
The aim of this paper is to establish the existence of a sequence of infinitely many small energy solutions to nonlocal problems of Kirchhoff type involving Hardy potential. To this end, we used the Dual Fountain Theorem as a key tool. In particular, we describe this multiplicity result on a class of the Kirchhoff coefficient and the nonlinear term which differ from previous related works. To the best of our belief, the present paper is the first attempt to obtain the multiplicity result for nonlocal problems of Kirchhoff type involving Hardy potential by utilizing the Dual Fountain Theorem.
Citation: Yun-Ho Kim, Hyeon Yeol Na. Multiplicity of solutions to non-local problems of Kirchhoff type involving Hardy potential[J]. AIMS Mathematics, 2023, 8(11): 26896-26921. doi: 10.3934/math.20231377
[1] | Qi Xiao, Jin Zhong . Characterizations and properties of hyper-dual Moore-Penrose generalized inverse. AIMS Mathematics, 2024, 9(12): 35125-35150. doi: 10.3934/math.20241670 |
[2] | Waleed Mohamed Abd-Elhameed, Amr Kamel Amin, Nasr Anwer Zeyada . Some new identities of a type of generalized numbers involving four parameters. AIMS Mathematics, 2022, 7(7): 12962-12980. doi: 10.3934/math.2022718 |
[3] | Faik Babadağ . A new approach to Jacobsthal, Jacobsthal-Lucas numbers and dual vectors. AIMS Mathematics, 2023, 8(8): 18596-18606. doi: 10.3934/math.2023946 |
[4] | Changsheng Luo, Jiagui Luo . Complete solutions of the simultaneous Pell equations (a2+1)y2−x2=y2−bz2=1. AIMS Mathematics, 2021, 6(9): 9919-9938. doi: 10.3934/math.2021577 |
[5] | Cencen Dou, Jiagui Luo . Complete solutions of the simultaneous Pell's equations (a2+2)x2−y2=2 and x2−bz2=1. AIMS Mathematics, 2023, 8(8): 19353-19373. doi: 10.3934/math.2023987 |
[6] | Faik Babadağ, Ali Atasoy . A new approach to Leonardo number sequences with the dual vector and dual angle representation. AIMS Mathematics, 2024, 9(6): 14062-14074. doi: 10.3934/math.2024684 |
[7] | Elahe Mehraban, T. Aaron Gulliver, Salah Mahmoud Boulaaras, Kamyar Hosseini, Evren Hincal . New sequences from the generalized Pell p−numbers and mersenne numbers and their application in cryptography. AIMS Mathematics, 2024, 9(5): 13537-13552. doi: 10.3934/math.2024660 |
[8] | Bin Zhou, Xiujuan Ma, Fuxiang Ma, Shujie Gao . Robustness analysis of random hyper-networks based on the internal structure of hyper-edges. AIMS Mathematics, 2023, 8(2): 4814-4829. doi: 10.3934/math.2023239 |
[9] | Waleed Mohamed Abd-Elhameed, Anna Napoli . New formulas of convolved Pell polynomials. AIMS Mathematics, 2024, 9(1): 565-593. doi: 10.3934/math.2024030 |
[10] | Ümit Tokeşer, Tuğba Mert, Yakup Dündar . Some properties and Vajda theorems of split dual Fibonacci and split dual Lucas octonions. AIMS Mathematics, 2022, 7(5): 8645-8653. doi: 10.3934/math.2022483 |
The aim of this paper is to establish the existence of a sequence of infinitely many small energy solutions to nonlocal problems of Kirchhoff type involving Hardy potential. To this end, we used the Dual Fountain Theorem as a key tool. In particular, we describe this multiplicity result on a class of the Kirchhoff coefficient and the nonlinear term which differ from previous related works. To the best of our belief, the present paper is the first attempt to obtain the multiplicity result for nonlocal problems of Kirchhoff type involving Hardy potential by utilizing the Dual Fountain Theorem.
Dual numbers were first given by Clifford (1845–1879), and some properties of those were studied in the geometrical investigation, and Kotelnikov [1] introduced their first applications. Study applied to line geometry and kinematics dual numbers and dual vectors [2]. He demonstrated that the directed lines of Euclidean 3-space and the points of the dual unit sphere in D3 have a one-to-one relationship. Field theory also relies heavily on these numbers [3]. The most intriguing applications of dual numbers in field theory are found in a number of Wald publications [4]. Dual numbers have contemporary applications in kinematics, dynamics, computer modeling of rigid bodies, mechanism design, and kinematics [5,6,7].
Complex numbers have significant advantages in derivative computations. However, the second derivative computations lost these advantages [8]. J. A. Fike developed the hyper-dual numbers to solve this issue [9]. These numbers may be used to calculate both the first and second derivatives while maintaining the benefits of the first derivative using complex numbers. Furthermore, it is demonstrated that this numerical approach is appropriate for open kinematic chain robot manipulators, sophisticated software, and airspace system analysis and design [10].
In the literature, sequences of integers have an important place. The most famous of these sequences have been demonstrated in several areas of mathematics. These sequences have been researched extensively because of their complex characteristics and deep connections to several fields of mathematics. The Fibonacci and Lucas sequences and their related numbers are of essential importance due to their various applications in biology, physics, statistics, and computer science [11,12,13]. Many authors were interested in introducing and investigating several generalizations and modifications of Fibonacci and Lucas sequences. The authors investigated two classes that generalize Fibonacci and Lucas sequences, and they utilized them to compute some radicals in reduced forms. Panwar [14] defined the generalized k-Fibonacci sequence as
Fk,n=pkFk,n−1+qFk,n−2, |
with initial conditions Fk,0=a and Fk,1=b. If a=0,k=2,p=q=b=1, the classic Pell sequence and for a=b=2,k=2,p=q=1, Pell-Lucas sequences appear.
The Pell numbers are the numbers of the following integer sequence:
0,1,2,5,12,29,70,169,408,985,2378,... |
The sequence of Pell numbers, which is denoted by Pn is defined as the linear reccurence relation
Pn=2Pn−1+Pn−2,P0=0,P1=1, n≥2. |
The integer sequence of Pell-Lucas numbers denoted by Qn is given by
2,2,6,14,34,82,198,478,1154,2786,6726,..., |
with the same reccurence relation
Qn=2Qn−1+Qn−2,Q0=Q1=2, n≥2. |
The characteristic equation of these numbers is x2−2x−1=0, with roots α=1+√2 and β=1−√2 and the Binet's forms of these sequences are given as[15,16,17,18],
Pn=αn−βnα−β | (1.1) |
and
Qn=αn+βn. | (1.2) |
The set of dual numbers is defined as
D={d=a+εa∗∣a,a∗∈R,ε2=0,ε≠0}. |
The set of hyper-dual numbers is
˜D={γ=γ0+γ1ε+γ2ε∗+γ3εε∗∣γ0,γ1,γ2,γ3∈R}, |
or can be rewritten as
˜D={γ=d+ε∗d∗∣d,d∗∈D}, |
where ε, ε∗ and εε∗ are hyper-dual units that satisfy
(ε)2=(ε∗)2=0,ε≠ε∗≠0,εε∗=ε∗ε. |
This set forms commutative and associative algebra over both the dual and real numbers [8,9,10].
The square root of a hyper-dual number γ can be defined by
√γ=√γ0+γ12√γ0ε+γ22√γ0ε∗+(γ32√γ0−γ1γ24γ0√γ0)εε∗. | (1.3) |
A hyper-dual vector is any vector of the form
→γ=→γ0+→γ1ε+→γ2ε∗+→γ3εε∗, |
where →γ0,→γ1,→γ2,→γ3 are real vectors, this vector can be rewritten as →γ=→d+ε∗→d∗, where →d and →d∗ are dual vectors. Let →γ and →δ be hyper-dual vectors, then their scalar product is defined as
⟨→γ,→δ⟩HD=⟨→γ0,→δ0⟩+(⟨→γ0,→δ1⟩+⟨→γ1,→δ0⟩)ε+(⟨→γ0,→δ2⟩+⟨→γ2,→δ0⟩)ε∗+(⟨→γ0,→δ3⟩+⟨→γ1,→δ2⟩+⟨→γ2,→δ1⟩+⟨→γ3,→δ0⟩)εε∗, | (1.4) |
which continents inner products of real vectors.
Let f(x0+x1ε+x2ε∗+x3εε∗) be a hyper-dual function, then
f(x0+x1ε+x2ε∗+x3εε∗)=f(x0)+x1f(x0)ε+x2f′(x0)ε∗+(x3f′(x0)+x1x2f″(x0))εε∗. | (1.5) |
Suppose →γ, →δ and Φ be unit hyper-dual vectors and hyper-dual angle respectively then by using (1.5) the scalar product can be written as
⟨→γ,→δ⟩HD=cosΦ=cosϕ−ε∗ϕ∗sinϕ=(cosψ−εψ∗sinψ)−ε∗ϕ∗(sinψ+εψ∗cosψ), | (1.6) |
where ϕ and ψ are, respectively, dual and real angles.
The norm of a hyper-dual vector →γ is given by
‖→γ‖HD=‖→γ0‖+⟨→γ0,→γ1⟩‖→γ0‖ε+⟨→γ0,→γ2⟩‖→γ0‖ε∗+(⟨→γ0,→γ3⟩‖→γ0‖+⟨→γ1,→γ2⟩‖→γ0‖−⟨→γ0,→γ1⟩⟨→γ0,→γ2⟩‖→γ0‖3)εε∗, |
for ‖→γ0‖≠0. If ‖→γ‖HD=1 that is ‖→γ0‖=1 and ⟨→γ0,→γ1⟩=⟨→γ0,→γ2⟩=⟨→γ0,→γ3⟩=⟨→γ1,→γ2⟩=0, then →γ is a unit hyper-dual vector.
In this paper, we introduce the hyper-dual Pell and the hyper-dual Pell-Lucas numbers, which provide a natural generalization of the classical Pell and Pell-Lucas numbers by using the concept of hyper-dual numbers. We investigate some basic properties of these numbers. We also define a new vector and angle, which are called hyper-dual Pell vector and angle. We give properties of these vectors and angles to exert in the geometry of hyper-dual space.
In this section, we define the hyper-dual Pell and hyper-dual Pell-Lucas numbers and then demonstrate their fundamental identities and properties.
Definition 2.1. The nth hyper-dual Pell HPn and hyper-dual Pell-Lucas HQn numbers are defined respectively as
HPn=Pn+Pn+1ε+Pn+2ε∗+Pn+3εε∗ | (2.1) |
and
HQn=Qn+εQn+1+ε∗Qn+2+εε∗Qn+3, | (2.2) |
where Pn and Qn are nth Pell and Pell-Lucas numbers.
The few hyper-dual Pell and hyper-dual Pell-Lucas numbers are given as
HP1=1+2ε+5ε∗+12εε∗,HP2=2+5ε+12ε∗+29εε∗,... |
and
HQ1=2+6ε+14ε∗+34εε∗,HQ2=6+14ε+34ε∗+82εε∗,... |
Theorem 2.1. The Binet-like formulas of the hyper-dual Pell and hyper-dual Pell-Lucas numbers are given, respectively, by
HPn=φnφ_−ψnψ_φ−ψ | (2.3) |
and
HQn=φnφ_+ψnψ_, | (2.4) |
where
φ_=1+φε+φ2ε∗+φ3εε∗,ψ_=1+ψε+ψ2ε∗+ψ3εε∗. | (2.5) |
Proof. From (2.1) and the Binet formula of Pell numbers, we obtain
HPn=Pn+Pn+1ε+Pn+2ε∗+Pn+3εε∗=φn−ψnφ−ψ+φn+1−ψn+1φ−ψε+φn+2−ψn+2φ−ψε∗+φn+3−ψn+3φ−ψεε∗=φn(1+φε+φ2ε∗+φ3εε∗)φ−ψ−ψn(1+ψε+ψ2ε∗+ψ3εε∗)φ−ψ=φnφ_−ψnψ_φ−ψ. |
On the other hand, using (2.2) and the Binet formula of Pell-Lucas numbers we obtain
HQn=Qn+Qn+1ε+Qn+2ε∗+Qn+3εε∗=(φn+ψn)+(φn+1+ψn+1)ε+(φn+2+ψn+2)ε∗+(φn+3+ψn+3)εε∗=φn(1+φε+φ2ε∗+φ3εε∗)+ψn(1+ψε+ψ2ε∗+ψ3εε∗)=φnφ_+ψnψ_. |
Theorem 2.2. (Vajda-like identities) For non-negative integers m, n, and r, we have
HPmHPn−HPm−rHPn+r=(−1)n+1Pm−n−rPr(1+2ε+6ε∗+12εε∗),HQmHQn−HQm−rHQn+r=(−1)nQm−n−(−1)n+rQm−n−2r(1+2ε+6ε∗+12εε∗). |
Proof. By using the Binet-like formula of hyper-dual Pell numbers, we obtain
HPmHPn−HPm−rHPn+r=(φmφ_−ψmψ_φ−ψ)(φnφ_−ψnψ_φ−ψ)−(φm−rφ_−ψm−rψ_φ−ψ)(φn+rφ_−ψn+rψ_φ−ψ)=(φr−ψr)(φnψm−r−ψnφm−r)(φ−ψ)2φ_ψ_=−(φm−n−r−ψm−n−r)(φr−ψr)(φ−ψ)2φ_ψ_, |
and by using (1.1), we obtain
HPmHPn−HPm−rHPn+r=(−1)n+1Pm−n−rPr(1+2ε+6ε∗+12εε∗). |
Similarly for hyper-dual Pell-Lucas numbers, we can obtain
HQmHQn−HQm−rHQn+r=(φmφ_+ψmψ_)(φnφ_+ψnψ_)−(φm−rφ_+ψm−rψ_)(φn+rφ_+ψn+rψ_)=φ_ψ_(φm−n+ψm−n−φm−n−2r−ψm−n−2r). |
Using (1.2) and (2.5),
HQmHQn−HQm−rHQn+r=(−1)nQm−n−(−1)n+rQm−n−2r(1+2ε+6ε∗+12εε∗). |
Thus, we obtain the desired results.
Theorem 2.3. (Catalan-like identities) For non negative integers n and r, with n≥r, we have
HPn−rHPn+r−HP2n=(−1)n−rP2r(1+2ε+6ε∗+12εε∗),HQn−rHQn+r−HQ2n=8(−1)n−rP2r(1+2ε+6ε∗+12εε∗). |
Proof. From (2.3), we obtain
HPn−rHPn+r−HP2n=(φn−rφ_−ψn−rψ_φ−ψ)(φn+rφ_−ψn+rψ_φ−ψ)−(φnφ_−ψnψ_φ−ψ)2=φnψn8φ_ψ_(2−ψrφ−r−ψ−rφr)=(−1)n−rφ_ψ_(φr−ψrφ−ψ)2, |
and by using (1.1) and (2.5), we will have
HPn−rHPn+r−HP2n=(−1)n−rP2r(1+2ε+6ε∗+12εε∗). |
On the other hand, from (2.4) and (2.5) we obtain
HQn−rHQn+r−HQ2n=(φn−rφ_+ψn−rψ_)(φn+rφ_+ψn+rψ_)−(φnφ_+ψnψ_)2=φ_ψ_(φn−rψn+r+φn+rψn−r−2ψnφn)=8(−1)n−rφ_ψ_(φr−ψrφ−ψ)2=8(−1)n−rP2r(1+2ε+6ε∗+12εε∗). |
Corollary 2.1. (Cassini-like identities) For non-negative integer n, we have
HPn−1HPn+1−HP2n=(−1)n−1(1+2ε+6ε∗+12εε∗),HQn−1HQn+1−HQ2n=8(−1)n−1(1+2ε+6ε∗+12εε∗). |
Proof. We can get the result by taking r=1 in Theorem 2.3.
Theorem 2.4. (d'Ocagne-like identities) For non-negative integers n and m,
HPm+1HPn−HPmHPn+1=(−1)mPn−m(1+2ε+6ε∗+12εε∗),HQm+1HQn−HQmHQn+1=8(−1)nPm−n(1+2ε+6ε∗+12εε∗). |
Proof. Using (1.1), (2.3), and (2.5), we have
HPm+1HPn−HPmHPn+1=(φm+1φ_−ψm+1ψ_φ−ψ)(φnφ_−ψnψ_φ−ψ)−(φmφ_−ψmψ_φ−ψ)(φn+1φ_−ψn+1ψ_φ−ψ)=(φ−ψ)(φnψm−φmψn)φ_ψ_=(−1)mPn−m(1+2ε+6ε∗+12εε∗). |
Using (1.2), (2.4) and (2.5), we have
HQm+1HQn−HQmHQn+1=8(−1)nPm−n(1+2ε+6ε∗+12εε∗). |
In this section, we introduce hyper-dual Pell vectors and hyper-dual Pell angle. We will give geometric properties of them.
Definition 3.1. The nth hyper-dual Pell vector is defined as
→HPn=→Pn+→Pn+1ε+→Pn+2ε∗+→Pn+3εε∗, |
where →Pn=(Pn,Pn+1,Pn+2) is a real Pell vector. The hyper-dual Pell vector →HPn can be rewritten in terms of dual Pell vectors →Pn and →P∗n as
→HPn=(→Pn+→Pn+1ε)+(→Pn+2+→Pn+3ε)ε∗=→Pn+ε∗→P∗n. |
Theorem 3.1. The scalar product of hyper-dual Pell vectors →HPn and →HPm is
⟨→HPn,→HPm⟩=7Qn+m+28−(−1)mQn−m8+(7Qn+m+34−(−1)mQn−m4)ε+(7Qn+m+44−3(−1)mQn−m4)ε∗+(7Qn+m+52−3(−1)mQn−m2)εε∗. | (3.1) |
Proof. By using (1.4), we can write
⟨→HPn,→HPm⟩=⟨→Pn,→Pm⟩+(⟨→Pn,→Pm+1⟩+⟨→Pn+1,→Pm⟩)ε+(⟨→Pn,→Pm+2⟩+⟨→Pn+2,→Pm⟩)ε∗+(⟨→Pn,→Pm+3⟩+⟨→Pn+1,→Pm+2⟩+⟨→Pn+2,→Pm+1⟩+⟨→Pn+3,→Pm⟩)εε∗. | (3.2) |
Now we calculate the above inner products for real Pell vectors →Pn and →Pm by using Binet's formula of Pell numbers as
⟨→Pn,→Pm⟩=PnPm+Pn+1Pm+1+Pn+2Pm+2=(φn−ψnφ−ψ)(φm−ψmφ−ψ)+(φn+1−ψn+1φ−ψ)(φm+1−ψm+1φ−ψ)+(φn+2−ψn+2φ−ψ)(φm+2−ψm+2φ−ψ)=φn+m+ψn+m(φ−ψ)2+φn+m+2+ψn+m+2(φ−ψ)2+φn+m+4+ψn+m+4(φ−ψ)2−(φnψm+φmψn)φ−mψ−m(φ−ψ)2φ−mψ−m=18(Qn+m+Qn+m+2+Qn+m+4+(−1)mQn−m)=7Qn+m+28−(−1)mQn−m8. |
⟨→Pn,→Pm+1⟩=7Qn+m+38+(−1)mQn−m−18,⟨→Pn+1,→Pm⟩=7Qn+m+38−(−1)mQn−m+18,⟨→Pn,→Pm+2⟩=7Qn+m+48−(−1)mQn−m−28,⟨→Pn+2,→Pm⟩=7Qn+m+48−(−1)mQn−m+28,⟨→Pn,→Pm+3⟩=7Qn+m+58+(−1)mQn−m−38,⟨→Pn+1,→Pm+2⟩=7Qn+m+58−(−1)mQn−m−18,⟨→Pn+2,→Pm+1⟩=7Qn+m+58+(−1)mQn−m+18,⟨→Pn+3,→Pm⟩=7Qn+m+58−(−1)mQn−m+38. |
By substituting these equalities in (3.2), we obtain the result.
Example 3.1. Let →HP1=(1,2,5)+(2,5,12)ε+(5,12,29)ε∗+(12,29,70)εε∗ and →HP0=(0,1,2)+(1,2,5)ε+(2,5,12)ε∗+(5,12,29)εε∗ be the hyper-dual Pell vectors. The scalar product of →HP1 and →HP0 are
⟨→HP1,→HP0⟩=7Q3−Q18+7Q4−Q14ε+7Q5−3Q14ε∗+7Q6−3Q12εε∗=12+59ε+142ε∗+690εε∗. |
By the other hand
⟨→HP1,→HP0⟩=⟨→P1,→P0⟩+(⟨→P1,→P1⟩+⟨→P2,→P0⟩)ε+(⟨→P1,→P2⟩+⟨→P3,→P0⟩)ε∗+(⟨→P1,→P3⟩+⟨→P2,→P2⟩+⟨→P3,→P1⟩+⟨→P4,→P0⟩)εε∗=12+(30+29)ε+(72+70)ε∗+(174+173+174+169)εε∗=12+59ε+142ε∗+690εε∗. |
The results are the same as we expected.
Corollary 3.1. The norm of →HPn is
‖→HPn‖2=⟨→HPn,→HPn⟩=7Q2n+28−(−1)n4+(7Q2n+34−(−1)n2)ε+(7Q2n+44−3(−1)n2)ε∗+(7Q2n+52−3(−1)n)εε∗. | (3.3) |
Proof. The proof is clear from taking m=n in (3.1).
Example 3.2. Find the norm of →HP1=(1,2,5)+(2,5,12)ε+(5,12,29)ε∗+(12,29,70)εε∗.
If we take n=1 in (3.3) and use (1.3), then we will get
‖→HP1‖=√7Q48+14+(7Q54+12)ε+(7Q64+32)ε∗+(7Q72+3)εε∗=√30+144ε+348ε∗+1676εε∗=√30+72√30ε+174√30ε∗+7345√30εε∗. |
From (1.6) and (3.1), the following cases can be given for the scalar product of hyper-dual Pell vectors →HPn and →HPm.
Case 3.1. Assume that cosϕ=0 and ϕ∗≠0, then ψ=π2, ψ∗=0, therefore
⟨→HPn,→HPm⟩=−ε∗ϕ∗=(7Qm+n+44−3(−1)mQn−m4)ε∗+(7Qm+n+52−3(−1)mQn−m2)εε∗, |
then, we get
ϕ∗=(−1)m(32+ε)−74(Qm+n+4+2εQm+n+5) |
and corresponding dual lines d1 and d2 are perpendicular such that they do not intersect each other; see Figure 1.
Case 3.2. Assume that ϕ∗=0 and ϕ≠0, then we obtain
⟨→HPn,→HPm⟩=cosϕ=(7Qm+n+28−(−1)mQn−m8)+(7Qm+n+34−(−1)mQn−m4)ε, |
therefore
ϕ=arccos((7Qm+n+28−(−1)mQn−m8)+(7Qm+n+34−(−1)mQn−m4)ε), |
and corresponding dual lines d1 and d2 intersect each other; see Figure 2.
Case 3.3. Assume that cosϕ=0 and ϕ∗=0, then ψ=π2 and ψ∗=0, therefore
⟨→HPn,→HPm⟩=0, |
and dual lines d1 and d2 intersect each other at a right angle; see Figure 3.
Case 3.4. Assume that ϕ=0 and ϕ∗=0, then
⟨→HPn,→HPm⟩=1, |
in this case corresponding dual lines d1 and d2 are parallel; see Figure 4.
In the present study, we introduce two families of hyper-dual numbers with components containing Pell and the Pell-Lucas numbers. First, we define hyper-dual Pell and Pell-Lucas numbers. Afterwards, by means of the Binet's formulas of Pell and Pell-Lucas numbers, we investigate identities such as the Binet-like formulas, Vajda-like, Catalan-like, Cassini-like, and d'Ocagne-like identities. After that, we define hyper-dual Pell vector and angle with some properties and geometric applications related to them. In the future it would be valuable to replicate a similar exploration and development of our findings on hyper-dual numbers with Pell and Pell-Lucas numbers. These results can trigger further research on the subjects of the hyper-dual numbers, vector, and angle to carry out in the geometry of dual and hyper-dual space.
Faik Babadağ and Ali Atasoy: Conceptualization, writing-original draft, writing-review, editing. All authors have read and approved the final version of the manuscript for publication.
The authors declare that they have no conflict of interest.
[1] | A. Aberqi, A. Ouaziz, Morse's theory and local linking for a fractional (p1(x,⋅),p2(x,⋅)): Laplacian problems on compact manifolds, J. Pseudo-Differ. Oper. Appl., 41 (2023). https://doi.org/10.1007/s11868-023-00535-5 |
[2] | R. A. Adams, J. J. F. Fournier, Sobolev spaces, 2 Eds., Academic Press, New York-London, 2003. |
[3] |
D. Arcoya, J. Carmona, P. J. Martínez-Aparicio, Multiplicity of solutions for an elliptic Kirchhoff equation, Milan J. Math., 90 (2022), 679–689. https://doi.org/10.1007/s00032-022-00365-y doi: 10.1007/s00032-022-00365-y
![]() |
[4] |
G. Autuori, A. Fiscella, P. Pucci, Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity, Nonlinear Anal., 125 (2015), 699–714. https://doi.org/10.1016/j.na.2015.06.014 doi: 10.1016/j.na.2015.06.014
![]() |
[5] | R. Ayazoglu, S. Akbulut, E. Akkoyunlu, Existence and multiplicity of solutions for p(.)-Kirchhoff-type equations, Turkish J. Math., 46 (2022). https://doi.org/10.55730/1300-0098.3164 |
[6] |
B. Barrios, E. Colorado, A. De Pablo, U. Sanchez, On some critical problems for the fractional Laplacian operator, J. Differ. Equ., 252 (2012), 6133–6162. https://doi.org/10.1016/j.jde.2012.02.023 doi: 10.1016/j.jde.2012.02.023
![]() |
[7] |
G. Bonanno, Some remarks on a three critical points theorem, Nonlinear Anal., 54 (2003), 651–665. https://doi.org/10.1016/S0362-546X(03)00092-0 doi: 10.1016/S0362-546X(03)00092-0
![]() |
[8] |
G. Bonanno, S. Marano, On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl. Anal., 89 (2010), 1–10. https://doi.org/10.1080/00036810903397438 doi: 10.1080/00036810903397438
![]() |
[9] | L. Caffarelli, Non-local equations, drifts and games, Nonlinear Partial Differ. Equ. Abel Symp., 7 (2012), 37–52. https://doi.org/10.1007/978-3-642-25361-4 |
[10] |
J. Cen, S. J. Kim, Y. H. Kim, S. Zeng, Multiplicity results of solutions to the double phase anisotropic variational problems involving variable exponent, Adv. Differential Equ., 28 (2023), 467–504. https://doi.org/10.57262/ade028-0506-467 doi: 10.57262/ade028-0506-467
![]() |
[11] | G. Cerami, An existence criterion for the critical points on unbounded manifolds, Istit. Lombardo Accad. Sci. Lett. Rend. A, 112 (1978), 332–336. |
[12] |
W. Chen, N. V. Thin, Existence of solutions to Kirchhoff type equations involving the nonlocal p1 & ⋅⋅⋅ & pm fractional Laplacian with critical Sobolev-Hardy exponent, Complex Var. Elliptic Equ., 67 (2022), 1931–1975. https://doi.org/10.1080/17476933.2021.1913129 doi: 10.1080/17476933.2021.1913129
![]() |
[13] | D. Choudhuri, Existence and Hölder regularity of infinitely many solutions to a p Kirchhoff type problem involving a singular nonlinearity without the Ambrosetti-Rabinowitz (AR) condition, Z. Angew. Math. Phys., 72 (2021). https://doi.org/10.48550/arXiv.2006.00953 |
[14] |
N. T. Chung, H. Q. Toan, On a nonlinear and non-homogeneous problem without (A-R) type condition in Orlicz-Sobolev spaces, Appl. Math. Comput., 219 (2013), 7820–7829. https://doi.org/10.1016/j.amc.2013.02.011 doi: 10.1016/j.amc.2013.02.011
![]() |
[15] |
G. W. Dai, R. F. Hao, Existence of solutions of a p(x)-Kirchhoff-type equation, J. Math. Anal. Appl., 359 (2009), 275–284. https://doi.org/10.1016/j.jmaa.2009.05.031 doi: 10.1016/j.jmaa.2009.05.031
![]() |
[16] | J. I. Diaz, Nonlinear partial differential equations and free boundaries, Elliptic Equ. Res. Notes Math., 106 (1985). |
[17] |
J. I. Diaz, J. M. Morel, L. Oswald, An elliptic equation with singular nonlinearity, Commun. Part. Diff. Eq., 12 (1987), 1333–1344. https://doi.org/10.1080/03605308708820531 doi: 10.1080/03605308708820531
![]() |
[18] | M. Fabian, P. Habala, P. Hajék, V. Montesinos, V. Zizler, Banach space theory: The basis for linear and nonlinear analysis, Springer, New York, 2011. |
[19] |
M. Ferrara, G. M. Bisci, Existence results for elliptic problems with Hardy potential, Bull. Sci. Math., 138 (2014), 846–859. https://doi.org/10.1016/j.bulsci.2014.02.002 doi: 10.1016/j.bulsci.2014.02.002
![]() |
[20] |
A. Fiscella, Schrödinger-Kirchhoff-Hardy p-fractional equations without the Ambrosetti-Rabinowitz condition, Discrete Cont. Dyn.-S, 13 (2020), 1993–2007. https://doi.org/10.3934/dcdss.2020154 doi: 10.3934/dcdss.2020154
![]() |
[21] | A. Fiscella, G. Marino, A. Pinamonti, S. Verzellesi, Multiple solutions for nonlinear boundary value problems of Kirchhoff type on a double phase setting, Rev. Mat. Complut., 2023, 1–32. https://doi.org/10.1007/s13163-022-00453-y |
[22] |
A. Fiscella, E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal., 94 (2014), 156–170. https://doi.org/10.1016/j.na.2013.08.011 doi: 10.1016/j.na.2013.08.011
![]() |
[23] |
R. L. Frank, R. Seiringer, Non-linear ground state representations and sharp Hardy inequalities, J. Funct. Anal., 255 (2008), 3407–3430. https://doi.org/10.1016/j.jfa.2008.05.015 doi: 10.1016/j.jfa.2008.05.015
![]() |
[24] |
B. Ge, On the superlinear problems involving the p(x)-Laplacian and a non-local term without AR-condition, Nonlinear Anal., 102 (2014), 133–143. https://doi.org/10.1016/j.na.2014.02.004 doi: 10.1016/j.na.2014.02.004
![]() |
[25] |
B. Ge, D. J. Lv, J. F. Lu, Multiple solutions for a class of double phase problem without the Ambrosetti-Rabinowitz conditions, Nonlinear Anal., 188 (2019), 294–315. https://doi.org/10.1016/j.na.2019.06.007 doi: 10.1016/j.na.2019.06.007
![]() |
[26] |
G. Gilboa, S. Osher, Nonlocal operators with applications to image processing, Multiscale Model. Simul., 7 (2008), 1005–1028. https://doi.org/10.1137/070698592 doi: 10.1137/070698592
![]() |
[27] |
S. Gupta, G. Dwivedi, Kirchhoff type elliptic equations with double criticality in Musielak-Sobolev spaces, Math. Method. Appl. Sci., 46 (2023), 8463–8477. https://doi.org/10.1002/mma.8991 doi: 10.1002/mma.8991
![]() |
[28] |
T. Huang, S. Deng, Existence of ground state solutions for Kirchhoff type problem without the Ambrosetti-Rabinowitz condition, Appl. Math. Lett., 113 (2021), 106866. https://doi.org/10.1016/j.aml.2020.106866 doi: 10.1016/j.aml.2020.106866
![]() |
[29] |
E. J. Hurtado, O. H. Miyagaki, R. S. Rodrigues, Existence and multiplicity of solutions for a class of elliptic equations without Ambrosetti-Rabinowitz type conditions, J. Dyn. Differ. Equ., 30 (2018), 405–432. https://doi.org/10.1007/s10884-016-9542-6 doi: 10.1007/s10884-016-9542-6
![]() |
[30] |
F. Júlio, S. Corrêa, G. Figueiredo, On an elliptic equation of p-Kirchhoff type via variational methods, Bull. Aust. Math. Soc., 74 (2006), 263–277. https://doi.org/10.1017/S000497270003570X doi: 10.1017/S000497270003570X
![]() |
[31] |
M. Khodabakhshi, A. M. Aminpour, G. A. Afrouzi, A. Hadjian, Existence of two weak solutions for some singular elliptic problems, RACSAM, 110 (2016), 385–393. https://doi.org/10.1007/s13398-015-0239-1 doi: 10.1007/s13398-015-0239-1
![]() |
[32] |
M. Khodabakhshi, G. A. Afrouzi, A. Hadjian, Existence of infinitely many weak solutions for some singular elliptic problems, Complex Var. Elliptic Equ., 63 (2018), 1570–1580. https://doi.org/10.1080/17476933.2017.1397137 doi: 10.1080/17476933.2017.1397137
![]() |
[33] |
M. Khodabakhshi, A. Hadjian, Existence of three weak solutions for some singular elliptic problems, Complex Var. Elliptic Equ., 63 (2018), 68–75. https://doi.org/10.1080/17476933.2017.1282949 doi: 10.1080/17476933.2017.1282949
![]() |
[34] |
J. M. Kim, Y. H. Kim, Multiple solutions to the double phase problems involving concave-convex nonlinearities, AIMS Math., 8 (2023), 5060–5079. https://doi.org/10.3934/math.2023254 doi: 10.3934/math.2023254
![]() |
[35] | I. H. Kim, Y. H. Kim, Infinitely many small energy solutions to nonlinear Kirchhoff-Schrödinger equations with the p-Laplacian, submitted. |
[36] |
I. H. Kim, Y. H. Kim, K. Park, Multiple solutions to a non-local problem of Schrödinger-Kirchhoff type in RN, Fractal Fract., 7 (2023), 627. https://doi.org/10.3390/fractalfract7080627 doi: 10.3390/fractalfract7080627
![]() |
[37] | G. R. Kirchhoff, Vorlesungen über mathematische physik, mechanik, Teubner, Leipzig, 1876. |
[38] |
N. Laskin, Fractional quantum mechanics and Levy path integrals, Phys. Lett. A, 268 (2000), 298–305. https://doi.org/10.1016/S0375-9601(00)00201-2 doi: 10.1016/S0375-9601(00)00201-2
![]() |
[39] |
J. Lee, J. M. Kim, Y. H. Kim, A. Scapellato, On multiple solutions to a non-local fractional p(⋅)-Laplacian problem with concave-convex nonlinearities, Adv. Cont. Discr. Mod., 2022 (2022), 14. https://doi.org/10.1186/s13662-022-03689-6 doi: 10.1186/s13662-022-03689-6
![]() |
[40] | G. Li, C. Yang, The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of p-Laplacian type without the Ambrosetti-Rabinowitz condition, Nonlinear Anal., 72 (2010), 4602–4613. https://doi.org/10.1016/j.na.2010.02.037 |
[41] | L. Li, X. Zhong, Infinitely many small solutions for the Kirchhoff equation with local sublinear nonlinearities, J. Math. Anal. Appl., 435 (2016), 955–967. https://doi.org/10.1016/j.jmaa.2015.10.075 |
[42] |
C. B. Lian, B. L. Zhang, B. Ge, Multiple solutions for double phase problems with Hardy type potential, Mathematics, 9 (2021), 376. https://doi.org/10.3390/math9040376 doi: 10.3390/math9040376
![]() |
[43] |
J. L. Lions, On some questions in boundary value problems of mathematical physics, North-Holland Math. Stud., 30 (1978), 284–346. https://doi.org/10.1016/S0304-0208(08)70870-3 doi: 10.1016/S0304-0208(08)70870-3
![]() |
[44] |
D. C. Liu, On a p-Kirchhoff-type equation via fountain theorem and dual fountain theorem, Nonlinear Anal., 72 (2010), 302–308. https://doi.org/10.1016/j.na.2009.06.052 doi: 10.1016/j.na.2009.06.052
![]() |
[45] | J. Liu, Z. Zhao, Existence of triple solutions for elliptic equations driven by p-Laplacian-like operators with Hardy potential under Dirichlet-Neumann boundary conditions, Bound Value Probl., 2023 (2023). https://doi.org/10.1186/s13661-023-01692-8 |
[46] |
S. B. Liu, On superlinear problems without Ambrosetti and Rabinowitz condition, Nonlinear Anal., 73 (2010), 788–795. https://doi.org/10.1016/j.na.2010.04.016 doi: 10.1016/j.na.2010.04.016
![]() |
[47] |
S. B. Liu, S. J. Li, Infinitely many solutions for a superlinear elliptic equation, Acta Math. Sinica (Chin. Ser.), 46 (2003), 625–630. https://doi.org/10.12386/A2003sxxb0084 doi: 10.12386/A2003sxxb0084
![]() |
[48] |
D. Lu, A note on Kirchhoff-type equations with Hartree-type nonlinearities, Nonlinear Anal., 99 (2014), 35–48. https://doi.org/10.1016/j.na.2013.12.022 doi: 10.1016/j.na.2013.12.022
![]() |
[49] |
D. Lu, Existence and multiplicity results for perturbed Kirchhoff-type Schrödinger systems in R3, Comput. Math. Appl., 68 (2014), 1180–1193. https://doi.org/10.1016/j.camwa.2014.08.020 doi: 10.1016/j.camwa.2014.08.020
![]() |
[50] |
O. H. Miyagaki, M. A. S. Souto, Superlinear problems without Ambrosetti and Rabinowitz growth condition, J. Diff. Equ., 245 (2008), 3628–3638. https://doi.org/10.1016/j.jde.2008.02.035 doi: 10.1016/j.jde.2008.02.035
![]() |
[51] |
A. Nachman, A. Callegari, A nonlinear singular boundary value problem in the theory of pseudoplastic fluids, SIAM J. Appl. Math., 38 (1980), 275–281. https://doi.org/10.1137/0138024 doi: 10.1137/0138024
![]() |
[52] |
E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. https://doi.org/10.48550/arXiv.1104.4345 doi: 10.48550/arXiv.1104.4345
![]() |
[53] |
P. Pucci, S. Saldi, Critical stationary Kirchhoff equations in RN involving nonlocal operators, Rev. Mat. Iberoam., 32 (2016), 1–22. https://doi.org/10.4171/RMI/879 doi: 10.4171/RMI/879
![]() |
[54] |
P. Pucci, M. Q. Xiang, B. L. Zhang, Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian in RN, Calc. Var. Partial Differ. Equ., 54 (2015), 2785–2806. https://doi.org/10.1007/s00526-015-0883-5 doi: 10.1007/s00526-015-0883-5
![]() |
[55] |
P. Pucci, M. Q. Xiang, B. L. Zhang, Existence and multiplicity of entire solutions for fractional p-Kirchhoff equations, Adv. Nonlinear Anal., 5 (2016), 27–55. https://doi.org/10.1515/anona-2015-0102 doi: 10.1515/anona-2015-0102
![]() |
[56] |
B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math., 113 (2000), 401–410. https://doi.org/10.1016/S0377-0427(99)00269-1 doi: 10.1016/S0377-0427(99)00269-1
![]() |
[57] |
B. Ricceri, A further three critical points theorem, Nonlinear Anal., 71 (2009), 4151–4157. https://doi.org/10.1016/j.na.2009.02.074 doi: 10.1016/j.na.2009.02.074
![]() |
[58] |
R. Servadei, E. Valdinoci, Mountain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887–898. https://doi.org/10.1016/j.jmaa.2011.12.032 doi: 10.1016/j.jmaa.2011.12.032
![]() |
[59] |
J. Simon, Régularité de la solution d'une équation non linéaire dans RN, Journées d'Analyse Non Linéaire, 665 (1978), 205–227. https://doi.org/10.1007/BFb0061807 doi: 10.1007/BFb0061807
![]() |
[60] |
K. Teng, Multiple solutions for a class of fractional Schrödinger equations in RN, Nonlinear Anal.-Real, 21 (2015), 76–86. https://doi.org/10.1016/j.nonrwa.2014.06.008 doi: 10.1016/j.nonrwa.2014.06.008
![]() |
[61] |
Y. Wei, X. Su, Multiplicity of solutions for non-local elliptic equations driven by the fractional Laplacian, Calc. Var. Partial Differ. Equ., 52 (2015), 95–124. https://doi.org/10.1007/s00526-013-0706-5 doi: 10.1007/s00526-013-0706-5
![]() |
[62] | M. Willem, Minimax theorems, Birkhauser, Basel, 1996. |
[63] |
Q. Wu, X. P. Wu, C. L. Tang, Existence of positive solutions for the nonlinear Kirchhoff type equations in R3, Qual. Theor. Dyn. Syst., 21 (2022), 1–16. https://doi.org/10.1007/s12346-022-00696-6 doi: 10.1007/s12346-022-00696-6
![]() |
[64] |
M. Q. Xiang, B. L. Zhang, X. Y. Guo, Infinitely many solutions for a fractional Kirchhoff type problem via fountain theorem, Nonlinear Anal., 120 (2015), 299–313. https://doi.org/10.1016/j.na.2015.03.015 doi: 10.1016/j.na.2015.03.015
![]() |
[65] |
M. Q. Xiang, B. L. Zhang, M. Ferrara, Existence of solutions for Kirchhoff type problem involving the non-local fractional p-Laplacian, J. Math. Anal. Appl., 424 (2015), 1021–1041. https://doi.org/10.1016/j.jmaa.2014.11.055 doi: 10.1016/j.jmaa.2014.11.055
![]() |
[66] |
M. Q. Xiang, B. L. Zhang, M. Ferrara, Multiplicity results for the nonhomogeneous fractional p-Kirchhoff equations with concave-convex nonlinearities, Proc. R. Soc. A, 471 (2015), 20150034. https://doi.org/10.1098/rspa.2015.0034 doi: 10.1098/rspa.2015.0034
![]() |
[67] |
L. Yang, T. An, Infinitely many solutions for fractional p-Kirchhoff equations, Mediterr. J. Math., 15 (2018), 80. https://doi.org/10.1007/s00009-018-1124-x doi: 10.1007/s00009-018-1124-x
![]() |
[68] | Y. Zhou, J. Wang, L. Zhang, Basic theory of fractional differential equations, 2 Eds., World Scientific Publishing Co. Pte. Ltd., Singapore, 2017. |
[69] |
J. Zuo, D. Choudhuri, D. D. Repovs, Multiplicity and boundedness of solutions for critical variable-order Kirchhoff type problems involving variable singular exponent, J. Math. Anal. Appl., 514 (2022), 1–18. https://doi.org/10.48550/arXiv.2204.10635 doi: 10.48550/arXiv.2204.10635
![]() |