 10.1080/03081087408817070 |
[28] | L. Qi, C. Ling, H. Yan, Dual quaternions and dual quaternion vectors, Commun. Appl. Math. Comput., 4 (2022), 1494–1508. https://doi.org/10.1007/s42967-022-00189-y doi: 10.1007/s42967-022-00189-y |
[29] | H. Wang, C. Cui, Y. Wei, The QLY least-squares and the QLY least-squares minimal-norm of linear dual least squares problems, Linear Multilinear Algebra, 72 (2024), 1985–2002. https://doi.org/10.1080/03081087.2023.2223348 doi: 10.1080/03081087.2023.2223348 |
[30] | O. H. Ibarra, S. Moran, R. Hui, A generalization of the fast LUP matrix decomposition algorithm and applications, J. Algorithms, 3 (1982), 45–56. https://doi.org/10.1016/0196-6774(82)90007-4 doi: 10.1016/0196-6774(82)90007-4 |