Research article

Complete solutions of the simultaneous Pell's equations $ (a^2+2)x^2-y^2 = 2 $ and $ x^2-bz^2 = 1 $

  • Received: 07 April 2023 Revised: 30 May 2023 Accepted: 01 June 2023 Published: 08 June 2023
  • MSC : 11D25, 11B37, 11B39

  • In this paper, we consider the simultaneous Pell equations $ (a^2+2)x^2-y^2 = 2 $ and $ x^2-bz^2 = 1 $ where $ a $ is a positive integer and $ b > 1 $ is squarefree and has at most three prime divisors. We obtain the necessary and sufficient conditions that the above simultaneous Pell equations have positive integer solutions by using only the elementary methods of factorization, congruence, the quadratic residue and fundamental properties of Lucas sequence and the associated Lucas sequence. Moreover, we prove that these simultaneous Pell equations have at most one solution in positive integers. When a solution exists, assuming the positive solutions of the Pell equation $ (a^2+2)x^2-y^2 = 2 $ are $ x = x_m $ and $ y = y_m $ with $ m\geq 1 $ odd, then the only solution of the system is given by $ m = 3 $ or $ m = 5 $ or $ m = 7 $ or $ m = 9 $.

    Citation: Cencen Dou, Jiagui Luo. Complete solutions of the simultaneous Pell's equations $ (a^2+2)x^2-y^2 = 2 $ and $ x^2-bz^2 = 1 $[J]. AIMS Mathematics, 2023, 8(8): 19353-19373. doi: 10.3934/math.2023987

    Related Papers:

  • In this paper, we consider the simultaneous Pell equations $ (a^2+2)x^2-y^2 = 2 $ and $ x^2-bz^2 = 1 $ where $ a $ is a positive integer and $ b > 1 $ is squarefree and has at most three prime divisors. We obtain the necessary and sufficient conditions that the above simultaneous Pell equations have positive integer solutions by using only the elementary methods of factorization, congruence, the quadratic residue and fundamental properties of Lucas sequence and the associated Lucas sequence. Moreover, we prove that these simultaneous Pell equations have at most one solution in positive integers. When a solution exists, assuming the positive solutions of the Pell equation $ (a^2+2)x^2-y^2 = 2 $ are $ x = x_m $ and $ y = y_m $ with $ m\geq 1 $ odd, then the only solution of the system is given by $ m = 3 $ or $ m = 5 $ or $ m = 7 $ or $ m = 9 $.



    加载中


    [1] Y. Fujita, N. Terai, Generators and integer points on the elliptic curve $y^2 = x^3-nx$, Acta Arith., 160 (2013), 333–348. http://dx.doi.org/10.4064/aa160-4-3 doi: 10.4064/aa160-4-3
    [2] F. Najman, Compact representation of quadratic integers and integer points on some elliptic curves, Rocky Mountain J. Math., 40 (2010), 1979–2002. http://dx.doi.org/10.1216/RMJ-2010-40-6-1979 doi: 10.1216/RMJ-2010-40-6-1979
    [3] T. Jedrzejak, M. Wieczorek, Integral points on elliptic curves $y^2 = x(x-2^m)(x+p)$, Bull. Polish Acad. Sci. Math., 67 (2019), 53–67. http://dx.doi.org/10.4064/ba8152-1-2019 doi: 10.4064/ba8152-1-2019
    [4] A. Thue, Über Annäherungswerte Zahlen (German), J. Reine Angew. Math., 1909 (1909), 284–305. https://doi.org/10.1515/crll.1909.135.284 doi: 10.1515/crll.1909.135.284
    [5] M. Cipu, Explicit formula for the solution of simultaneous Pell equations $x^2-(a^2-1)y^2 = 1$, $y^2-bz^2 = 1$, Proc. Amer. Math. Soc., 146 (2018), 983–992. https://doi.org/10.1090/PROC/13802 doi: 10.1090/PROC/13802
    [6] M. A. Bennett, On the number of solutions of the simultaneous Pell equations, J. Reine Angew. Math., 1998 (1998), 173–199. https://doi.org/10.1515/crll.1998.049 doi: 10.1515/crll.1998.049
    [7] P. Z. Yuan, On the number of solutions of $x^2-4m(m +1)y^2 = y^2-bz^2 = 1$, Proc. Amer. Math. Soc., 132 (2004), 1561–1566. http://dx.doi.org/10.1090/S0002-9939-04-07418-0 doi: 10.1090/S0002-9939-04-07418-0
    [8] P. G. Walsh, Sharp bounds for the number of solutions to simultaneous Pellian equations, Acta Arith., 126 (2007), 125–137. http://dx.doi.org/10.4064/aa126-2-3 doi: 10.4064/aa126-2-3
    [9] C. S. Luo, J. G. Luo, Complete solutions of the simultaneous Pell equations $(a^2+1)y^2-x^2 = y^2-bz^2 = 1$, AIMS Math., 6 (2021), 9919–9938. https://doi.org/10.3934/math.2021577 doi: 10.3934/math.2021577
    [10] D. H. Lehmer, An extended theory of Lucas' functions, Ann. Math., 31 (1930), 419–448. https://doi.org/10.2307/1968235 doi: 10.2307/1968235
    [11] P. Ribenboim, The book of prime number records, 2 Eds., Springer-Verlag, New York, 1989.
    [12] P. Z. Yuan, A note on the divisibility of the generalized Lucas' sequences, Fibonacci Quart., 40 (2002), 153–156.
    [13] J. G. Luo, P. Z. Yuan, Square-classes in Lehmer sequences having odd parameters and their applications, Acta Arith., 127 (2007), 49–62. https://doi.org/10.4064/aa127-1-4 doi: 10.4064/aa127-1-4
    [14] W. Ljunggren, Ein Satz über die diophantische Gleichung $Ax^2-By^4 = C (C = 1, 2, 4)$, Tolfte Skand. Mat.-Kongr., 1953 (1954), 188–194.
    [15] S. Akhtari, The Diophantine equation $aX^4-by^2 = 1$, J. Reine Angew. Math., 2009 (2009), 33–57. https://doi.org/10.1515/CRELLE.2009.034 doi: 10.1515/CRELLE.2009.034
    [16] Q. Sun, P. Z. Yuan, A note on the Diophantine equation $x^4-Dy^2 = 1$, J. Sichuan Univ., 34 (1997), 265–268.
    [17] J. H. E. Cohn, The Diophantine equation $x^4-Dy^2 = 1, $ Ⅱ, Acta Arith., 78 (1997), 401–403.
    [18] A. Togbé, P. M. Voutier, P. G. Walsh, Solving a family of Thue equations with an application to the equation $x^2-Dy^4 = 1$, Acta Arith., 120 (2005), 39–58. https://doi.org/10.4064/aa120-1-3 doi: 10.4064/aa120-1-3
    [19] F. Luca, P. G. Walsh, Squares in Lehmer sequences and some Diophantine applications, Acta Arith., 100 (2001), 47–62. https://doi.org/10.4064/aa100-1-4 doi: 10.4064/aa100-1-4
    [20] P. Z. Yuan, Y. Li, Squares in Lehmer sequences and the Diophantine equation $Ax^4-By^2 = 2$, Acta Arith., 139 (2009), 275–302. https://doi.org/10.4064/aa139-3-6 doi: 10.4064/aa139-3-6
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(896) PDF downloads(41) Cited by(0)

Article outline

Figures and Tables

Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog