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1. Introduction

Dual numbers were introduced by Clifford [1] in order to expand quaternions to bi-quaternions that
represent both rotations and translations. Dual numbers since then have been important and convenient
mathematical tools in dealing with some problems in various fields of science and engineering, such as
kinematic synthesis [2,3], robotics [4], scara kinematics [5] and displacement analysis [6,7]. A matrix
with dual number entries is called a dual matrix. Dual matrices are used today in a variety of fields
like kinematic analysis and synthesis of spatial mechanisms, and also in robotics [8]. There are many
investigations where the kinematic analysis and synthesis problems are addressed through the solution
of overdetermined systems of linear dual equations, and dual generalized inverses of dual matrices
have been shown to be very useful in studying the solutions of systems of linear dual equations [9].
For example, the dual Moore-Penrose generalized inverse (DMPGI, for short) provides minimum-norm
least-squares solution for the system of linear dual equations [10]

Âx̂ = b̂.
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However, many research results have shown that various dual generalized inverses of dual matrices
may not exist. Based on this fact, in the past few years, numerous articles were dedicated to
characterizing the existence of different kinds of dual generalized inverses, for example,
DMPGI [11, 12], weak dual generalized inverse [13], dual core generalized inverse [14, 15].
Especially, Wang [16] gave some necessary and sufficient conditions for a dual matrix to have the
DMPGI, and a compact formula for the computation of the DMPGI was also given. Zhong and
Zhang [17,18] presented some necessary and sufficient conditions for a square dual matrix to have the
dual group inverse and the dual Drazin inverse.

Throughout this paper, we use R̂ to denote the set of dual numbers over the real field. A dual number
â ∈ R̂ has the form

â = a + ϵa0,

where a and a0 are real numbers, and ϵ is the dual unity that satisfies the rules

ϵ , 0 and ϵ2 = 0.

Hyper-dual numbers are an extension of dual numbers and were first introduced by Fike
et al. [19–21] to derive the kinematics of a multi-body system. They introduced the hyper-dual
numbers to perform second-order numerical differentiation that leads to smaller numerical
(subtractive and cancellation) errors as well as to reduced computational time. A hyper-dual number ã
is a number consisting of four real numbers a0–a3 and two dual units ϵ1, ϵ2 with the following rules:

ϵ21 = ϵ
2
2 = (ϵ1ϵ2)2 = 0, ϵ1, ϵ2, ϵ1ϵ2 , 0,

and ã is of the form

ã = a0 + ϵ1a1 + ϵ2a2 + ϵ1ϵ2a3. (1.1)

Notice that we can rewrite the hyper-dual number ã in (1.1) as

ã = (a0 + ϵ1a1) + ϵ2(a2 + ϵ1a3) ≜ â + ϵ2̂a0, (1.2)

i.e., a hyper-dual number is a combination of two dual numbers, where â is called the primal part and
â0 is called the hyper-dual part of ã, respectively. In other words, a hyper-dual number can be obtained
by replacing the two real numbers in a dual number by two dual numbers. The physical meaning
of these two dual numbers in the context of kinematics was discussed in [22, 23] by introducing the
hyper-dual angle. We denote the set of all hyper-dual numbers over the real field by R̃. For the sake of
convenience, we replace ϵ1, ϵ2 by ϵ, ϵ∗ in (1.1) and (1.2).

For ã ∈ R̃, the Taylor series expansion of a dual function of order 2 is given by (see [21])

f (̃a) = f (a0) + ϵa1 f ′(a0) + ϵ∗a2 f ′(a0) + ϵϵ∗
[
a3 f ′(a0) + a1a2 f ′′(a0)

]
.

For example, for a hyper-dual number

ã = a0 + ϵa1 + ϵ
∗a2 + ϵϵ

∗a3
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with a0 > 0, the square root of ã is given by

√
ã =
√

a0 + ϵ
a1

2
√

a0
+ ϵ∗

 a2

2
√

a0
+ ϵ(

a3

2
√

a0
−

a1a2

4
√

a3
0

)

 . (1.3)

According to (1.3), for
ã = a0 + ϵa1 + ϵ

∗a2 + ϵϵ
∗a3 ∈ R̃

with a0 , 0, the absolute value and the Euclidean norm of ã can be respectively defined by

|̃a| = |a0| + ϵ sgn(a0)a1 + ϵ
∗sgn(a0)a2 + ϵϵ

∗sgn(a0)a3

and

∥̃a∥ = ∥a0∥ + ϵ
aT

0 a1

∥a0∥
+ ϵ∗

aT
0 a2

∥a0∥
+ ϵϵ∗(

aT
0 a3 + aT

1 a2

∥a0∥
−

aT
0 a1aT

0 a2

∥a0∥
3 ).

A matrix with hyper-dual number entries is called a hyper-dual matrix. Analogous to the forms of
hyper-dual numbers, an m × n hyper-dual matrix Ã is defined as

Ã = A0 + ϵA1 + ϵ
∗A2 + ϵϵ

∗A3 = (A0 + ϵA1) + ϵ∗(A2 + ϵA3) ≜ Â + ϵ∗Â0,

where A0–A3 are m × n real matrices, and ϵ and ϵ∗ are dual units. The set of all m × n hyper-dual
matrices over the real field is denoted by R̃m×n. Some studies on hyper-dual matrices can be found
in [24, 25].

For a given hyper-dual matrix Ã ∈ R̃m×n, if there exists a hyper-dual matrix X̃ ∈ R̃n×m satisfying

ÃX̃Ã = Ã, X̃ÃX̃ = X̃, (ÃX̃)T = ÃX̃, (X̃Ã)T = X̃Ã, (1.4)

then we call X̃ the hyper-dual Moore-Penrose generalized inverse (HDMPGI) of Ã, and denoted by Ã†.
In this paper, we aim to give some theoretical findings of HDMPGI. The rest of this paper is

organized as follows. In Section 2, we give some necessary and sufficient conditions for a hyper-dual
matrix to have the HDMPGI, and present a compact formula for HDMPGI whenever it exists. In
Section 3, analogous to the applications of the dual Moore-Penrose generalized inverse in linear dual
equations, we discuss the least-squares properties of HDMPGI. In Section 4, based on the forms of
dual matrices and hyper-dual matrices, we introduce the definition of dual matrix of order n. We also
study the existence of the Moore-Penrose generalized inverse of such matrices. The theoretical results
are illustrated by some numerical examples.

Throughout this paper, we use Rn, R̂n, and R̃n to denote the set of all n-dimensional real column
vectors, dual column vectors, and hyper-dual column vectors, respectively. Rm×n, R̂m×n, and R̃m×n are,
respectively, the set of all m×n real matrices, dual matrices, and hyper-dual matrices. For a real matrix
A, r(A) is the rank of A, the superscript “T” is the transpose of a matrix, and In is the identity of order
n. ∥ · ∥ is the Euclidean norm of a vector. We will use

G ≜ · · ·
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to mean that we define G to be something.
The following lemma is well-known as singular value decomposition, which will be a basic tool for

proving Theorem 2.1.

Lemma 1.1. [26] Let A ∈ Rm×n be such that

r(A) = r.

Then, there exist real orthogonal matrices U ∈ Rm×m and V ∈ Rn×n such that

A = U
[
Σ 0
0 0

]
VT,

where Σ ∈ Rr×r is a diagonal positive definite matrix. Then,

A† = V
[
Σ−1 0
0 0

]
UT.

The following lemma will also be used in the proof of Theorem 2.1, which is a rank equality that
involves a special 2 × 2 block matrix and Moore-Penrose generalized inverse.

Lemma 1.2. [27] Let A ∈ Rm×n, B ∈ Rm×k, and C ∈ Rl×n. Then,

r
[

A B
C 0

]
= r(B) + r(C) + r

[
(Im − BB†)A(In −C†C)

]
.

2. Characterizations of HDMPGI of hyper-dual matrices

In this section, we study the existence and computation of the HDMPGI. We first give a necessary
and sufficient condition for a hyper-dual matrix to be the HDMPGI of a given hyper-dual matrix, which
can be obtained directly from the definition of the HDMPGI in (1.4), and we omit the proof.

Lemma 2.1. Let
Ã = Â + ϵ∗Â0 ∈ R̃

m×n.

Then, a hyper-dual matrix
X̃ = X̂ + ϵ∗X̂0 ∈ R̃

n×m

is the HDMPGI of Ã if and only if
X̂ = Â†

and 
ÂX̂Â0 + ÂX̂0Â + Â0X̂Â = Â0,

X̂ÂX̂0 + X̂Â0X̂ + X̂0ÂX̂ = X̂0,

(ÂX̂0 + Â0X̂)T = ÂX̂0 + Â0X̂,

(X̂Â0 + X̂0Â)T = X̂Â0 + X̂0Â.

Analogous to the DMPGI of dual matrices, the HDMPGI of hyper-dual matrices may not exist. We
present some necessary and sufficient conditions for the existence of the HDMPGI in the following
theorem. A compact formula for the computation of the HDMPGI is also given whenever it exists.
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Theorem 2.1. Let
Ã = Â + ϵ∗Â0 = A0 + ϵA1 + ϵ

∗A2 + ϵϵ
∗A3 ∈ R̃

m×n.

Then, the following statements are equivalent:

(i) The HDMPGI of Ã exists;
(ii)

Ã = U
[
Σ 0
0 0

]
VT + ϵU

[
R1 R2

R3 0

]
VT + ϵ∗

(
U

[
Y1 Y2

Y3 0

]
VT + ϵU

[
Z1 Z2

Z3 Z4

]
VT

)
,

where U and V are real orthogonal matrices of orders m and n, respectively, Σ is a diagonal positive
definite matrix, and R1–R3, Y1–Y3, Z1–Z4 are real matrices of appropriate sizes that satisfy

Z4 = R3Σ
−1Y2 + Y3Σ

−1R2;

(iii) Â† exists, and
(Im − ÂÂ†)Â0(In − Â†Â) = 0;

(iv)

(Im − A0A†0)A1(In − A†0A0) = (Im − A0A†0)A2(In − A†0A0)

= (Im − A0A†0)(A3 − A2A†0A1 − A1A†0A2)(In − A†0A0)
= 0;

(v)

r
[

A1 A0

A0 0

]
= r

[
A2 A0

A0 0

]
= r

[
A3 − A2A†0A1 − A1A†0A2 A0

A0 0

]
= 2r(A0).

Furthermore, if the HDMPGI of Ã exists, then

Ã† = Â† + ϵ∗
[
−Â†Â0Â† + (ÂTÂ)†ÂT

0 (Im − ÂÂ†) + (In − Â†Â)ÂT
0 (ÂÂT)†

]
. (2.1)

Proof. In order to show the equivalence of the five items, we will prove that (i)⇔(ii), (ii)⇔(iii),
(iii)⇔(iv), and (iv)⇔(v).

(i)⇔(ii): If the HDMPGI of
Ã = Â + ϵ∗Â0

exists, then we may assume that
Ã† = X̂ + ϵ∗X̂0.

It follows from Lemma 2.1 that the DMPGI of Â exists and

X̂ = Â†.

Then, by [16], using the singular value decomposition of real matrices in Lemma 1.1, Â and X̂ have
the forms

Â = U
[
Σ 0
0 0

]
VT + ϵU

[
R1 R2

R3 0

]
VT (2.2)
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and

X̂ = V
[
Σ−1 0
0 0

]
UT + ϵV

[
−Σ−1R1Σ

−1 Σ−2RT
3

RT
2Σ
−2 0

]
UT, (2.3)

where U ∈ Rm×m and V ∈ Rn×n are real orthogonal matrices, Σ ∈ Rr×r is a diagonal positive definite
matrix,

r = r(A0),

and R1–R3 are real matrices of appropriate sizes.
Let

Â0 = U
[

Y1 Y2

Y3 Y4

]
VT + ϵU

[
Z1 Z2

Z3 Z4

]
VT,

X̂0 = V
[

X1 X2

X3 X4

]
UT + ϵV

[
W1 W2

W3 W4

]
UT.

Then, a direct calculation shows that

ÂX̂Â0 = U
[

Y1 Y2

0 0

]
VT + ϵU

[
Z1 + Σ

−1RT
3 Y3 Z2 + Σ

−1RT
3 Y4

R3Σ
−1Y1 R3Σ

−1Y2

]
VT,

ÂX̂0Â = U
[
ΣX1Σ 0

0 0

]
VT + ϵU

[
Θ ΣX1R2

R3X1Σ 0

]
VT,

where
Θ = ΣX1R1 + ΣX2R3 + ΣW1Σ + R1X1Σ + R2X3Σ.

Â0X̂Â = U
[

Y1 0
Y3 0

]
VT + ϵU

[
Z1 + Y2RT

2Σ
−1 Y1Σ

−1R2

Z3 + Y4RT
2Σ
−1 Y3Σ

−1R2

]
VT.

Hence,

ÂX̂Â0 + ÂX̂0Â + Â0X̂Â = U
[

2Y1 + ΣX1Σ Y2

Y3 0

]
VT + ϵU

[
Γ1 Γ2

Γ3 Γ4

]
VT,

where 
Γ1 = 2Z1 + Σ

−1RT
3 Y3 + Y2RT

2Σ
−1 + Θ,

Γ2 = Z2 + Σ
−1RT

3 Y4 + ΣX1R2 + Y1Σ
−1R2,

Γ3 = Z3 + Y4RT
2Σ
−1 + R3Σ

−1Y1 + R3X1Σ,

Γ4 = R3Σ
−1Y2 + Y3Σ

−1R2.

According to Lemma 2.1,
ÂX̂Â0 + ÂX̂0Â + Â0X̂Â = Â0,

i.e.,

U
[

2Y1 + ΣX1Σ Y2

Y3 0

]
VT + ϵU

[
Γ1 Γ2

Γ3 Γ4

]
VT = U

[
Y1 Y2

Y3 Y4

]
VT + ϵU

[
Z1 Z2

Z3 Z4

]
VT.
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Equating the real part and the dual part of both sides of the above equality yields

Y4 = 0

and
Γ4 = R3Σ

−1Y2 + Y3Σ
−1R2 = Z4.

Therefore, Ã has the form

Ã = U
[
Σ 0
0 0

]
VT + ϵU

[
R1 R2

R3 0

]
VT + ϵ∗

(
U

[
Y1 Y2

Y3 0

]
VT + ϵU

[
Z1 Z2

Z3 Z4

]
VT

)
.

Conversely, if

Ã = U
[
Σ 0
0 0

]
VT + ϵU

[
R1 R2

R3 0

]
VT + ϵ∗

(
U

[
Y1 Y2

Y3 0

]
VT + ϵU

[
Z1 Z2

Z3 Z4

]
VT

)
,

where U and V are real orthogonal matrices of orders m and n, respectively, Σ is a diagonal positive
definite matrix, and

Z4 = R3Σ
−1Y2 + Y3Σ

−1R2.

Let

G̃ =V
[
Σ−1 0
0 0

]
UT + ϵV

[
−Σ−1R1Σ

−1 Σ−2RT
3

RT
2Σ
−2 0

]
UT

+ ϵ∗
(
V

[
−Σ−1Y1Σ

−1 Σ−2YT
3

YT
2 Σ
−2 0

]
UT + ϵV

[
M1 M2

M3 M4

]
UT

)
,

(2.4)

where 
M1 = −Σ

−2RT
3 Y3Σ

−1 − Σ−1Y2RT
2Σ
−2 − Σ−2YT

3 R3Σ
−1 − Σ−1R2YT

2 Σ
−2,

M2 = Σ
−2ZT

3 − Σ
−2RT

1Σ
−1YT

3 − Σ
−1R1Σ

−2YT
3 − Σ

−2YT
1 Σ
−1RT

3 − Σ
−1Y1Σ

−2RT
3 ,

M3 = ZT
2Σ
−2 − RT

2Σ
−1YT

1 Σ
−2 − YT

2 Σ
−2R1Σ

−1 − YT
2 Σ
−1RT

1Σ
−2 − RT

2Σ
−2Y1Σ

−1,

M4 = RT
2Σ
−3YT

3 + YT
2 Σ
−3RT

3 .

Then,

ÃG̃ = U
[
Ir 0
0 0

]
UT + ϵU

[
0 Σ−1RT

3
R3Σ

−1 0

]
UT + ϵ∗U

[
0 Σ−1YT

3
Y3Σ

−1 0

]
UT + ϵϵ∗U

[
N1 N2

N3 N4

]
UT,

where 
N1 = −Σ

−1RT
3 Y3Σ

−1 − Σ−1YT
3 R3Σ

−1,

N2 = Σ
−1ZT

3 − Σ
−1RT

1Σ
−1YT

3 − Σ
−1YT

1 Σ
−1RT

3 ,

N3 = Z3Σ
−1 − Y3Σ

−1R1Σ
−1 − R3Σ

−1Y1Σ
−1,

N4 = Y3Σ
−2RT

3 + R3Σ
−2YT

3 .

G̃Ã = V
[
Ir 0
0 0

]
VT + ϵV

[
0 Σ−1R2

RT
2Σ
−1 0

]
VT + ϵ∗V

[
0 Σ−1Y2

YT
2 Σ
−1 0

]
VT + ϵϵ∗V

[
P1 P2

P3 P4

]
VT,
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where 
P1 = −Σ

−1Y2RT
2Σ
−1 − Σ−1R2YT

2 Σ
−1,

P2 = Σ
−1Z2 − Σ

−1Y1Σ
−1R2 − Σ

−1R1Σ
−1Y2,

P3 = ZT
2Σ
−1 − RT

2Σ
−1YT

1 Σ
−1 − YT

2 Σ
−1RT

1Σ
−1,

P4 = YT
2 Σ
−2R2 + RT

2Σ
−2Y2.

Then, ÃG̃ and G̃Ã are symmetric.
Furthermore,

ÃG̃Ã =U
[
Σ 0
0 0

]
VT + ϵU

[
0 0
R3 0

]
VT + ϵ∗U

[
0 0
Y3 0

]
VT + ϵϵ∗U

[
−Σ−1RT

3 Y3 − Σ
−1YT

3 R3 0
Z3 − Y3Σ

−1R1 − R3Σ
−1Y1 0

]
VT

+ ϵU
[
R1 R2

0 0

]
VT + ϵϵ∗U

[
Σ−1YT

3 R3 0
Y3Σ

−1R1 Y3Σ
−1R2

]
VT + ϵϵ∗U

[
Σ−1RT

3 Y3 0
R3Σ

−1Y1 R3Σ
−1Y2

]
VT

+ ϵ∗U
[
Y1 Y2

0 0

]
VT + ϵϵ∗U

[
Z1 Z2

0 0

]
VT

=U
[
Σ 0
0 0

]
VT + ϵU

[
R1 R2

R3 0

]
VT + ϵ∗U

[
Y1 Y2

Y3 0

]
VT + ϵϵ∗U

[
Z1 Z2

Z3 Z4

]
VT

=Ã,

G̃ÃG̃ =V
[
Σ−1 0
0 0

]
UT + ϵV

[
0 0

RT
2Σ
−2 0

]
UT + ϵ∗V

[
0 0

YT
2 Σ
−2 0

]
UT

+ ϵϵ∗V
[
−Σ−1Y2RT

2Σ
−2 − Σ−1R2YT

2 Σ
−2 0

ZT
2Σ
−2 − RT

2Σ
−1YT

1 Σ
−2 − YT

2 Σ
−1RT

1Σ
−2 0

]
UT + ϵV

[
−Σ−1R1Σ

−1 Σ−2RT
3

0 0

]
UT

+ ϵϵ∗V
[
Σ−1Y2RT

2Σ
−2 0

−YT
2 Σ
−1RT

1Σ
−1 YT

2 Σ
−3RT

3

]
UT + ϵ∗V

[
−Σ−1Y1Σ

−1 Σ−2YT
3

0 0

]
UT

+ ϵϵ∗V
[
Σ−1R2YT

2 Σ
−2 0

−RT
2Σ
−1YT

1 Σ
−1 RT

2Σ
−3YT

3

]
UT + ϵϵ∗V

[
M1 M2

0 0

]
UT

=V
[
Σ−1 0
0 0

]
UT + ϵV

[
−Σ−1R1Σ

−1 Σ−2RT
3

RT
2Σ
−2 0

]
UT

+ ϵ∗V
[
−Σ−1Y1Σ

−1 Σ−2YT
3

YT
2 Σ
−2 0

]
UT + ϵϵ∗V

[
M1 M2

M3 M4

]
UT

=G̃.

Hence, Ã and G̃ satisfy the four Penrose conditions in (1.4), i.e., G̃ is the HDMPGI of Ã.

(ii)⇔(iii): If
Ã = Â + ϵ∗Â0,

where

Â = U
[
Σ 0
0 0

]
VT + ϵU

[
R1 R2

R3 0

]
VT, Â0 = U

[
Y1 Y2

Y3 0

]
VT + ϵU

[
Z1 Z2

Z3 Z4

]
VT,

AIMS Mathematics Volume 9, Issue 12, 35125–35150.



35133

then by [16], the DMPGI of Â exists and Â† has the matrix form in (2.3). Substituting the matrix forms
of Â, Â†, and Â0 into (Im − ÂÂ†)Â0(In − Â†Â), we obtain

(Im − ÂÂ†)Â0(In − Â†Â) =
(
U

[
0 0
0 Im−r

]
UT − ϵU

[
0 Σ−1RT

3
R3Σ

−1 0

]
UT

)
×

(
U

[
Y1 Y2

Y3 0

]
VT + ϵU

[
Z1 Z2

Z3 Z4

]
VT

)
×

(
V

[
0 0
0 In−r

]
VT − ϵV

[
0 Σ−1R2

RT
2Σ
−1 0

]
VT

)
=ϵU

[
0 0
0 Z4 − R3Σ

−1Y2 − Y3Σ
−1R2

]
VT.

Therefore, if
Z4 = R3Σ

−1Y2 + Y3Σ
−1R2,

then
(Im − ÂÂ†)Â0(In − Â†Â) = 0.

On the other hand, if Â† exists, then Â and Â† have the matrix forms in (2.2) and (2.3), respectively.
By a direct calculation, we have

(Im − ÂÂ†)Â0(In − Â†Â) = U
[

0 0
0 Y4

]
VT + ϵU

[
0 −Σ−1RT

3 Y4

−Y4RT
2Σ
−1 Z4 − R3Σ

−1Y2 − Y3Σ
−1R2

]
VT.

Hence, if
(Im − ÂÂ†)Â0(In − Â†Â) = 0,

then Y4 = 0 and
Z4 = R3Σ

−1Y2 + Y3Σ
−1R2.

(iii)⇔(iv): By [16], if Â† exists, then

(Im − A0A†0)A1(In − A†0A0) = 0.

Moreover, if
(Im − ÂÂ†)Â0(In − Â†Â) = 0,

then substituting
Â = A0 + ϵA1, Â0 = A2 + ϵA3

and
Â† = A†0 + ϵ

[
−A†0A1A†0 + (AT

0 A0)†AT
1 (Im − A0A†0) + (In − A†0A0)AT

1 (A0AT
0 )†

]
into

(Im − ÂÂ†)Â0(In − Â†Â) = 0

gives

(Im − A0A†0)A2(In − A†0A0) + ϵ
[
(Im − A0A†0)(A3 − A2A†0A1 − A1A†0A2)(In − A†0A0)
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− (Im − A0A†0)A2(In − A†0A0)AT
1 (A0AT

0 )†A0 − A0(AT
0 A0)†AT

1 (Im − A0A†0)A2(In − A†0A0)
]

= 0,

which implies

(Im − A0A†0)A2(In − A†0A0) = 0

and

(Im − A0A†0)(A3 − A2A†0A1 − A1A†0A2)(In − A†0A0) = 0.

Conversely, if
(Im − A0A†0)A1(In − A†0A0) = 0,

then by [16], Â† exists. Moreover, if

(Im − A0A†0)A2(In − A†0A0) = 0

and
(Im − A0A†0)(A3 − A2A†0A1 − A1A†0A2)(In − A†0A0) = 0,

then it is not difficult to see that
(Im − ÂÂ†)Â0(In − Â†Â) = 0.

(iv)⇔(v): It follows directly from Lemma 1.2.
It remains to show that

G̃ = Â† + ϵ∗
[
−Â†Â0Â† + (ÂTÂ)†ÂT

0 (Im − ÂÂ†) + (In − Â†Â)ÂT
0 (ÂÂT)†

]
.

By a direct calculation, we have

Â† = V
[
Σ−1 0
0 0

]
UT + ϵV

[
−Σ−1R1Σ

−1 Σ−2RT
3

RT
2Σ
−2 0

]
UT, (2.5)

Â†Â0Â† = V
[
Σ−1Y1Σ

−1 0
0 0

]
UT + ϵV

[
Q1 Σ−1Y1Σ

−2RT
3

RT
2Σ
−2Y1Σ

−1 0

]
UT, (2.6)

where
Q1 = Σ

−1(−R1Σ
−1Y1Σ

−1 − Y1Σ
−1R1Σ

−1 + Z1Σ
−1 + Σ−1RT

3 Y3Σ
−1 + Y2RT

2Σ
−2).

(ÂTÂ)†ÂT
0 (Im − ÂÂ†) = V

[
0 Σ−2YT

3
0 0

]
UT + ϵV

[
−Σ−2YT

3 R3Σ
−1 Q2

0 RT
2Σ
−3YT

3

]
UT,

where
Q2 = Σ

−2ZT
3 − Σ

−2RT
1Σ
−1YT

3 − Σ
−1R1Σ

−2YT
3 − Σ

−2YT
1 Σ
−1RT

3 .

(In − Â†Â)ÂT
0 (ÂÂT)† = V

[
0 0

YT
2 Σ
−2 0

]
UT + ϵV

[
−Σ−1R2YT

2 Σ
−2 0

Q3 YT
2 Σ
−3RT

3

]
UT, (2.7)
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where
Q3 = ZT

2Σ
−2 − RT

2Σ
−1YT

1 Σ
−2 − YT

2 Σ
−2R1Σ

−1 − YT
2 Σ
−1RT

1Σ
−2.

Now, it can be seen from (2.4)–(2.7) that

G̃ = Â† + ϵ∗
[
−Â†Â0Â† + (ÂTÂ)†ÂT

0 (Im − ÂÂ†) + (In − Â†Â)ÂT
0 (ÂÂT)†

]
,

and thus Ã† has the expression in (2.1). □

Remark that we can know whether the HDMPGI of a hyper-dual matrix exists by checking one of
the four conditions in Theorem 2.1, especially by condition (v). Once the HDMPGI exists, we can
obtain it by the formula given in (2.1). We illustrate this by the following example:

Example 2.1. Let

Ã =
[

1 1
0 0

]
+ ϵ

[
1 2
1 1

]
+ ϵ∗

[
0 0
2 2

]
+ ϵϵ∗

[
−1 1
1 3

]
≜ A0 + ϵA1 + ϵ

∗A2 + ϵϵ
∗A3.

Since

r
[

A1 A0

A0 0

]
= r

[
A2 A0

A0 0

]
= r

[
A3 − A2A†0A1 − A1A†0A2 A0

A0 0

]
= 2 = 2r(A0),

then by Theorem 2.1(v), the HDMPGI of Ã exists.
A direct computation shows that

Â† = (A0 + ϵA1)† =
[ 1

2 0
1
2 0

]
+ ϵ

[
−1 1

2

−1
2

1
2

]
and

Ã† = Â† + ϵ∗
[
−Â†Â0Â† + (ÂTÂ)†ÂT

0 (Im − ÂÂ†) + (In − Â†Â)ÂT
0 (ÂÂT)†

]
=

[ 1
2 0
1
2 0

]
+ ϵ

[
−1 1

2

−1
2

1
2

]
+ ϵ∗

[
0 1
0 1

]
+ ϵϵ∗

[
−5

2 −
5
2

−3
2 −

3
2

]
.

3. Least-squares properties of HDMPGI

Qi et al. [28] introduced a total order ≤ over R̂. Suppose

p̂ = p + ϵp0, q̂ = q + ϵq0 ∈ R̂.

We have p̂ < q̂ if p < q, or p = q and p0 < q0; p̂ = q̂ if p = q and p0 = q0. The total order provides an
efficient way to compare the magnitude of two dual numbers. Based on the total order ≤ over R̂, Wang

et al. [29] extended it to dual vectors and introduced a QLY total order
Q
≤ over R̂m. We introduce a total

order over R̃ as follows. For two hyper-dual numbers

p̃ = p̂ + ϵ∗ p̂0, q̃ = q̂ + ϵ∗q̂0 ∈ R̃.
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We have p̃ < q̃ if p̂ < q̂, or p̂ = q̂ and p̂0 < q̂0; p̃ = q̃ if p̂ = q̂ and p̂0 = q̂0. If ã > 0, then we say that ã
is a positive hyper-dual number. If ã ≥ 0, then we call ã a nonnegative hyper-dual number.

Recall that for a dual vector
x̂ = x + ϵx0 ∈ R̂

n,

the Euclidean norm of x̂ is defined as [28]

∥x̂∥ =

 ∥x∥ + 2ϵ xT x0
∥x∥ , if x , 0,

∥x0∥ϵ, if x = 0.

For a hyper-dual number ã, ∥̃a∥2 is also a hyper-dual number. We may study least-squares properties
of HDMPGI by the total order. However, ∥̃a∥2 is not always nonnegative, for example,

∥ϵa1 + ϵ
∗a2 + ϵϵ

∗a3∥
2
= (ϵa1 + ϵ

∗a2 + ϵϵ
∗a3)T(ϵa1 + ϵ

∗a2 + ϵϵ
∗a3) = 2ϵϵ∗aT

1 a2.

For this reason, we introduce the following set:

R̃m
0 = {a0 + ϵa1 + ϵ

∗a2 + ϵϵ
∗a3 | a0, a1, a2, a3 ∈ R

m, a0 , 0 or a0 = 0 and aT
1 a2 ≥ 0}.

For a hyper-dual vector

ã = a0 + ϵa1 + ϵ
∗a2 + ϵϵ

∗a3 ∈ R̃
m,

∥̃a∥2 = ãTã = ∥a0∥
2 + 2ϵaT

0 a1 + 2ϵ∗aT
0 a2 + 2ϵϵ∗(aT

0 a3 + aT
1 a2).

Hence, if ã ∈ R̃m
0 , then ∥̃a∥2 ≥ 0.

For ã ∈ R̃m
0 , we define the Euclidean norm of ã as follows:

∥̃a∥ =



∥a0∥ + ϵ
aT

0 a1

∥a0∥
+ ϵ∗

aT
0 a2

∥a0∥
+ ϵϵ∗ (aT

0 a3+aT
1 a2

∥a0∥
−

aT
0 a1aT

0 a2

∥a0∥
3 ), if a0 , 0,

ϵ
√

aT
1 a2 + ϵ

∗

√
aT

1 a2 + ϵϵ
∗∥a3∥, if a0 = 0, a1 , 0, a2 , 0 and aT

1 a2 ≥ 0,

ϵ∥a1∥ + 2ϵϵ∗ aT
1 a3

∥a1∥
, if a0 = a2 = 0, a1 , 0,

ϵ∗∥a2∥ + 2ϵϵ∗ aT
2 a3

∥a2∥
, if a0 = a1 = 0, a2 , 0,

ϵϵ∗∥a3∥, if a0 = a1 = a2 = 0,
0, if a0 = a1 = a2 = a3 = 0.

(3.1)

Upon expansion into its primal and hyper-dual parts, the system of linear hyper-dual equations

Ãx̃ = b̃

reveals four systems of real linear equations,
A0x0 = b0,

A0x1 = b1 − A1x0,

A0x2 = b2 − A2x0,

A0x3 = b3 − A3x0 − A2x1 − A1x2.

(3.2)
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We will consider the least-squares solutions of the system of linear hyper-dual equations

Ãx̃ = b̃

under some constraints. We suppose that the real linear equation

A0x0 = b0

in (3.2) is inconsistent, and thus
Ãx̃ = b̃

is also inconsistent. Remark that the symbol Ã(1,3) is the set of hyper-dual matrices X̃ that satisfies the
two equations

ÃX̃Ã = Ã

and
(ÃX̃)T = ÃX̃

in (1.4), which is important for studying least-squares solutions of systems of linear hyper-dual
equations.

Theorem 3.1. Let Ã ∈ R̃m×n be such that Ã† exists, b̃ ∈ R̃m, and

(ÃÃ(1,3) − Im)̃b ∈ R̃m
0 .

Denote
x̃0 = Ã(1,3)̃b − (In − Ã(1,3)Ã)w̃ ∈ R̃n,

where w̃ ∈ R̃n is an arbitrary hyper-dual vector. Then,

∥Ãx̃0 − b̃∥ ≤ ∥Ãx̃ − b̃∥

for any hyper-dual vector x̃ that satisfies

Ã(x̃ − Ã(1,3)̃b) ∈ R̃m
0 .

Proof. Adding and subtracting ÃÃ(1,3)̃b, we get

ẽ = Ãx̃ − b̃ = Ã(x̃ − Ã(1,3)̃b) + (ÃÃ(1,3)̃b − b̃) ≜ ũ + ṽ. (3.3)

Since
ṽTũ = b̃T(ÃÃ(1,3) − Im)Ã(x̃ − Ã(1,3)̃b) = 0

in (3.3), then ũTṽ is also zero and

∥̃e∥2 = ∥̃u + ṽ∥2 = (̃u + ṽ)T(̃u + ṽ) = ∥̃u∥2 + ∥̃v∥2 + 2ũTṽ = ∥̃u∥2 + ∥̃v∥2. (3.4)

Let
ũ = u0 + ϵu1 + ϵ

∗u2 + ϵϵ
∗u3.
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Then,

∥̃u∥2 = ũTũ = ∥u0∥
2 + 2ϵuT

0 u1 + 2ϵ∗uT
0 u2 + 2ϵϵ∗(uT

0 u3 + uT
1 u2). (3.5)

If ũ ∈ R̃m
0 , then it can be observed from (3.5) that

∥̃u∥2 ≥ 0,

and thus
∥̃e∥2 ≥ ∥̃v∥2

by (3.4), and equality holds if and only if
∥̃u∥2 = 0.

Let
ẽ = e0 + ϵe1 + ϵ

∗e2 + ϵϵ
∗e3, ṽ = v0 + ϵv1 + ϵ

∗v2 + ϵϵ
∗v3.

Then,

∥̃e∥2 = ∥e0∥
2 + 2ϵeT

0 e1 + 2ϵ∗eT
0 e2 + 2ϵϵ∗(eT

0 e3 + eT
1 e2), (3.6)

∥̃v∥2 = ∥v0∥
2 + 2ϵvT

0 v1 + 2ϵ∗vT
0 v2 + 2ϵϵ∗(vT

0 v3 + vT
1 v2). (3.7)

Since the system of real linear equations

A0x0 = b0

is inconsistent, then e0 , 0, and thus
∥̃e∥2 > 0.

In this case, it follows from (3.1) that

∥̃e∥ = ∥e0∥ + ϵ
eT

0 e1

∥e0∥
+ ϵ∗

eT
0 e2

∥e0∥
+ ϵϵ∗ (

eT
0 e3 + eT

1 e2

∥e0∥
−

eT
0 e1eT

0 e2

∥e0∥
3 ). (3.8)

By the assumption, ṽ ∈ R̃m
0 , and then

∥̃v∥2 ≥ 0.

We consider the following two cases:

Case 1. ∥̃v∥2 > 0. In this case, either v0 , 0 or v0 = 0 and vT
1 v2 > 0. If v0 = 0 and vT

1 v2 > 0, then
by (3.1),

∥̃v∥ = ϵ
√

vT
1 v2 + ϵ

∗

√
vT

1 v2 + ϵϵ
∗∥v3∥.

Hence, by (3.8), ∥̃e∥ > ∥̃v∥.
If v0 , 0, then

∥̃v∥ = ∥v0∥ + ϵ
vT

0 v1

∥v0∥
+ ϵ∗

vT
0 v2

∥v0∥
+ ϵϵ∗ (

vT
0 v3 + vT

1 v2

∥v0∥
−

vT
0 v1vT

0 v2

∥v0∥
3 ). (3.9)

Subcase 1. ∥̃e∥2 > ∥̃v∥2.
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In this case, by (3.6) and (3.7),

∥e0∥ > ∥v0∥ or ∥e0∥ = ∥v0∥,

eT
0 e1 > vT

0 v1 or ∥e0∥ = ∥v0∥,

eT
0 e1 = vT

0 v1, eT
0 e2 > vT

0 v2 or ∥e0∥ = ∥v0∥,

eT
0 e1 = vT

0 v1, eT
0 e2 = vT

0 v2, eT
0 e3 + eT

1 e2 > vT
0 v3 + vT

1 v2.

Then, it can be observed from (3.8) and (3.9) that ∥̃e∥ > ∥̃v∥.
Subcase 2. ∥̃e∥2 = ∥̃v∥2.
In this case,

∥e0∥ = ∥v0∥, eT
0 e1 = vT

0 v1, eT
0 e2 = vT

0 v2

and
eT

0 e3 + eT
1 e2 = vT

0 v3 + vT
1 v2.

Hence, it can be easily seen from (3.8) and (3.9) that ∥̃e∥ = ∥̃v∥.

Case 2. ∥̃e∥2 > ∥̃v∥2 = 0.

By the assumption, ṽ ∈ R̃m
0 . If ∥̃v∥2 = 0, then by (3.7), v0 = 0 and

vT
1 v2 = 0.

We need only to consider the following five subcases:
(i) v0 = 0, v1 , 0, v2 , 0, vT

1 v2 = 0. In this subcase, by (3.1),

∥̃v∥ = ϵϵ∗∥v3∥.

(ii) v0 = v1 = 0, v2 , 0. In this subcase, by (3.1),

∥̃v∥ = ϵ∗∥v2∥ + 2ϵϵ∗
vT

2 v3

∥v2∥
.

(iii) v0 = v2 = 0, v1 , 0. In this subcase, by (3.1),

∥̃v∥ = ϵ∥v1∥ + 2ϵϵ∗
vT

1 v3

∥v1∥
.

(iv) v0 = v1 = v2 = 0. In this subcase, by (3.1),

∥̃v∥ = ϵϵ∗∥v3∥.

(v) v0 = v1 = v2 = v3 = 0. In this subcase, by (3.1), ∥̃v∥ = 0.
For all these five subcases, by the total order defined above,

∥̃e∥ > ∥̃v∥.

Therefore, if
ÃÃ(1,3)̃b − b̃ ∈ R̃m

0 ,
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then

∥Ãx̃0 − b̃∥ = ∥Ã[Ã(1,3)̃b − (In − Ã(1,3)Ã)w̃] − b̃∥ = ∥ÃÃ(1,3)̃b − b̃∥ ≤ ∥Ãx̃ − b̃∥

for any x̃ that satisfies
Ã(x̃ − Ã(1,3)̃b) ∈ R̃m

0 .

This completes the proof. □

Theorem 3.1 gives an analogous result to those of the least-squares problem of linear real equations
and linear dual equations. It should be noted that the condition

∥̃u∥2 ≥ 0

is necessary for studying least-squares problem of linear hyper-dual equations, and this is the reason
why we introduce the vector set R̃m

0 and the total order over R̃.

Example 3.1. Consider the inconsistent hyper-dual equation

Ãx̃ ≈ b̃,

where Ã is the hyper-dual matrix in Example 2.1, and

b̃ =
[

2.8
7.3

]
+ ϵ

[
1.6
5.3

]
+ ϵ∗

[
21.6
18.5

]
+ ϵϵ∗

[
31.2
35.2

]
.

Then, a direct calculation shows that

(ÃÃ(1,3) − In)̃b = (ÃÃ† − In)̃b =
[

0
−7.3

]
+ ϵ

[
7.3
−2.5

]
+ ϵ∗

[
14.6
−12.9

]
+ ϵϵ∗

[
10.6
16

]
∈ R̃2

0.

Let

x̃1 =

[
1.6
4.3

]
+ ϵ

[
16.3
2.8

]
+ ϵ∗

[
8.3
7.6

]
+ ϵϵ∗

[
6.2
22.6

]
.

Then,

Ã(x̃1 − Ã(1,3)̃b) = Ãx̃1 − ÃÃ(1,3)̃b = Ãx̃1 − ÃÃ†b̃

=

[
3.1
0

]
+ ϵ

[
20.4
3.1

]
+ ϵ∗

[
−20.3

6.2

]
+ ϵϵ∗

[
13.2
17.4

]
∈ R̃2

0

and

Ãx̃1 − b̃ =
[

3.1
−7.3

]
+ ϵ

[
27.7
0.6

]
+ ϵ∗

[
−5.7
−6.7

]
+ ϵϵ∗

[
23.8
33.4

]
.

Therefore, by (3.1),

∥ÃÃ(1,3)̃b − b̃∥ = ∥ÃÃ†b̃ − b̃∥ = 7.3 + ϵ2.5 + ϵ∗12.9 − ϵϵ∗1.4
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and

∥Ãx̃1 − b̃∥ = 7.93 + ϵ10.3 + ϵ∗4 − ϵϵ∗47.

Now, by the total order,
∥ÃÃ(1,3)̃b − b̃∥ < ∥Ãx̃1 − b̃∥.

We choose another hyper-dual vector x̃2 as follows:

x̃2 =

[
1.6
1.2

]
+ ϵ

[
−2.5
−2.8

]
+ ϵ∗

[
11.6
−6.8

]
+ ϵϵ∗

[
24.6
−32.2

]
.

Then,

Ã(x̃2 − Ã(1,3)̃b) = Ãx̃2 − ÃÃ(1,3)̃b

= Ãx̃2 − ÃÃ†b̃

= ϵ

[
−10.2

0

]
+ ϵ∗

[
−31.4

0

]
+ ϵϵ∗

[
−51.8
−51.8

]
∈ R̃2

0

and

Ãx̃2 − b̃ =
[

0
−7.3

]
+ ϵ

[
−2.9
−2.5

]
+ ϵ∗

[
−16.8
−12.9

]
+ ϵϵ∗

[
−41.2
−35.8

]
.

It follows from (3.1) that

∥Ãx̃2 − b̃∥ = 7.3 + ϵ2.5 + ϵ∗12.9 + ϵϵ∗42.5.

Hence,
∥ÃÃ(1,3)̃b − b̃∥ < ∥Ãx̃2 − b̃∥.

Corollary 3.1. Let Â ∈ R̂m×n be such that Â† exists, b̂ ∈ R̂m. Denote

x̂0 = Â(1,3)̂b − (In − Â(1,3)Â)ŵ,

where ŵ ∈ R̂m is an arbitrary dual vector. Then,

∥Âx̂0 − b̂∥ ≤ ∥Âx̂ − b̂∥

for all x̂ ∈ R̂n.
For a hyper-dual number

ã = a0 + ϵa1 + ϵ
∗a2 + ϵϵ

∗a3,

if a0 , 0, then we say that ã is appreciable. Appreciable hyper-dual vectors and appreciable hyper-dual
matrices can be defined similarly. We now consider minimum-norm least-squares solution of

Ãx̃ = b̃
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under some certain restrictions.

Theorem 3.2. Let Ã ∈ R̃m×n be such that Ã† exists, b̃ ∈ R̃m, and Ã†b̃ ∈ R̃n
0. If ÃÃ†b̃ is appreciable, then

∥Ã†b̃∥ ≤ ∥Ã†b̃ + (In − Ã†Ã)̃h∥

for any hyper-dual vector h̃ that satisfies

(In − Ã†Ã)̃h ∈ R̃n
0.

Proof. Since
[(In − Ã†Ã)̃h]TÃ†b̃ = h̃T(In − Ã†Ã)Ã†b̃ = 0,

then

∥Ã†b̃ + (In − Ã†Ã)̃h∥
2
= ∥Ã†b̃∥

2
+ ∥(In − Ã†Ã)̃h∥

2
. (3.10)

If a hyper-dual vector h̃ satisfies
(In − Ã†Ã)̃h ∈ R̃n

0,

then
∥(In − Ã†Ã)̃h∥

2
≥ 0.

Hence, it can be observed from (3.10) that

∥Ã†b̃ + (In − Ã†Ã)̃h∥
2
≥ ∥Ã†b̃∥

2
.

On the other hand, let

Ã = A0 + ϵA1 + ϵ
∗A2 + ϵϵ

∗A3, Ã†b̃ + (In − Ã†Ã)̃h = x0 + ϵx1 + ϵ
∗x2 + ϵϵ

∗x3.

Then,

ÃÃ†b̃ = Ã
[
Ã†b̃ + (In − Ã†Ã)̃h

]
= A0x0 + ϵ(A0x1 + A1x0)ϵ∗(A0x2 + A2x0) + ϵϵ∗(A0x3 + A3x0 + A1x2 + A2x1).

(3.11)

If ÃÃ†b̃ is appreciable, it follows from (3.11) that A0x0 , 0. Hence, x0 , 0 and Ã†b̃+ (In − Ã†Ã)̃h is
appreciable. In this case,

∥Ã†b̃ + (In − Ã†Ã)̃h∥
2
> 0.

Moreover, Ã†b̃ ∈ R̃n
0 implies

∥Ã†b̃∥
2
≥ 0.

Therefore, by an analogous discussion as the proof of Theorem 3.1, we conclude that

∥Ã†b̃∥ ≤ ∥Ã†b̃ + (In − Ã†Ã)̃h∥.

This completes the proof. □

Corollary 3.2. Let Â ∈ R̂m×n be such that Â† exists, b̂ ∈ R̂m. If ÂÂ†̂b is appreciable, then

∥Â†̂b∥ ≤ ∥Â†̂b + (In − Â†Â)̂h∥

for all ĥ ∈ R̂n.
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4. Moore-Penrose generalized inverses of dual matrices of order n

Dual matrices and hyper-dual matrices may be referred to as dual matrices of orders 1 and 2,
respectively. Specifically, real matrices are of order 0. Then, a dual matrix in R̂m×n is constituted of
two dual matrices of order 0, and a hyper-dual matrix in R̃m×n is constituted of two dual matrices of
order 1. From this perspective, we define a dual matrix of order n as follows:

Â(n) = B̂(n−1) + ϵnĈ(n−1),

where B̂(n−1) and Ĉ(n−1) are two dual matrices of order n − 1, and ϵn is a dual unit. Hence, a dual matrix
of order n can be obtained by two dual matrices of order n − 1. For example, a dual matrix of order 3
is of the form

Â(3) = B̂(2) + ϵ3Ĉ(2) = A0 + ϵ1A1 + ϵ2A2 + ϵ1ϵ2A3 + ϵ3(A4 + ϵ1A5 + ϵ2A6 + ϵ1ϵ2A7).

In this section, we study the conditions for the existence of the Moore-Penrose generalized inverse
of dual matrices of order n. Denote the set of all m × n dual matrices of order n by R̂m×n

(n) .

Theorem 4.1. Let
Â(n) = B̂(n−1) + ϵnĈ(n−1) ∈ R̂m×n

(n) .

Then, Â(n) has a Moore-Penrose generalized inverse if and only if (B̂(n−1))† exists and[
Im − B̂(n−1)(B̂(n−1))†

]
Ĉ(n−1)

[
In − (B̂(n−1))†B̂(n−1)

]
= 0.

Moreover, if the Moore-Penrose generalized inverse of Â(n) exists, then

(Â(n))† = (B̂(n−1))† + ϵnẐ(n−1),

where

Ẑ(n−1) = − (B̂(n−1))†Ĉ(n−1)(B̂(n−1))† +
[
(B̂(n−1))TB̂(n−1)

]†
(Ĉ(n−1))T

×
[
Im − B̂(n−1)(B̂(n−1))†

]
+

[
In − (B̂(n−1))†B̂(n−1)

]
(Ĉ(n−1))T

[
B̂(n−1)(B̂(n−1))T

]†
.

Proof. If Â(n) has a Moore-Penrose generalized inverse, we may suppose that

X̂(n) = Ŷ (n−1) + ϵnẐ(n−1)

is a Moore-Penrose generalized inverse of Â(n). Then, Â(n) and X̂(n) satisfy the four Penrose equations,
i.e.,

Â(n)X̂(n)Â(n) = Â(n), X̂(n)Â(n)X̂(n) = X̂(n), (Â(n)X̂(n))T = Â(n)X̂(n), (X̂(n)Â(n))T = X̂(n)Â(n).

Substituting
Â(n) = B̂(n−1) + ϵnĈ(n−1)

and
X̂(n) = Ŷ (n−1) + ϵnẐ(n−1)
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into the above four equations yields

B̂(n−1)Ŷ (n−1)B̂(n−1) = B̂(n−1), Ŷ (n−1)B̂(n−1)Ŷ (n−1) = Ŷ (n−1),

(B̂(n−1)Ŷ (n−1))T = B̂(n−1)Ŷ (n−1), (Ŷ (n−1)B̂(n−1))T = Ŷ (n−1)B̂(n−1).

Hence, the Moore-Penrose generalized inverse of B̂(n−1) exists and

Ŷ (n−1) = (B̂(n−1))†.

On the other hand, equating the dual parts of both sides of the equation

Â(n)X̂(n)Â(n) = Â(n)

gives

Ĉ(n−1) = Ĉ(n−1)(B̂(n−1))†B̂(n−1) + B̂(n−1)(B̂(n−1))†Ĉ(n−1) + B̂(n−1)Ẑ(n−1)B̂(n−1),

which is equivalent to

B̂(n−1)Ẑ(n−1)B̂(n−1) = Ĉ(n−1) − Ĉ(n−1)(B̂(n−1))†B̂(n−1) − B̂(n−1)(B̂(n−1))†Ĉ(n−1) ≜ D̂(n−1).

Then,

D̂(n−1) = B̂(n−1)Ẑ(n−1)B̂(n−1)

= B̂(n−1)(B̂(n−1))†B̂(n−1)Ẑ(n−1)B̂(n−1)(B̂(n−1))†B̂(n−1)

= B̂(n−1)(B̂(n−1))†D̂(n−1)(B̂(n−1))†B̂(n−1)

= −B̂(n−1)(B̂(n−1))†Ĉ(n−1)(B̂(n−1))†B̂(n−1).

Now we have

−B̂(n−1)(B̂(n−1))†Ĉ(n−1)(B̂(n−1))†B̂(n−1) = Ĉ(n−1) − Ĉ(n−1)(B̂(n−1))†B̂(n−1) − B̂(n−1)(B̂(n−1))†Ĉ(n−1),

that is, [
Im − B̂(n−1)(B̂(n−1))†

]
Ĉ(n−1)

[
In − (B̂(n−1))†B̂(n−1)

]
= 0.

Conversely, if (B̂(n−1))† exists and[
Im − B̂(n−1)(B̂(n−1))†

]
Ĉ(n−1)

[
In − (B̂(n−1))†B̂(n−1)

]
= 0,

then we will show that the Moore-Penrose generalized inverse of Â(n) exists, and the matrix

X̂(n) = (B̂(n−1))† + ϵnẐ(n−1)

is a Moore-Penrose generalized inverse of Â(n), where

Ẑ(n−1) = − (B̂(n−1))†Ĉ(n−1)(B̂(n−1))† +
[
(B̂(n−1))TB̂(n−1)

]†
(Ĉ(n−1))T
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×
[
Im − B̂(n−1)(B̂(n−1))†

]
+

[
In − (B̂(n−1))†B̂(n−1)

]
(Ĉ(n−1))T

[
B̂(n−1)(B̂(n−1))T

]†
.

Indeed, by checking the four Penrose equations, we have

Â(n)X̂(n)Â(n) =(B̂(n−1) + ϵnĈ(n−1))
[
(B̂(n−1))† + ϵnẐ(n−1)

]
(B̂(n−1) + ϵnĈ(n−1))

=B̂(n−1) + ϵn
[
B̂(n−1)(B̂(n−1))†Ĉ(n−1) + Ĉ(n−1)(B̂(n−1))†B̂(n−1)

− B̂(n−1)(B̂(n−1))†Ĉ(n−1)(B̂(n−1))†B̂(n−1)].
Note that the condition[

Im − B̂(n−1)(B̂(n−1))†
]
Ĉ(n−1)

[
In − (B̂(n−1))†B̂(n−1)

]
= 0

is equivalent to

Ĉ(n−1) = B̂(n−1)(B̂(n−1))†Ĉ(n−1) + Ĉ(n−1)(B̂(n−1))†B̂(n−1) − B̂(n−1)(B̂(n−1))†Ĉ(n−1)(B̂(n−1))†B̂(n−1),

which means that
Â(n)X̂(n)Â(n) = Â(n).

Moreover,

X̂(n)Â(n)X̂(n) =(B̂(n−1))† + ϵn
{
− (B̂(n−1))†Ĉ(n−1)(B̂(n−1))†

+ (B̂(n−1))†B̂(n−1)
[
(B̂(n−1))TB̂(n−1)

]†
(Ĉ(n−1))T

[
Im − B̂(n−1)(B̂(n−1))†

]
+

[
In − (B̂(n−1))†B̂(n−1)

]
(Ĉ(n−1))TB̂(n−1)

[
(B̂(n−1))T

]†
B̂(n−1)(B̂(n−1))†

}
.

Notice that

(B̂(n−1))†B̂(n−1)
[
(B̂(n−1))TB̂(n−1)

]†
= (B̂(n−1))†B̂(n−1)(B̂(n−1))†

[
(B̂(n−1))T

]†
= (B̂(n−1))†

[
(B̂(n−1))T

]†
=

[
(B̂(n−1))TB̂(n−1)

]†
and [

B̂(n−1)(B̂(n−1))T
]†

B̂(n−1)(B̂(n−1))† =
[
(B̂(n−1))T

]†
(B̂(n−1))†B̂(n−1)(B̂(n−1))†

=
[
(B̂(n−1))T

]†
(B̂(n−1))†

=
[
B̂(n−1)(B̂(n−1))T

]†
.

Therefore,
X̂(n)Â(n)X̂(n) = (B̂(n−1))† + ϵnẐ(n−1) = X̂(n).

Furthermore,

Â(n)X̂(n) =B̂(n−1)(B̂(n−1))† + ϵn
[
B̂(n−1)Ẑ(n−1) + Ĉ(n−1)(B̂(n−1))†

]
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=B̂(n−1)(B̂(n−1))† + ϵn
{ [

Im − B̂(n−1)(B̂(n−1))†
]
Ĉ(n−1)(B̂(n−1))†

+
[
Ĉ(n−1)(B̂(n−1))†

]T [
Im − B̂(n−1)(B̂(n−1))†

] }
and

X̂(n)Â(n) =(B̂(n−1))†B̂(n−1) + ϵn
[
(B̂(n−1))†Ĉ(n−1) + Ẑ(n−1)B̂(n−1)

]
=(B̂(n−1))†B̂(n−1) + ϵn

{
(B̂(n−1))†Ĉ(n−1)

[
Im − (B̂(n−1))†B̂(n−1)

]
+

[
Im − (B̂(n−1))†B̂(n−1)

] [
(B̂(n−1))†Ĉ(n−1)

]T
}

are symmetric, which completes the proof. □

We remark that the necessary and sufficient condition in Theorem 4.1 is a generalization of condition
(iii) in Theorem 2.1. However, so far we can not give any other necessary and sufficient conditions due
to the complex structure of dual matrices of order n.

Next, we show the uniqueness of the Moore-Penrose generalized inverse of Â(n) whenever it exists.

Theorem 4.2. Let Â(n) ∈ R̂m×n
(n) . If the Moore-Penrose generalized inverse of Â(n) exists, then it is

unique.

Proof. According to the proof of Theorem 4.1, if the Moore-Penrose generalized inverse of

Â(n) = B̂(n−1) + ϵnĈ(n−1)

exists, then the Moore-Penrose generalized inverse of B̂(n−1) exists, and the Moore-Penrose generalized
inverse of Â(n) is of the form (B̂(n−1))† + ϵnẐ(n−1).

Let
X̂(n)

1 = (B̂(n−1))† + ϵnẐ(n−1)
1

and
X̂(n)

2 = (B̂(n−1))† + ϵnẐ(n−1)
2

be two Moore-Penrose generalized inverses of Â(n). In order to show the uniqueness of the Moore-
Penrose generalized inverse of Â(n), it suffices to shows that

Ẑ(n−1)
1 = Ẑ(n−1)

2 .

Equating the dual part of both sides of the equality

Â(n)X̂(n)
1 Â(n) = Â(n),

we get
Ĉ(n−1) = B̂(n−1)(B̂(n−1))†Ĉ(n−1) + B̂(n−1)Ẑ(n−1)

1 B̂(n−1) + Ĉ(n−1)(B̂(n−1))†B̂(n−1). (4.1)

Similarly, equating the dual part of both sides of the equality

Â(n)X̂(n)
2 Â(n) = Â(n)
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gives
Ĉ(n−1) = B̂(n−1)(B̂(n−1))†Ĉ(n−1) + B̂(n−1)Ẑ(n−1)

2 B̂(n−1) + Ĉ(n−1)(B̂(n−1))†B̂(n−1). (4.2)

Subtracting (4.1) from (4.2) gives

B̂(n−1)(Ẑ(n−1)
1 − Ẑ(n−1)

2 )B̂(n−1) = 0. (4.3)

On the other hand, equating the dual part of both sides of the equality

X̂(n)
1 Â(n)X̂(n)

1 = X̂(n)
1

and the equality
X̂(n)

2 Â(n)X̂(n)
2 = X̂(n)

2

respectively yields

Ẑ(n−1)
1 = (B̂(n−1))†B̂(n−1)Ẑ(n−1)

1 + (B̂(n−1))†Ĉ(n−1)(B̂(n−1))† + Ẑ(n−1)
1 B̂(n−1)(B̂(n−1))† (4.4)

and
Ẑ(n−1)

2 = (B̂(n−1))†B̂(n−1)Ẑ(n−1)
2 + (B̂(n−1))†Ĉ(n−1)(B̂(n−1))† + Ẑ(n−1)

2 B̂(n−1)(B̂(n−1))†. (4.5)

Then, by subtracting (4.4) from (4.5), we have

Ẑ(n−1)
1 − Ẑ(n−1)

2 = (B̂(n−1))†B̂(n−1)(Ẑ(n−1)
1 − Ẑ(n−1)

2 ) + (Ẑ(n−1)
1 − Ẑ(n−1)

2 )B̂(n−1)(B̂(n−1))†. (4.6)

Furthermore, equating the dual part of the equality

(Â(n)X̂(n)
1 )T = Â(n)X̂(n)

1

and the equality
(Â(n)X̂(n)

2 )T = Â(n)X̂(n)
2 ,

we have [
B̂(n−1)Ẑ(n−1)

1 + Ĉ(n−1)(B̂(n−1))†
]T
= B̂(n−1)Ẑ(n−1)

1 + Ĉ(n−1)(B̂(n−1))†

and [
B̂(n−1)Ẑ(n−1)

2 + Ĉ(n−1)(B̂(n−1))†
]T
= B̂(n−1)Ẑ(n−1)

2 + Ĉ(n−1)(B̂(n−1))†.

It follows that

B̂(n−1)(Ẑ(n−1)
1 − Ẑ(n−1)

2 ) =
[
B̂(n−1)(Ẑ(n−1)

1 − Ẑ(n−1)
2 )

]T
= (Ẑ(n−1)

1 − Ẑ(n−1)
2 )T(B̂(n−1))T

= (Ẑ(n−1)
1 − Ẑ(n−1)

2 )T(B̂(n−1))T
[
B̂(n−1)(B̂(n−1))†

]T

= (Ẑ(n−1)
1 − Ẑ(n−1)

2 )T(B̂(n−1))TB̂(n−1)(B̂(n−1))†

=
[
B̂(n−1)(Ẑ(n−1)

1 − Ẑ(n−1)
2 )

]T
B̂(n−1)(B̂(n−1))†

= B̂(n−1)(Ẑ(n−1)
1 − Ẑ(n−1)

2 )B̂(n−1)(B̂(n−1))†.

Now, it can be seen from (4.3) that

B̂(n−1)(Ẑ(n−1)
1 − Ẑ(n−1)

2 ) = 0.
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We can also obtain
(Ẑ(n−1)

1 − Ẑ(n−1)
2 )B̂(n−1) = 0

in a similar way. Substituting
B̂(n−1)(Ẑ(n−1)

1 − Ẑ(n−1)
2 ) = 0

and
(Ẑ(n−1)

1 − Ẑ(n−1)
2 )B̂(n−1) = 0

into (4.6), we have
Ẑ(n−1)

1 = Ẑ(n−1)
2 ,

which completes the proof. □

5. Conclusions

In this paper, we studied the existence and properties of hyper-dual Moore-Penrose generalized
inverse of hyper-dual matrices. We gave several sufficient and necessary conditions for the existence
of the HDMPGI of a given hyper-dual matrix. A compact formula for the computation of the
HDMPGI was presented whenever it exists. After introducing a total order of hyper-dual numbers and
Euclidean norm of a hyper-dual vector in a special set, we studied least-squares solutions and
minimum-norm least-squares solutions of systems of linear hyper-dual equations under some certain
restrictions. Furthermore, we considered an extension of dual matrices and hyper-dual matrices, i.e.,
dual matrices of order n. We also gave a sufficient and necessary condition for the existence of the
Moore-Penrose generalized inverse of such matrices. The availability of the conditions and formulas
obtained in this paper allow the simultaneous solutions of overdetermined systems of linear
hyper-dual equations that originate from many kinematic problems. We expect these results will be
useful in the future applications. It is also worth considering constructing fast algorithms to find
HDMPGI whenever it exists. For example, fast algorithms for finding generalized inverses of
complex matrices can be found in [30].

Author contributions

Qi Xiao: conceptualization, methodology, writing-review and editing, software, validation; Jin
Zhong: conceptualization, methodology, writing-original draft, writing-review and editing, validation.
All authors have read and approved the final version of the manuscript for publication.

Use of Generative-AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 12261043),
and the Program of Qingjiang Excellent Young Talents, Jiangxi University of Science and Technology
(JXUSTQJYX2017007).

AIMS Mathematics Volume 9, Issue 12, 35125–35150.



35149

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

1. M. A. Clifford, Preliminary sketch of biquaternions, Proc. London Math. Soc., 4 (1871), 381–395.
https://doi.org/10.1112/plms/s1-4.1.381

2. J. Angeles, The dual generalized inverses and their applications in kinematic synthesis,
In: J. Lenarcic, M. Husty, Latest advances in robot kinematics, Springer, 2012.
https://doi.org/10.1007/978-94-007-4620-6 1

3. J. Angeles, The application of dual algebra to kinematic analysis, In: J. Angeles, E. Zakhariev,
Computational methods in mechanical systems, Springer, 1998, 3–31. https://doi.org/10.1007/978-
3-662-03729-4 1

4. Y. Gu, J. Luh, Dual-number transformation and its applications to robotics, IEEE J. Robot. Autom.,
3 (1987), 615–623. https://doi.org/10.1109/JRA.1987.1087138

5. Y. Jin, X. Wang, The application of the dual number methods to Scara kinematics,
International Conference on Mechanic Automation and Control Engineering, 2010, 3871–3874.
https://doi.org/10.1109/MACE.2010.5535409

6. E. Pennestrı̀, R. Stefanelli, Linear algebra and numerical algorithms using dual numbers, Multibody
Sys. Dyn., 18 (2007), 323–344. https://doi.org/10.1007/s11044-007-9088-9

7. E. Pennestrı̀, P. Valentini, Linear dual algebra algorithms and their application to kinematics,
Multibody Dyn., 2009, 207–229. https://doi.org/10.1007/978-1-4020-8829-2 11

8. H. Heiß, Homogeneous and dual matrices for treating the kinematic problem of robots, IFAC Proc.
Volumes, 19 (1986), 51–55. https://doi.org/10.1016/S1474-6670(17)59452-5

9. E. Pennestrı̀, P. Valentini, D. de Falco, The Moore-Penrose dual generalized inverse matrix
with application to kinematic synthesis of spatial linkages, J. Mech. Des., 140 (2018), 102303.
https://doi.org/10.1115/1.4040882

10. F. Udwadia, Dual generalized inverses and their use in solving systems
of linear dual euqations, Mech. Mach. Theory, 156 (2021), 104158.
https://doi.org/10.1016/j.mechmachtheory.2020.104158

11. D. de Falco, E. Pennestrı̀, F. Udwadia, On generalized inverses of dual matrices, Mech. Mach.
Theory, 123 (2018), 89–106. https://doi.org/10.1016/j.mechmachtheory.2017.11.020

12. F. Udwadia, E. Pennestrı̀, D. de Falco, Do all dual matrices have dual Moore-
Penrose generalized inverses? Mech. Mach. Theory, 151 (2020), 103878.
https://doi.org/10.1016/j.mechmachtheory.2020.103878

13. H. Li, H, Wang, Weak dual generalized inverse of a dual matrix and its applications, Heliyon, 9
(2023), e16624. https://doi.org/10.1016/j.heliyon.2023.e16624

14. H. Wang, T. Jiang, Q. Ling, Y. Wei, Dual core-nilpotent decomposition and dual binary relation,
Linear Algebra Appl., 684 (2024), 127–157. https://doi.org/10.1016/j.laa.2023.12.014

AIMS Mathematics Volume 9, Issue 12, 35125–35150.

https://dx.doi.org/https://doi.org/10.1112/plms/s1-4.1.381
https://dx.doi.org/https://doi.org/10.1007/978-94-007-4620-6_1
https://dx.doi.org/https://doi.org/10.1007/978-3-662-03729-4_1
https://dx.doi.org/https://doi.org/10.1007/978-3-662-03729-4_1
https://dx.doi.org/https://doi.org/10.1109/JRA.1987.1087138
https://dx.doi.org/https://doi.org/10.1109/MACE.2010.5535409
https://dx.doi.org/https://doi.org/10.1007/s11044-007-9088-9
https://dx.doi.org/https://doi.org/10.1007/978-1-4020-8829-2_11
https://dx.doi.org/https://doi.org/10.1016/S1474-6670(17)59452-5
https://dx.doi.org/https://doi.org/10.1115/1.4040882
https://dx.doi.org/https://doi.org/10.1016/j.mechmachtheory.2020.104158
https://dx.doi.org/https://doi.org/10.1016/j.mechmachtheory.2017.11.020
https://dx.doi.org/https://doi.org/10.1016/j.mechmachtheory.2020.103878
https://dx.doi.org/https://doi.org/10.1016/j.heliyon.2023.e16624
https://dx.doi.org/https://doi.org/10.1016/j.laa.2023.12.014


35150

15. H. Wang, J. Gao, The dual index and dual core generalized inverse, Open Math., 21 (2023),
20220592. https://doi.org/10.1515/math-2022-0592

16. H. Wang, Characterizations and properties of the MPDGI and DMPGI, Mech. Mach. Theory, 158
(2021), 104212. https://doi.org/10.1016/j.mechmachtheory.2020.104212

17. J. Zhong, Y. Zhang, Dual group inverses of dual matrices and their applications in solving systems
of linear dual equations, AIMS Math., 7 (2022), 7606–7624. https://doi.org/10.3934/math.2022427

18. J. Zhong, Y. Zhang, Dual Drazin inverses of dual matrices and dual Drazin-inverse
solutions of systems of linear dual equations, Filomat, 37 (2023), 3075–3089.
https://doi.org/10.2298/FIL2310075Z

19. J. Fike, Numerically exact derivative calculations using hyper-dual numbers, 3rd Annural Student
Joint Workshop in Simulation-Based Engineering and Design, 2009.

20. J. Fike, J. Alonso, The development of hyper-dual numbers for exact second-derivative
calculations, 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and
Aerospace Exposition, 2011.

21. J. Fike, S. Jongsma, J. Alonso, E. van der Weida, Optimization with gradient and Hessian
information calculated using hyper-dual numbers, 29th AIAA Applied Aerodynamics Conference,
2011.

22. A. Cohen, M. Shoham, Application of hyper-dual numbers to multibody kinematics, J. Mech.
Robot., 8 (2016), 011015. https://doi.org/10.1115/1.4030588

23. A. Cohen, M. Shoham, Application of hyper-dual numbers to rigid bodies equations of motion,
Mech. Mach. Theory, 111 (2017), 76–84. https://doi.org/10.1016/j.mechmachtheory.2017.01.013
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