Our aim of this work is to approximate the fixed points of generalized $ \alpha _{m} $-nonexpansive mappings employing $ AA $-iterative scheme in the structure of modular spaces. The results of fixed points for generalized $ \alpha _{m} $-nonexpansive mappings is proven in this context. Moreover, the stability of the scheme and data dependence results are given for $ m $-contraction mappings. In order to demonstrate that the $ AA $-iterative scheme converges faster than some other schemes for generalized $ \alpha_{m} $-nonexpansive mappings, numerical examples are shown at the end.
Citation: Muhammad Waseem Asghar, Mujahid Abbas, Cyril Dennis Enyi, McSylvester Ejighikeme Omaba. Iterative approximation of fixed points of generalized $ \alpha _{m} $-nonexpansive mappings in modular spaces[J]. AIMS Mathematics, 2023, 8(11): 26922-26944. doi: 10.3934/math.20231378
Our aim of this work is to approximate the fixed points of generalized $ \alpha _{m} $-nonexpansive mappings employing $ AA $-iterative scheme in the structure of modular spaces. The results of fixed points for generalized $ \alpha _{m} $-nonexpansive mappings is proven in this context. Moreover, the stability of the scheme and data dependence results are given for $ m $-contraction mappings. In order to demonstrate that the $ AA $-iterative scheme converges faster than some other schemes for generalized $ \alpha_{m} $-nonexpansive mappings, numerical examples are shown at the end.
[1] | M. Abbas, M. W. Asghar, M. De la Sen, Approximation of the solution of delay fractional differential equation using $AA$-iterative scheme, Mathematics, 10 (2022), 273. https://doi.org/10.3390/math10020273 doi: 10.3390/math10020273 |
[2] | M. Abbas, T. Nazir, A new faster iteration process applied to constrained minimization and feasibility problems, Mat. Vesn., 66 (2014), 223–234. |
[3] | A. A. N. Abdou, M. A. Khamsi, Fixed point theorems in modular vector spaces, J. Nonlinear Sci. Appl., 10 (2017), 4046–4057. http://doi.org/10.22436/jnsa.010.08.01 doi: 10.22436/jnsa.010.08.01 |
[4] | R. P. Agarwal, D. O'Regan, D. R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal., 8 (2007), 61–79. |
[5] | S. Banach, Surles opérations dans les ensembles abstraites et leurs applications aux équations intégrales, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181 |
[6] | V. Berinde, Picard iteration converges faster than mann iteration for a class of quasi-contractive operators, Fixed Point Theory Appl., 2004 (2004), 716359. https://doi.org/10.1155/S1687182004311058 doi: 10.1155/S1687182004311058 |
[7] | R. E. Bruck, Asymptotic behavior of nonexpansive mappings, Contemp. Math., 18 (1983), 1–47. |
[8] | C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Probl., 18 (2002), 441. http://doi.org/10.1088/0266-5611/18/2/310 doi: 10.1088/0266-5611/18/2/310 |
[9] | C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl., 20 (2003), 103. http://doi.org/10.1088/0266-5611/20/1/006 doi: 10.1088/0266-5611/20/1/006 |
[10] | Y. Censor, T. Bortfeld, B. Martin, A. Trofimov, A unified approach for inversion problems in intensity-modulated radiation therapy, Phys. Med. Biol., 51 (2006), 2353. http://doi.org/10.1088/0031-9155/51/10/001 doi: 10.1088/0031-9155/51/10/001 |
[11] | Y. Censor, T. Elfving, N. Kopf, T. Bortfeld, The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Probl., 21 (2005), 2071. http://doi.org/10.1088/0266-5611/21/6/017 doi: 10.1088/0266-5611/21/6/017 |
[12] | P. L. Combettes, The convex feasibility problem in image recovery, Adv. Imag. Elect. Phys., 95 (1996), 155–270. https://doi.org/10.1016/S1076-5670(08)70157-5 doi: 10.1016/S1076-5670(08)70157-5 |
[13] | O. Fouad, A. Radouane, M. Driss, A fixed point theorem on some multi-valued maps in modular spaces, Nonlinear Funct. Anal. Appl., 2022. |
[14] | J. García-Falset, E. Llorens-Fuster, T. Suzuki, Fixed point theory for a class of generalized nonexpansive mappings, J. Math. Anal. Appl., 375 (2011), 185–195. https://doi.org/10.1016/j.jmaa.2010.08.069 doi: 10.1016/j.jmaa.2010.08.069 |
[15] | E. Hacıoǧlu, F. Gürsoy, A. R. Khan, Monotone generalized $\alpha$-nonexpansive mappings on $ CAT_{p}(0) $ spaces, Ukrains'kyi Matematychnyi Zhurnal, 75 (2023), 970–986. https://doi.org/10.37863/umzh.v75i7.7188 doi: 10.37863/umzh.v75i7.7188 |
[16] | S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147–150. https://doi.org/10.2307/2039245 doi: 10.2307/2039245 |
[17] | Z. J. Kadum, N. Y. Abdul-Hassan, New numerical methods for solving the initial value problem based on a symmetrical quadrature integration formula using hybrid functions, Symmetry, 15 (2023), 631. https://doi.org/10.3390/sym15030631 doi: 10.3390/sym15030631 |
[18] | W. Kassab, T. ţurcanu, Numerical reckoning fixed points of ($\rho$E)-type mappings in modular vector spaces, Mathematics, 7 (2019), 390. https://doi.org/10.3390/math7050390 doi: 10.3390/math7050390 |
[19] | S. H. Khan, Approximating fixed points of ($\lambda$, $\rho$)-firmly nonexpansive mappings in modular function spaces, arXiv, 2018. https://doi.org/10.48550/arXiv.1802.00681 |
[20] | M. A. Khamsi, W. M. Kozlowski, S. Reich, Fixed point theory in modular function spaces, Nonlinear Anal., 14 (1990), 935–953. https://doi.org/10.1016/0362-546X(90)90111-S doi: 10.1016/0362-546X(90)90111-S |
[21] | M. A. Khamsi, W. M. Kozlowski, Fixed point theory in modular function spaces, Springer, 2015. https://doi.org/10.1007/978-3-319-14051-3 |
[22] | W. M. Kozlowski, Notes on modular projections, Appl. Set-Valued Anal. Optim., 4 (2022), 337–348. https://doi.org/10.23952/asvao.4.2022.3.07 doi: 10.23952/asvao.4.2022.3.07 |
[23] | A. Latif, R. F. Al Subaie, M. O. Alansari, Fixed points of generalized multi-valued contractive mappings in metric type spaces, J. Nonlinear Var. Anal., 6 (2022), 123–138. https://doi.org/10.23952/jnva.6.2022.1.07 doi: 10.23952/jnva.6.2022.1.07 |
[24] | G. López, V. Martín-Márquez, F. Wang, H. K. Xu, Solving the split feasibility problem without prior knowledge of matrix norms, Inverse Probl., 28 (2012), 085004. https://doi.org/10.1088/0266-5611/28/8/085004 doi: 10.1088/0266-5611/28/8/085004 |
[25] | W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506–510. https://doi.org/10.1090/S0002-9939-1953-0054846-3 doi: 10.1090/S0002-9939-1953-0054846-3 |
[26] | J. Musielak, Orlicz spaces and modular spaces, 1983, Springer. https://doi.org/10.1007/BFb0072210 |
[27] | M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251 (2000), 217–229. https://doi.org/10.1006/jmaa.2000.7042 doi: 10.1006/jmaa.2000.7042 |
[28] | G. A. Okeke, D. Franci, J. K. Kim, New proofs of some fixed point thorems for mappings satisfying Reich type contraction in modular metric spaces, Nonlinear Funct. Anal. Appl., 2023. https://doi.org/10.22771/nfaa.2023.28.01.01 doi: 10.22771/nfaa.2023.28.01.01 |
[29] | A. M. Ostrowski, The round-off stability of iterations, ZAMM J. Appl. Math. Mech., 47 (1967), 77–81. https://doi.org/10.1002/zamm.19670470202 doi: 10.1002/zamm.19670470202 |
[30] | R. Pant, R. Shukla, Approximating fixed points of generalized $\alpha$-nonexpansive mappings in Banach spaces, Numer. Funct. Anal. Optim., 38 (2017), 248–266. https://doi.org/10.1080/01630563.2016.1276075 doi: 10.1080/01630563.2016.1276075 |
[31] | B. Qu, N. Xiu, A note on the CQ algorithm for the split feasibility problem, Inverse Probl., 21 (2005), 1655. https://doi.org/10.1088/0266-5611/21/5/009 doi: 10.1088/0266-5611/21/5/009 |
[32] | A. Rahimi, A. Rezaei, B. Daraby, M. Ghasemi, A new faster iteration process to fixed points of generalized $\alpha$-nonexpansive mappings in Banach spaces, Int. J. Nonlinear Anal. Appl., 2023. https://doi.org/10.22075/IJNAA.2021.23025.2460 doi: 10.22075/IJNAA.2021.23025.2460 |
[33] | H. J. Saeed, A. H. Ali, R. Menzer, A. D. Poţclean, H. Arora, New family of multi-step iterative methods based on homotopy perturbation technique for solving nonlinear equations, Mathematics, 11 (2023), 2603. https://doi.org/10.3390/math11122603 doi: 10.3390/math11122603 |
[34] | Ş. M. Şoltuz, T. Grosan, Data dependence for ishikawa iteration when dealing with contractive-like operators, Fixed Point Theory Appl., 2008 (2008), 242916. https://doi.org/10.1155/2008/242916 doi: 10.1155/2008/242916 |
[35] | B. S. Thakur, D. Thakur, M. Postolache, A new iteration scheme for approximating fixed points of nonexpansive mappings, Filomat, 30 (2016), 2711–2720. http://doi.org/10.2298/FIL1610711T doi: 10.2298/FIL1610711T |
[36] | K. Ullah, M. Arshad, Numerical reckoning fixed points for suzuki's generalized nonexpansive mappings via new iteration process, Filomat, 32 (2018), 187–196. http://doi.org/10.2298/FIL1801187U doi: 10.2298/FIL1801187U |
[37] | H. K. Xu, Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces, Inverse Probl., 26 (2010), 105018. https://doi.org/10.1088/0266-5611/26/10/105018 doi: 10.1088/0266-5611/26/10/105018 |
[38] | Q. Yang, The relaxed CQ algorithm solving the split feasibility problem, Inverse Probl., 20 (2004), 1261. https://doi.org/10.1088/0266-5611/20/4/014 doi: 10.1088/0266-5611/20/4/014 |