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1. Introduction

There are several problems in nonlinear analysis that can be modeled by fixed point equations
involving certain nonlinear operators. However, there are many fixed point equations that cannot be
solved analytically, for instance cos x = x. To overcome this problem, iterative processes provide
useful tools to approximate the fixed point of nonlinear operators. For instance, the equilibrium
problem, the variational inequality problem, the saddle point problem, the problem of finding the
roots of polynomials, signal processing, image restoration, tomography and intensity-modulated
radiation therapy are some well-known problems whose solutions are approximated with some
suitable iterative processes. For more details, we refer to [8–12, 24, 31, 37, 38].

The convergence of the iterative process, known as the Picard iterative process, is used to prove
the well-known Banach contraction principle [5]. This principle solves a fixed point problem for
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contraction mappings defined on a complete metric space, and it has become a useful tool for proving
the existence and approximation of solutions to nonlinear functional equations such as differential
equations, partial differential equations and integral equations. To approximate the solution of linear
and nonlinear equations, as well as inclusion, several authors have used various iterative approaches.
On the one hand, a study of nonexpansive mappings is crucial due to:

(1) Existence of fixed points of such mappings rely on the geometric properties of the underlying space
instead of compactness properties.

(2) These mappings are an important generalization of contraction mappings.

(3) This class of mappings is used as the transition operators for certain initial value problems of
differential inclusions involving accretive or dissipative operators.

(4) Different problems appearing in many real life situations involve nonexpansive mappings (see
Bruck [7]).

There are several iterative algorithms of practical interest which are generated using nonexpansive
mappings. For instance, the successive projection approach is utilized to address intersection
problems arising in tomography and signal processing. The proximity operator of a convex function is
a nonexpansive mapping that acts as projection in the context of optimization. This is employed in
image processing problems like total variation denoising. Nonexpansive mappings are used to model
the flow of traffic and congestion dynamics. In signal processing, nonexpansive mappings are used for
signal recovery and reconstruction. This is why the study of nonexpansive mappings has attracted the
attention of several mathematicians. Notice that the Banach contraction principle states that the
sequence generated by Picard iterative scheme converges to a unique fixed point in the case of
contraction mappings. The Picard iteration, on the other hand, may not converge to a fixed point of
nonexpansive mapping. For instance, if we take the mapping T p = 1 − p on [0, 1], then the Picard
iteration does not converge to its fixed point (which is 1

2 ), for any choice of p ∈ [0, 1] other than 1
2 .

Motivated by this fact, several authors proposed and implemented various iterative schemes to
approximate fixed points of nonexpansive mappings.

Mann [25] proposed an iterative scheme to approximate the fixed point for nonexpansive mappings.
The proposed scheme is given as follows: Let p1 be an initial guess, then,

pn+1 = (1 − ηn)pn + ηnT (pn), n ∈ Z+, (1.1)

where {ηn} is an appropriate sequence in (0, 1) and Z+ represents the set of positive integers.
Later, Ishikawa [16] introduced an iterative scheme to estimate the fixed point of pseudo-contractive

mapping. The sequence {pn} proposed by Ishikawa iterative scheme is given as: If p1 is an initial guess,
then, qn = (1 − ρn)pn + ρnT (pn),

pn+1 = (1 − ηn)pn + ηnT (qn), n ∈ Z+,
(1.2)

where {ηn} and {ρn} are appropriate sequences in (0, 1). Similarly, Noor [27], Agarwal et al. [4], Abbas
and Nazir [2], Thakur et al. [35], Ullah and Arshad [36] proposed different iterative schemes for
approximating the solution of nonlinear problems involving operators satisfying certain contraction
conditions. Let p1 be an initial guess then the following schemes are given as Table 1:

AIMS Mathematics Volume 8, Issue 11, 26922–26944.



26924

Table 1. Different iterative schemes.

Name Iterative scheme

pn+1 = (1 − ηn)pn + ηnT (qn)
Noor qn = (1 − ρn)pn + ρnT (rn)

rn = (1 − σn)pn + σnT (pn)
Agarwal et al. pn+1 = (1 − ηn)T (pn) + ηnT (qn)

qn = (1 − ρn)pn + ρnT (pn)
pn+1 = (1 − ηn)T (qn) + ηnT (rn)

Abbas et al. qn = (1 − ρn)T (pn) + ρnT (rn)
rn = (1 − σn)pn + σnT (pn)

pn+1 = (1 − ηn)T (rn) + ηnT (qn)
Thakur et al. qn = (1 − ρn)rn + ρnT (rn)

rn = (1 − σn)pn + σnT (pn)
pn+1 = T (qn)

Ullah qn = T (rn)
rn = (1 − ηn)pn + ηnT (pn)

Where {ηn}, {ρn} and {σn} are appropriate sequences of parameters in (0, 1).
Later, Abbas et al. [1] proposed an iterative scheme called the AA-iterative scheme that converges

faster than the iterative schemes mentioned above. The sequence is defined as follows: For an initial
guess p1, 

pn+1 = T (qn),
qn = T ((1 − ηn)T (sn) + ηnT (rn)),
rn = T ((1 − ρn)sn + ρnT (sn)),
sn = (1 − σn)pn + σnT (pn), n ∈ Z+,

(1.3)

where {ηn}, {ρn} and {σn} are appropriate sequences in (0, 1).
Most of the iterative processes for a certain class of mappings are primarily defined on Banach

spaces along with some appropriate geometric structure, most frequently on uniformly convex spaces.
Studying iterative processes on modular spaces is a recent trend and is attracting the attention of several
researchers now. This is because modular spaces such as Orlicz spaces or Lebesgue spaces constitute
a suitable framework to solve nonlinear problems arising in different branches of mathematics. Kassab
and Ţurcanu [18] used the Thakur et al. iterative scheme in the structure of modular spaces. Their
mapping in a modular context satisfy the condition (E) in the modular version given by Garcı́a-Falset
et al. [14] (see also, Khan [19] and references mentioned therein). Moreover, several authors have
developed and studied different iterative schemes to solve fixed point problems and nonlinear equations
(for further details, we refer to [17, 23, 33]). Furthermore, modular spaces provide an appropriate
framework to model certain nonlinear problems and hence are being considered by many authors, for
instance, see [13, 22, 28] and references mentioned therein.

The study of generalized αm-nonexpansive mappings has become a very active area of research
these days and several interesting results have been obtained in this direction (for example, [15, 32]).
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Motivated by the work in [18, 19], we obtained the approximation results using the AA-iterative
scheme (1.3) for the mapping required to satisfy a modular counterpart of the generalized
αm-nonexpansive mappings in [30]. Our results extend, unify and generalize the corresponding results
that exist in literature.

This paper is structured as follows: Section 1 contains some introductory materials needed in the
sequel. In Section 2, we reviewed the definitions regarding modular spaces and their basic properties.
Section 3 deals with the mappings satisfying the modular version of generalized αm-nonexpansive
mappings with an example of one of such mappings. In Section 4, we discuss the convergence of the
iterative scheme defined in (1.3). The fifth section focuses on the investigation on stability and data
dependence. Finally, numerical examples are presented to support the results proved herein.

2. Preliminaries

To make the section self-contained, some basic concepts of modular spaces are presented. Most of
these materials are taken from [3, 20, 21, 26].

Definition 2.1. [20] LetV be a vector space over R. A mapping m: V → [0,+∞] is called modular
if it satisfies the following: For any p, q ∈ V,

(1) m(p) = 0 if and only if p = 0,

(2) m(αp) = m(p) for |α| = 1,

(3) m(αp + (1 − α)q) ≤ m(p) + m(q), where α ∈ [0, 1].

If for any α ∈ [0, 1] and p, q ∈ V, the condition (3) is replaced with the following condition:

m(αp + (1 − α)q) ≤ αm(p) + (1 − α)m(q),

then m is called a convex modular.
Throughout this paper we shall presume that m is a convex modular.

Example 2.2. Let V = R and m: R → [0,+∞] be defined by m(p) = p2. Note that all the conditions
of Definition 2.1 are satisfied. Also, m is even and convex and hence is a convex modular. Clearly, m
does not satisfy the triangular inequality. Indeed, if we take p = 1

2 and q = 2, then

m(
1
2
+ 2) = m(

5
2

) =
25
4
>

17
4
= m(

1
2

) + m(2).

Definition 2.3. [26] Let m be a convex modular defined onV. The set

Vm = {p ∈ V : lim
α→0

m(αp) = 0}

is called a modular space with the norm ∥.∥m defined as follows:

∥p∥m = inf
{
α > 0 : m

( p
α

)
≤ 1
}
.

Definition 2.4. [20] Assume thatV is a vector space and m a modular function onV. Then:
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(1) A sequence {pn} ⊂ Vm is said to be m-convergent to p ∈ Vm if lim
n→+∞

m(pn − p) = 0.

(2) A sequence {pn} ⊂ Vm is said to be m-Cauchy if lim
n,r→+∞

m(pn − pr) = 0.

(3) We sayVm is m-complete if any m-Cauchy sequence inVm is m-convergent.

(4) A set C ⊂ Vm is said to be m-closed if any sequence {pn} ⊂ C which is m-convergent to some
point p implies that p ∈ C.

(5) A set C ⊂ Vm is said to be m-bounded if the m-diameter of C is finite.

(6) A set K ⊂ Vm is said to be m-compact if any sequence {pn} ⊂ K has a subsequence which is
m-convergent to some p ∈ K .

(7) m satisfies the Fatou property if for any p, q, qn ∈ Vm,

m(p − q) ≤ lim inf
n→+∞

m(p − qn),

whenever {qn} m- converges to q.

Note that the Fatou property is crucial to understand the geometric characteristics of the modular in
the framework of normed spaces and modular spaces.

Definition 2.5. [20] The uniformly convex type properties of m are given as:

(a) For ϵ > 0, r > 0, define

D1(r, ϵ) =
{
(p, q) : p, q ∈ Vm,m(p) ≤ r,m(q) ≤ r,m(p − q) ≥ ϵr

}
.

IfD1(r, ϵ) , ∅, let

ρ1(r, ϵ) = inf
{
1 −

1
r

m
( p + q

2

)
: (p, q) ∈ D1(r, ϵ)

}
.

If D1(r, ϵ) = ∅, then take ρ1(r, ϵ) = 1. We say that m fulfills the condition (UUC1) if for every
s, ϵ > 0, there exists δ1(s, ϵ) > 0, depending on s and ϵ such that

ρ1(r, ϵ) > δ1(s, ϵ) > 0, for r > s.

(b) For ϵ > 0, r > 0, define

D2(r, ϵ) =
{
(p, q) : p, q ∈ Vm,m(p) ≤ r,m(q) ≤ r,m

( p − q
2

)
≥ ϵr
}
.

IfD2(r, ϵ) , ∅, let

ρ2(r, ϵ) = inf
{
1 −

1
r

m
( p + q

2

)
: (p, q) ∈ D2(r, ϵ)

}
.

If D2(r, ϵ) = ∅, then take ρ2(r, ϵ) = 1. We say that m satisfies the condition (UUC2) if for every
s, ϵ > 0, there exists δ2(s, ϵ) > 0, depending on s and ϵ such that

ρ2(r, ϵ) > δ2(s, ϵ) > 0, for r > s.

Lemma 2.6. [21] Assume that m is a convex modular which satisfies the condition (UUC1) and let
{αn} ∈ (0, 1) be a sequence bounded away from 0 and 1. Suppose there exists r > 0 such that

lim sup
n→+∞

m(pn) ≤ r, lim sup
n→+∞

m(qn) ≤ r, lim sup
n→+∞

m
(
αn pn + (1 − αn)qn) = r,

where {pn} and {qn} are sequences inVm. Then, lim
n→+∞

m(pn − qn) = 0.
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Definition 2.7. [18] Let {pn} be a sequence in a modular space Vm. Suppose C ⊂ Vm is nonempty.
The function ϕ: C → [0,+∞] is defined by

ϕ(p) = lim sup
n→+∞

m(p − pn),

is known as the m-type function related to the sequence {pn}.
A sequence {xn} in C is said to be a minimizing sequence of ϕ if lim

n→+∞
ϕ(xn) = inf

x∈C
ϕ(x).

Example 2.8. Consider the set of real numbers which is a modular vector space with convex modular
m(p) = p2. Take C = Q ⊂ R and the sequence {pn} = {

1
√

n }, n ≥ 1.
The m-type function in this case is

ϕ(p) = lim sup
n→+∞

m
(
p −

1
√

n
)
= p2,

which is clearly unbounded. The minimizing sequence {xn} of ϕ is given by xn =
1
n , n ≥ 1.

Lemma 2.9. [3] Suppose that Vm is m-complete and m satisfies the Fatou property. Let C be a
nonempty convex and m-closed subset of Vm and ϕ: C → [0,+∞] the m-type function related to the
sequence {pn} inVm.

Assume that ϕ0 = inf
p∈C
ϕ(p) < +∞.

(a) If m satisfies the condition (UUC1), then all minimizing sequences of ϕ are m-convergent to the
same point.

(b) If m satisfies the condition (UUC2) and {xn} is a minimizing sequence of ϕ, then the sequence
{

xn
2 } m-converges to a point which is independent of {xn}.

Definition 2.10. [18] Suppose thatVm is a modular space. We say that the modular m fulfills the ∆2

condition if there exists a constant J ≥ 0 such that m(2p) ≤ Jm(p) for any p ∈ Vm. We denote the
smallest such constant J by π2.

Note that the modular defined in Example 2.2 satisfies the ∆2 condition with J = 4.

Lemma 2.11. [6] Let {un} and {tn} be sequences of positive real numbers that fulfill the following
inequality:

un+1 ≤ (1 − υn)un + tn,

where υn ∈ (0, 1) for all n ∈ Z+ with
+∞∑
n=0

υn = +∞. If lim
n→+∞

tn

υn
= 0, then lim

n→+∞
un = 0.

Lemma 2.12. [34] Let {un} and {tn} be sequences of nonnegative real numbers such that there exists
n0 so that for n ≥ n0, it satisfies the following inequality:

un+1 ≤ (1 − υn)un + υntn,

where υn ∈ (0, 1) for all n ∈ Z+ with
+∞∑
n=0

υn = +∞. Then,

0 ≤ lim sup
n→+∞

un ≤ lim sup
n→+∞

tn.
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3. Generalized αm-nonexpansive mappings

Pant and Shukla [30] introduced the class of generalized αm-nonexpansive mappings in the context
of Banach spaces. Here, we adopt the definition from [30] in the framework of modular spaces.

Definition 3.1. Suppose that C is a nonempty subset of the modular spaceVm. A mapping T: C → Vm

is called the generalized αm-nonexpansive mappings if there exists α ∈ (0, 1) such that for all p, q ∈ C,

1
2

m
(
p − T (q)

)
≤ m
(
p − q

)
implies that

m
(
T (p) − T (q)

)
≤ αm

(
q − T (p)

)
+ αm

(
p − T (q)

)
+ (1 − 2α)m

(
p − q

)
.

Example 3.2. The modular m established in Example 2.2 presents R with the modular space. Take the
subset of R that is C = [0,+∞). Define a mapping T : C → C as follows

T (p) =

 p
2 , if p > 2,
0, if p ∈ [0, 2].

Then T is a generalized αm-nonexpansive mapping. Indeed, take α = 1
3 .

Case (I) Let p > 2 and q > 2. Then, we have

1
3

m
(
q − T (p)

)
+

1
3

m
(
p − T (q)

)
+

1
3

m
(
p − q

)
=

1
3
(
q −

p
2
)2
+

1
3
(
p −

q
2
)2
+

1
3
(
p − q

)2
=

1
3
[9
4

(p2 + q2) − 4pq
]

≥
1
3
[9
4

(p2 − q2) +
1
2

pq
]

≥
[3
4

(p − q)2]
≥
[1
4

(p − q)2]
= m
(
T (p) − T (q)

)
.

Case (II) Let p > 2 and q ∈ [0, 2]. Then, we have

1
3

m
(
q − T (p)

)
+

1
3

m
(
p − T (q)

)
+

1
3

m
(
p − q

)
=

1
3
(
q −

p
2
)2
+

1
3
(
p − 0

)2
+

1
3
(
p − q

)2
=

1
3
(9
4

p2 + 2q2 − 3pq
)

≥
1
3

(6
4

(p2 + q2) −
12
4

pq +
1
2

q2 +
3
4

p2
)

=
1
3

(3
2

(p − q)2 +
1
2

q2 +
3
4

p2
)

≥
1
4

p2 = m
(
T (p) − T (q)

)
.
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Case (III) Let p ∈ [0, 2] and q ∈ [0, 2]. Then, we have

1
3

m
(
q − T (p)

)
+

1
3

m
(
p − T (q)

)
+

1
3

m
(
p − q

)
=

1
3
(
q − 0

)2
+

1
3
(
p − 0

)2
+

1
3
(
p − q

)2
≥ 0
= m
(
T (p) − T (q)

)
.

So, T is a generalized αm-nonexpansive mapping.
Throughout this paper we denote the set of fixed points of T by F (T ).

4. Convergence analysis

Theorem 4.1. Let C be a nonempty m-closed convex subset of a modular spaceVm and T: C → C be
a generalized αm-nonexpansive mapping with F (T ) , ∅. Choose any p1 ∈ C and any p∗ ∈ F (T ). If
{pn} is the sequence defined by the AA-iterative scheme (1.3), and m(p j − p∗) < +∞ for some j ≥ 1,
then lim

n→+∞
m(pn − p∗) exists for all p∗ ∈ F (T ).

Proof. Let p∗ ∈ F (T ). Since T is a generalized αm-nonexpansive mapping it satisfies the condition of
m-nonexpansive given in (Definition 4.1 in [3]). Using the iterative scheme (1.3) and the convexity of
m, we have

m
(
sn − p∗

)
= m
(
(1 − σn)pn + σnT (pn) − p∗

)
≤ (1 − σn)m

(
pn − p∗

)
+ σnm

(
T (pn) − p∗

)
. (4.1)

Recall that T is a generalized αm-nonexpansive mapping with T (p∗) = p∗, hence, we have

m
(
T (pn) − p∗

)
≤ αm

(
p∗ − T (pn)

)
+ αm

(
pn − T (p∗)

)
+ (1 − 2α)m

(
pn − p∗

)
≤ α[m

(
p∗ − T (p∗)

)
+ m
(
T (pn) − T (p∗)

)
] + αm

(
pn − T (a∗)

)
+ (1 − 2α)m

(
pn − p∗

)
≤ m
(
pn − p∗

)
. (4.2)

Using (4.2) in (4.1), we obtain

m
(
sn − p∗

)
≤ (1 − σn)m

(
pn − p∗

)
+ σnm

(
pn − p∗

)
= m
(
pn − p∗). (4.3)

If
tn = (1 − ρn)sn + ρnT (sn),

then,
m
(
rn − p∗

)
= m
(
T (tn) − p∗). (4.4)

Now, since T (p∗) = p∗,

m
(
T (tn) − T (p∗)

)
≤ αm

(
p∗ − T (tn)

)
+ αm

(
tn − T (p∗)

)
+ (1 − 2α)m

(
tn − p∗

)
≤ m
(
tn − p∗

)
. (4.5)
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Also,

m
(
tn − p∗

)
= m
(
(1 − ρn)sn + ρnT (sn) − p∗

)
≤ (1 − ρn)m

(
sn − p∗

)
− ρnm

(
T (sn) − p∗

)
, (4.6)

and again using T (p∗) = p∗,

m
(
T (sn) − p∗

)
≤ αm

(
p∗ − sn

)
+ αm

(
sn − T (p∗)

)
+ (1 − 2α)m

(
sn − p∗

)
≤ m
(
sn − p∗

)
. (4.7)

Putting (4.7) and (4.3) in (4.6), we get

m
(
tn − p∗

)
≤ m
(
pn − p∗

)
. (4.8)

Using (4.8) and (4.5), we have
m
(
T (tn) − p∗

)
≤ m
(
pn − p∗

)
. (4.9)

By (4.9) and (4.4) we get
m
(
rn − p∗

)
≤ m
(
pn − p∗

)
. (4.10)

Now, taking
un = (1 − ηn)T (sn) + ηnT (rn),

so, T (un) = qn. Then,

m
(
qn − p∗

)
≤ m
(
T (un) − p∗

)
≤ m
(
un − p∗

)
≤ αm

(
p∗ − T (un)

)
+ αm

(
un − T (p∗)

)
+ (1 − 2α)m

(
un − p∗

)
≤ αm

(
T (un) − (p∗)

)
+ (1 − α)m

(
un − p∗

)
≤ m
(
un − p∗

)
. (4.11)

Also,
m
(
un − p∗

)
= m
(
(1 − ηn)T (sn) + ηnT (rn) − p∗

)
≤ (1 − ηn)m

(
T (sn) − p∗

)
+ ηnm

(
T (rn) − p∗

)
(4.12)

≤ (1 − ηn)m
(
T (sn) − p∗

)
+ ηnm

(
T (rn) − p∗

)
and

m
(
T (rn) − p∗

)
≤ αm

(
p∗ − T (rn)

)
+ αm

(
(rn) − T (p∗)

)
+ (1 − 2α)m

(
rn − p∗

)
≤ αm

(
T (rn) − (p∗)

)
+ (1 − α)m

(
rn − p∗

)
≤ m
(
rn − p∗

)
. (4.13)

Using (4.13) and (4.7) in (4.12), we obtain

m
(
un − p∗

)
≤ m
(
pn − p∗

)
. (4.14)

Putting (4.14) in (4.11), we get
m
(
qn − p∗

)
≤ m
(
pn − p∗

)
. (4.15)
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Now,
m
(
pn+1 − p∗

)
= m
(
T (qn) − p∗

)
(4.16)

and

m
(
T (qn) − p∗

)
≤ αm

(
p∗ − T (qn)

)
+ αm

(
qn − T (p∗)

)
+ (1 − 2α)m

(
qn − p∗

)
(4.17)

≤ αm
(
T (qn) − T (p∗)

)
+ (1 − α)m

(
qn − p∗

)
≤ m
(
qn − p∗

)
.

Putting (4.17) in (4.16), we have

m
(
pn+1 − p∗

)
≤ m
(
qn − p∗

)
. (4.18)

From (4.18) and (4.15), we obtain

m
(
pn+1 − p∗

)
≤ m
(
pn − p∗

)
. (4.19)

This shows that
{
m
(
pn − p∗

)}
is decreasing and bounded below, hence, lim

n→+∞
m(pn − p∗) exists. □

Lemma 4.2. Let C be a nonempty subset of a modular space Vm and T: C → C be a generalized
αm-nonexpansive mapping. Assume that there exists a bounded sequence {pn} ⊂ C such that

lim
n→+∞

m(pn − T (pn)) = 0

and let ϕ be the m-type function defined by the sequence {pn}. Then T leaves the minimizing sequence
invariant, i.e., if {xn} is a minimizing sequence for ϕ, then, so is {T xn}.

Proof. Assume that {pn} ⊂ C is such that

lim
n→+∞

m(pn − T (pn)) = 0.

For any p ∈ C, we have

m(pn − T (p)) ≤ m(pn − T (pn)) + m(T (pn) − T (p))
≤ m(pn − p), (4.20)

which implies that

ϕ
(
T (p)
)
= lim sup

n→+∞
m(pn − T (p)) ≤ lim sup

n→+∞
m(pn − p) = ϕ(p). (4.21)

Now, assume that {xn} is a minimizing sequence. Using (4.21), we get

inf
p∈C
ϕ(p) ≤ lim

n→+∞
ϕ
(
T (xn)

)
≤ lim

n→+∞
ϕ(xn) = inf

p∈C
ϕ(p). (4.22)

This implies that
lim

n→+∞
ϕ
(
T (xn)

)
= inf

p∈C
ϕ(p).

So, {T (xn)} is a minimizing sequence for ϕ. □
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Lemma 4.3. Assume that C is a nonempty m-closed and convex subset of a m-complete modular space
Vm and m is (UUC1) which fulfill the ∆2 condition and the Fatou property. Assume that the m-type
function ϕ: C → [0,+∞] is defined by a sequence {pn} inVm and that

ϕ0 = inf
p∈C
ϕ(p) < +∞.

Let {xn} and {yn} be two minimizing sequences for ϕ. Then,

(i) each convex combination of {xn} and {yn} is a minimizing sequence for ϕ,
(ii) lim

n→+∞
m(xn − yn) = 0.

Proof. (i) Let zn = λxn + (1 − λ)yn, λ ∈ (0, 1), n ≥ 1. Then for any p ∈ C, we get

m(zn − p) ≤ λm(xn − p) + (1 − λ)m(yn − p),

which gives

lim sup
r→+∞

m(zn − pr) ≤ λ lim sup
r→+∞

m(xn − pr) + (1 − λ) lim sup
r→+∞

m(yn − pr), n ≥ 1.

That is,
ϕ(zn) ≤ λϕ(xn) + (1 − λ)ϕ(yn).

Taking limit and using the fact that {xn} and {yn} are minimizing sequences, we obtain

ϕ0 = inf
p∈C
ϕ(p) ≤ lim

n→+∞
ϕ(zn) ≤ λϕ0 + (1 − λ)ϕ0 = ϕ0

as required.
(ii) Note that for λ = 1

2 , zn =
1
2 xn +

1
2yn, n ≥ 1, we have

xn − yn = 2(zn − yn),

using (i), {zn} is a minimizing sequence and by using Lemma 2.9, each minimizing sequence
m-converge to the same point, say r. Thus,

m(zn − yn) = m
( xn − yn

2

)
≤

1
2

m(xn − r) +
1
2

m(yn − r).

We get lim
n→+∞

m(zn − yn) = 0. Now, using ∆2 condition we have

m(xn − yn) ≤
π2

2
[
m(zn − yn)

]
.

By taking limit as n→ +∞ we get the required result. □

Theorem 4.4. Let C be a nonempty m-closed, m-bounded and convex subset of a m-complete modular
space Vm. Suppose that m satisfies the condition (UUC1), the ∆2 condition and the Fatou property.
Let T: C → C be a generalized αm-nonexpansive mapping and {pn} be a sequence given in the AA-
iterative scheme (1.3). Then F (T ) , ∅ if and only if

lim
n→+∞

m
(
pn − T (pn)

)
= 0

and {pn} is bounded.
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Proof. Suppose F (T ) , ∅ and p∗ ∈ F (T ). By the above Theorem 4.1, lim
n→+∞

m
(
pn − p∗

)
exists and {pn}

is bounded. Put
lim

n→+∞
m
(
pn − p∗

)
= k. (4.23)

From (4.3), (4.10) and (4.15), we have

lim sup
n→+∞

m
(
sn − p∗

)
≤ lim sup

n→+∞
m
(
pn − p∗

)
= k, (4.24)

lim sup
n→+∞

m
(
rn − p∗

)
≤ lim sup

n→+∞
m
(
pn − p∗

)
= k, (4.25)

lim sup
n→+∞

m
(
qn − p∗

)
≤ lim sup

n→+∞
m
(
an − p∗

)
= k. (4.26)

It follows from (4.2) that
lim sup

n→+∞
m
(
T (pn) − p∗

)
≤ k. (4.27)

Thus,

m
(
pn+1 − p∗

)
= m
(
T (qn) − T (p∗)

)
≤ m
(
qn − p∗

)
. (4.28)

By taking lim inf as n→ +∞, we get

k ≤ lim inf
n→+∞

m
(
qn − p∗

)
. (4.29)

From (4.26) and (4.29), we have
lim

n→+∞
m
(
qn − p∗

)
= k. (4.30)

Now, from (4.28), we obtain that

m
(
pn+1 − p∗

)
≤ m
(
qn − p∗

)
≤ m
(
T (rn) − p∗

)
≤ m
(
rn − p∗

)
, (4.31)

which on taking lim inf as n→ +∞ gives that

k ≤ lim inf
n→+∞

m
(
rn − p∗

)
. (4.32)

By (4.25) and (4.32), we get
lim

n→+∞
m
(
rn − p∗

)
= k.

From (4.31), we have

m
(
pn+1 − p∗

)
≤ m
(
rn − p∗

)
≤ m
(
T (rn) − p∗

)
≤ m
(
sn − p∗

)
. (4.33)
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On taking lim inf as n→ +∞, we obtain that

k ≤ lim inf
n→+∞

m
(
sn − p∗

)
. (4.34)

Thus, from (4.3) and (4.34), we get
lim

n→+∞
m
(
sn − p∗

)
= k.

Also,

k = lim
n→+∞

m
(
sn − p∗

)
= lim

n→+∞
m
(
(1 − σn)pn + σnT (pn)) − p∗

)
≤ lim

n→+∞
(1 − σn)m

(
pn − p∗

)
+ σnm

(
T (pn) − p∗

)
≤ lim

n→+∞
(1 − σn)m

(
pn − p∗

)
+ σnm

(
pn − p∗

)
≤ lim

n→+∞
m
(
pn − p∗

)
≤ k.

Hence,
lim

n→+∞
m
(
(1 − σn)(pn − p∗) + σn(T (pn) − p∗)

)
= k. (4.35)

From (4.23), (4.27), (4.35) and Lemma 2.6, we get

lim
n→+∞

m
(
pn − T (pn)

)
= 0.

Conversely, assume that {pn} is a bounded sequence and

lim
n→+∞

m
(
pn − T (pn)

)
= 0.

Let ϕ: C → [0,+∞] be the m-type function generated by {pn} and suppose that {xn} is a minimizing
sequence for ϕ converging to a point r ∈ C. Using Lemmas 4.2 and 4.3, we get

lim
n→+∞

m
(
xn − T (xn)

)
= 0.

On the other hand using (4.20) as n→ +∞, we obtain

lim
n→+∞

m
(
xn − T (r)

)
= 0.

This gives that {pn} converges to T (r). As we know, limit is always unique, we get T (r) = r. □

5. Stability and data dependence

Ostrowski [29] established the concept of stability for a fixed point iterative technique. The
analogue of the Ostrowski definition in the framework of modular spaces is given as follows:
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Definition 5.1. Assume that C is a nonempty subset of a modular spaceVm and {ϱn} is an approximate
sequence of {pn} in C. Then, the iterative process pn+1 = ℏ(T, pn) for a function ℏ, converging to a fixed
point p∗ of T: C → C is called T-stable or stable w.r.t. T if the condition that

lim
n→+∞

ℓn = 0

is equivalent to the condition that {ϱn} is m-convergent to p∗. Here {ℓn} is defined as

ℓn = m
(
ϱn+1 − ℏ(T, ϱn)

)
, for all n ∈ Z+.

Theorem 5.2. Assume that C is a nonempty m-closed and convex subset of a m-complete modular
space Vm and T: C → C is a m-contraction mapping with contraction constant c. Then, the iterative
scheme defined in (1.3) is T -stable.

Proof. Let {ϱn} be an approximate sequence of {pn} in C. The sequence defined by the iteration (1.3)
is:

pn+1 = ℏ(T, pn)

and
ℓn = m

(
ϱn+1 − ℏ(T, ϱn)

)
, n ∈ N.

We show that lim
n→+∞

ℓn = 0 if and only if

lim
n→+∞

m
(
ϱn − p∗

)
= 0.

If lim
n→+∞

ℓn = 0, then, using the convexity modular m, ∆2 condition, it follows from (1.3) that

m
(
ϱn+1 − p∗

)
≤ m
(
ϱn+1 − ℏ(T, ϱn)

)
+ m
(
ℏ(T, ϱn) − p∗

)
= ℓn + m

(
ϱn+1 − p∗

)
. (5.1)

Also,
m
(
ϱn+1 − p∗

)
≤ ℓn + c3[1 − (1 − c)(ηn + σn − ηnσn)]m

(
ϱn − p∗

)
.

Let
αn = m

(
ϱn − p∗

)
and βn = (1 − c)(ηn + σn − ηnσn),

then,
αn+1 ≤ c3(1 − βn)αn + ℓn.

Since, lim
n→+∞

ℓn = 0, we get
ℓn
βn
→ 0 as n→ +∞.

Hence, by Lemma 2.11, we have
lim

n→+∞
m
(
ϱn − p∗

)
= 0.

On the other hand, if
lim

n→+∞
m
(
ϱn − p∗

)
= 0,
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then, we have

ℓn = m
(
ϱn+1 − ℏ(T, ϱn)

)
≤ m
(
ϱn+1 − p∗

)
+ m
(
ℏ(T, ϱn) − p∗

)
(5.2)

≤ m
(
ϱn+1 − p∗

)
+ c3[1 − (1 − c)(ηn + σn − ηnσn)]m

(
ϱn − p∗

)
.

This implies that lim
n→+∞

ℓn = 0. Hence, the iterative scheme (1.3) is T -stable. □

Definition 5.3. Assume that T, T̂ : C → C are two mappings. Then T̂ is known as an approximate
mapping of T , if there exists ϵ > 0 such that, for all p ∈ C, we have

m
(
T (p) − T̂ (p)

)
≤ ϵ.

Theorem 5.4. Assume that T̂ is an approximate operator of a m-contraction T with maximum
acceptable error ϵ. Let {pn} be an iterative sequence generated by (1.3) and define an iterative scheme
p̂n as follows: 

p̂n+1 = T̂ (q̂n),
q̂n = T̂ ((1 − ηn)T̂ (ŝn) + ηnT̂ (r̂n)),
r̂n = T̂ ((1 − ρn)ŝn + ρnT̂ (ŝn)),
ŝn = (1 − σn)p̂n + σnT̂ (p̂n),

(5.3)

with real sequences {ηn}, {ρn} and {σn} in (0, 1) satisfying ηnρnσn ≥
1
2 for all n ∈ N. If T (p∗) = p∗ and

T̂ ( p̂∗) = p̂∗, such that
lim

n→+∞
m
(
p̂n − p̂∗

)
= 0,

then,

m
(
p∗ − p̂∗

)
≤

7π2
2ϵ

4 − 2πnc
.

Proof. By convexity and the ∆2 property

m
(
sn − ŝn

)
= m
(
(1 − σn)pn + σnT (pn) − (1 − σn) p̂n − σnT̂ ( p̂n)

)
≤ (1 − σn)m

(
pn − p̂n

)
+ σnm

(
T (pn) − T̂ ( p̂n)

)
≤ (1 − σn)m

(
pn − p̂n

)
+ σn

π2

2

(
m
(
T (pn) − T ( p̂n)

)
+ m
(
T ( p̂n) − T̂ ( p̂n)

))
≤

(
1 − σn + σn

π2

2
c
)
m
(
pn − p̂n

)
+ σn

π2

2
ϵ. (5.4)

Now, let
tn = (1 − ρn)sn + ρnT (sn).

So,

m
(
rn − r̂n

)
= m
(
T (tn) − T̂ (t̂n)

)
≤
π2

2

(
m
(
T (tn) − T (t̂n)

)
+ m
(
T (t̂n) − T̂ (t̂n)

))
≤ c
π2

2
m
(
tn − t̂n

)
+
π2

2
ϵ. (5.5)
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Using similar arguments as in (5.4) we get

m
(
tn − t̂n

)
≤

(
1 − ρn + ρn

π2

2
c
)
m
(
sn − ŝn

)
+ ρn
π2

2
ϵ. (5.6)

Using (5.4) and (5.6) in (5.5) we get

m
(
rn − r̂n

)
≤ c
π2

2

(
1 − ρn + ρn

π2

2
c
)[(

1 − σn + σn
π2

2
c
)
m
(
pn − p̂n

)
+ σn

π2

2
ϵ
]
+
π2

2
ϵ.

Now, suppose that
vn = (1 − ηn)T (sn) + ηnT (rn),

then,

m
(
qn − q̂n

)
= m
(
T (vn) − T̂ (v̂n)

)
≤ c
π2

2
m
(
vn − v̂n

)
+
π2

2
ϵ. (5.7)

Following arguments similar to those given above, we get

m
(
vn − v̂n

)
≤
π2

2
c
[
1 − ηnρn

π2

2
c
(
1 −
π2

2
c
)]

m(pn − p̂n) + (σnηn + σn + ηn)(
π2

2
)2cϵ +

π2

2
ϵ. (5.8)

Therefore (5.7) becomes

≤(
π2

2
)2c2
[
1 − ηnρn

π2

2
c
(
1 −
π2

2
c
)]

m(pn − p̂n) + (σnηn + σn + ηn)(
π2

2
)3c2ϵ

+ (
π2

2
)2cϵ +

π2

2
ϵ. (5.9)

Now, using similar arguments as in (5.4), we have

m
(
pn+1 − p̂n+1

)
= m
(
T (qn) − T̂ (q̂n)

)
≤ (
π2

2
)3c3
[
1 − ηnρn

π2

2
c
(
1 −
π2

2
c
)]

m(pn − p̂n) + (σnηn + σn + ηn)(
π2

2
)4c3ϵ

+ (
π2

2
)3c2ϵ + (

π2

2
)2cϵ +

π2

2
ϵ

≤

[
1 − ηnρn

π2

2
c
(
1 −
π2

2
c
)]

m(pn − p̂n) + 7
π2

2
ηnρnϵ. (5.10)

Taking
un = m

(
pn − p̂n

)
, υn = ηnρn

π2

2
c
(
1 −
π2

2
c
)

and
tn =

7π2

2 − π2c
ϵ

in Lemma 2.12, we get

lim sup
n→+∞

7π2

2 − π2c
ϵ ≥ lim sup

n→+∞
m
(
pn − p̂n

)
≥ 0. (5.11)
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Also,
m
(
p∗ − p̂∗

)
≤
π2

2
m
(
pn − p̂n

)
+
[π2

2
]2(m(pn − p∗

)
+ m
(
p̂n − p̂∗

))
.

Taking lim
n→+∞

and using the inequality (5.11) we obtain

m
(
p∗ − p̂∗

)
≤

7π2
2ϵ

4 − 2π2c
.

□
6. Numerical experiments

In this section, we present the numerical experiment for the applicability of our results. We used the
MATLAB version R2018a for all of the numerical calculations. We compare the iterative scheme (1.3)
with the existing methods for generalized αm- nonexpansive mapping and used the Example 3.2 to
implement our results. Moreover, we take different initial guesses and parameters for comparison.

Example 6.1. Let T be the generalized αm-nonexpansive mapping defined in Example 3.2. We now
discuss a numerical experiment to substantiate the convergence of iteration (1.3). Take an initial value
p1 = 150 and take different sequences of parameters, i.e., those we used for Figure 1,

ηn =
2n2 + n

n4 + 4n + 7
, ρn =

n − 1
n2 + n + 7

, σn =
2n − 1

n2 + n + 5
,

for Figure 2,

ηn =
n2 + n

n2 + 3n + 7
, ρn =

n + 1
n2 + n + 1

, σn =
n2 + 1

n2 + n + 3
,

for Figure 3,

ηn =
2n2 + n + 1
n3 + 4n2 − 1

, ρn =
(n − 1)3

n5 + 2n + 1
, σn =

2n4 − 1
n5 + n2 + 3

and for Figure 4,

ηn =
2n3 + n − 1

4n3 + 4n2 + 2
, ρn =

(n − 1)2

n3 + 5n2 + 5
, σn =

2n2 + n − 2
4n3 + n2 + n + 7

.

1 2 3 4 5 6 7 8 9 10

Number of iterations

0

50

100

150

V
a

lu
e

 o
f 

p
n

Noor

S

Abbas

Thakur

M-Iteration

AA-Iteration

Figure 1. ηn =
2n2+n

n4+4n+7 , ρn =
n−1

n2+n+7 and σn =
2n−1

n2+n+5 .
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Figure 2. ηn =
n2+n

n2+3n+7 , ρn =
n+1

n2+n+1 and σn =
n2+1

n2+n+3 .

1 2 3 4 5 6 7 8 9 10

Number of iterations

0

50

100

150

V
a

lu
e

 o
f 

p
n

Noor

S

Abbas

Thakur

M-Iteration

AA-Iteration

Figure 3. ηn =
2n2+n+1
n3+4n2−1 , ρn =

(n−1)3

n5+2n+1 and σn =
2n4−1

n5+n2+3 .
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Figure 4. ηn =
2n3+n−1

4n3+4n2+2 , ρn =
(n−1)2

n3+5n2+5 and σn =
2n2+n−2

4n3+n2+n+7 .
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Note that by the graphs, the convergence of iterative schemes (1.3) converges faster than the other
schemes for generalized αm-nonexpansive mapping for all choices of the used parameters. On the other
hand, the other iterative schemes change their convergence behaviors by changing the parameters.
Moreover, we have considered different initial guesses and observed that the whole space becomes the
basin of attraction for the scheme considered herein. Thus, the iterative scheme we used is superior in
this framework of study.

Example 6.2. Define T : R2 → R2 defined as follows:

T (p, q) =
( p
2
,

q
2
)
.

Clearly, the mapping T is a generalized αm-nonexpansive mapping with α = 1
4 and m = ∥.∥2. We

illustrate the convergence behavior of the different iterative schemes along with the iteration (1.3) and
take different initial values as shown in Figures 5–8 for the convergence and comparison.
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Figure 5. For (p1, q1) = (0.15, 0.65).
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Figure 6. For (p1, q1) = (3, 5).
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Figure 7. For (p1, q1) = (10, 7).
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Figure 8. For (p1, q1) = (6, 6).

7. Conclusions

Our aim of this work is to study the AA-iterative scheme proposed by Abbas et al. [1] to
approximate the fixed points of generalized αm-nonexpansive mappings in the structure of modular
spaces. We proposed adequate requirements regarding the convergence of the iterative scheme to
approximate the solution of a fixed point equation involving αm-nonexpansive mappings in the
framework of uniformly convex type modular spaces. Numerical examples are given and demonstrate
that the AA-iterative method converges faster than certain known schemes for generalized
αm-nonexpansive mappings in the context of modular spaces. For future direction, one may apply the
AA-iterative algorithm in image processing problems involving αm-nonexpansive mappings such as
image denoising and reconstruction. One may also enhance the convergence speed and preserve the
image features as compared to existing methods.
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