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Abstract: In this paper, we consider the simultaneous Pell equations (a2+2)x2−y2 = 2 and x2−bz2 = 1
where a is a positive integer and b > 1 is squarefree and has at most three prime divisors. We obtain
the necessary and sufficient conditions that the above simultaneous Pell equations have positive integer
solutions by using only the elementary methods of factorization, congruence, the quadratic residue and
fundamental properties of Lucas sequence and the associated Lucas sequence. Moreover, we prove
that these simultaneous Pell equations have at most one solution in positive integers. When a solution
exists, assuming the positive solutions of the Pell equation (a2 + 2)x2 − y2 = 2 are x = xm and y = ym

with m ≥ 1 odd, then the only solution of the system is given by m = 3 or m = 5 or m = 7 or m = 9.
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1. Introduction

The study of positive integer solutions of Pell equations has a wide range of applications in finding
integer points on elliptic curves, which is an important part of many scientific problems, as shown in
the reference [1–3]. In [4], A. Thue showed that the system Diophantine equations

a1x2 − b1y2 = c1, a2y2 − b2z2 = c2, a1b2 , a2b1 (1.1)

have at most finitely many solutions. Let sq f (b) denote the square-free part of positive integer b. In [5],
Cipu proved the following

Theorem CIPU. Let a and b be integers greater than 1, with b not a perfect square.
a) Assume b is odd and its square-free part has at most two prime divisors. Then the system

x2 − (a2 − 1)y2 = y2 − bz2 = 1 (1.2)
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is solvable in positive integers if and only if b divides 4a2−1 and the quotient is a perfect square. When
it exists, this solution is

(x, y, z) = (2a2 − 1, 2a,
√

(4a2 − 1)/b).

b) Assume sq f (b) = 2p with p either prime or equal to 1. Then the system (1.2) is solvable in
positive integers if and only if (2a2 − 1)/p is a perfect square and b divides 8a2(2a2 − 1) and the
quotient is a perfect square. When it exists, this solution is

(x, y, z) = (4a3 − 3a, 4a2 − 1,
√

8a2(2a2 − 1)/b).

Bennett [6] showed that the system Pell equations

x2 − ay2 = y2 − bz2 = 1 (1.3)

has at most three solutions, where a and b are distinct positive integers. Yuan [7] conjectured that for
any positive integers a and b, (1.1) has at most one solution and he proved that the conjecture holds for
a = 4m(m + 1). Walsh [8] proved that the system Pell equations

x2 − (m2 − c)y2 = c, y2 − bz2 = 1, c ∈ {±1,±2,±4} (1.4)

has at most one solution, where m and b > 1 are positive integers with b squarefree, and m2 − c is a
positive nonsquare integer. In [9], the authors considered the simultaneous Pell equations

(a2 + 1)x2 − y2 = x2 − bz2 = 1 (1.5)

where a > 0 is an integer and b > 1 is squarefree and has at most three prime divisors. Assuming the
positive integer solutions of the Pell equation (a2 + 1)x2 − y2 = 1 are x = xm and y = ym with m ≥ 1 an
odd integer, they proved that the only possible solution of system (1.5) is given by m = 3 or m = 5 or
m = 7 or m = 9.

In this paper, we consider the simultaneous Pell equations

(a2 + 2)x2 − y2 = 2, x2 − bz2 = 1 (1.6)

where a is a positive integer and b > 1 is squarefree and has at most three prime divisors. By the results
of Walsh [8], we know that (1.5) and (1.6) has at most one solution for any positive integer a and b > 1
squarefree. Assuming the positive integer solutions of the Pell equation (a2 + 2)x2 − y2 = 2 are x = xm

and y = ym with m ≥ 1 an odd integer, we prove that system (1.6) has solutions only when m = 3 or
m = 5 or m = 7 or m = 9. We prove the following results.

Theorem 1.1. Let p be a prime and let a be a positive integer. Then the simultaneous Pell equations

(a2 + 2)x2 − y2 = 2, x2 − pz2 = 1 (1.7)

have positive integer solutions if and only if a2 + 1 is a product of p and a square integer. When a
solution exists there is exactly one solution. The only one solution is given by

(x, y, z) =

x3, y3,

√
x2

3 − 1
p

 =

2a2 + 1, 2a3 + 3a, 2a

√
a2 + 1

p

 .
AIMS Mathematics Volume 8, Issue 8, 19353–19373.
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Theorem 1.2. Let p and q be two distinct primes and let a be a positive integer. Then the simultaneous
Pell equations

(a2 + 2)x2 − y2 = 2, x2 − pqz2 = 1 (1.8)

have at most one positive integer solution. Moreover, the solution exists if and only if one of the
following two conditions holds:

α) a2 + 1 is a product of pq and a square integer.
β) a ≡ 2 (mod 4), a2 + 1 = pb2, 2a2 + 1 = c2, and 2a2 + 3 = qd2.

When it exists, the solution is given by formula

(x, y, z) =

x3, y3,

√
x2

3 − 1
pq

 =

2a2 + 1, 2a3 + 3a, 2a

√
a2 + 1

pq

 in case α).

(x, y, z) =

x5, y5,

√
x2

5 − 1
pq

 in case β).

We shall denote by � an unspecified perfect square.

Theorem 1.3. Let p, q and r be distinct primes and let a be a positive integer. Then the simultaneous
Pell equations

(a2 + 2)x2 − y2 = 2, x2 − pqrz2 = 1 (1.9)

have at most one positive integer solution. Moreover, the solution exists if and only if one of the
following conditions holds:

α) a2 + 1 = pqr�.
β) a2 + 1 = p�, 2a2 + 1 = q�, and 2a2 + 3 = r� or

a2 + 1 = p�, 2a2 + 1 = �, and 2a2 + 3 = qr� or

a ≡ 2 (mod 4), a2 + 1 = pq�, 2a2 + 1 = �, and 2a2 + 3 = r�.

γ) a2 + 1 = 2�, 2a4 + 4a2 + 1 = p�, 2a2 + 1 = q�, and 2a2 + 3 = r� or

a ≡ 2 (mod 4), p = 2, a2 + 1 = q�, 2a4 + 4a2 + 1 = �, 2a2 + 1 = �, and 2a2 + 3 = r�.

δ) a2 + 1 = 2�, 2a4 + 4a2 + 1 = p�, 4a4 + 6a2 + 1 = q�, and 4a4 + 10a2 + 5 = r�.
When it exists, the solution is given by formula

(x, y, z) =

x3, y3,

√
x2

3 − 1
pqr

 =

2a2 + 1, 2a3 + 3a, 2a

√
a2 + 1

pqr

 in case α).

(x, y, z) =

x5, y5,

√
x2

5 − 1
pqr

 in case β).

(x, y, z) =

x7, y7,

√
x2

7 − 1
pqr

 in case γ).
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(x, y, z) =

x9, y9,

√
x2

9 − 1
pqr

 in case δ).

We organize this paper as follows. In Section 2, we present some basic definitions and some
lemmas which are needed in the proofs of our main results. Consequently, in Sections 3–5, we give
the proofs of Theorems 1.1 to 1.3, respectively. In Section 6, we give some examples of applications
of Theorems 1.1–1.3.

2. Some tools and basic definitions and some lemmas

In the proof of our main result, Lehmer sequences and the associated Lehmer sequences play an
essential role. So, we need to recall them. Let P > 0, Q be nonzero coprime integers, let D = P − 4Q
be called discriminant, and assume that D > 0. Consider the polynomial x2 −

√
Px + Q, called

characteristic polynomial, which has the roots

α =

√
P +
√

D
2

and β =

√
P −
√

D
2

.

For each n ≥ 0, define the Lehmer sequence Un = Un(P,Q) and the associated Lehmer sequence
Vn = Vn(P,Q) as follows:

Un =

 αn−βn

α−β
, if 2 6 |n,

αn−βn

α2−β2 , if 2|n,

and

Vn =

{ αn+βn

α+β
, if 2 6 |n,

αn + βn, if 2|n.

Consider the Pell equation
kx2 − ly2 = c, c = 1, 2, (2.1)

with k > 1 when c = 1. Let α =
x1
√

k+y1
√

l
√

c , β =
x1
√

k−y1
√

l
√

c , where x1
√

k + y1
√

l is the minimal positive
integer solution of the Eq (2.1), then all positive integer solutions of this equation are given by

xn
√

k + yn
√

l
√

c
= αn

with n ≥ 1 an odd integer. Moreover, α2 is the fundamental solution of the equation

x2 − kly2 = 1, (2.2)

all positive integer solutions of this equation are given by

Xn + Yn

√
kl = α2n

with n ≥ 1.
The next results are classical, so well known and frequently employed that it is very difficult to

locate their first appearance in print.

AIMS Mathematics Volume 8, Issue 8, 19353–19373.
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Lemma 2.1. Let x1
√

k+y1
√

l be the minimal positive integer solution of the Eq (2.1). Then all positive
integer solutions of the Eq (2.1) are given by

xn = x1Vn(
4kx2

1

c
, 1) and yn = y1Un(

4kx2
1

c
, 1)

with n an odd integer. All positive integer solutions of the Eq (2.2) are given by

Xn =
V2n(4kx2

1
c , 1)

2
and Yn = x1y1U2n(

4kx2
1

c
, 1)

with n ≥ 1.

The following identities are fairly well known and valid for the numbers Un = Un(P, 1) and Vn =

Vn(P, 1):
If d = gcd(m, n), then gcd(Um,Un) = Ud, (2.3)

U2n = UnVn. (2.4)

Let m = 2ak, n = 2bl, k and l odd, a, b ≥ 0, and d = gcd(m, n).

gcd(Um,Vn) =

{
Vd, if a > b,

1 or 2, if a ≤ b.
(2.5)

If P is even, then Vn is always even and Um is even iff m is even. When P is even and a ≤ b, we get
gcd(Um,Vn) = 2 if m is even and gcd(Um,Vn) = 1 if m is odd. Moreover, if n is odd, we have

U2
n − 1 = (α + β)2Un−1Un+1, V2

n − 1 = (α − β)2Un−1Un+1. (2.6)

We omit the proofs of the following lemmas, as they are based on straightforward induction. The
details can be also seen in the references [10–13].

Lemma 2.2. Let α =
x1
√

k+y1
√

l
√

c , β =
x1
√

k−y1
√

l
√

c , then we have

v2(Un(P, 1)) =

{
0, if 2 6 |n,
v2(n) − 1, if 2|n,

and

v2(Vn(P, 1)) =

{
0, if 2 6 |n,
1, if 2|n.

Lemma 2.3. ( [14]) Let the minimal positive integer solution of the equation Ax2 − By2 = 1 be ε =

x0
√

A + y0
√

B, where A > 1 and B are coprime positive integers with d = AB not a square. Then the
only possible solution of the equation Ax2 − By4 = 1 is given by x

√
A + y2

√
B = εl where y0 = l f 2 for

some odd squarefree integer l.

Lemma 2.4. ( [15]) Let A > 1 and B be coprime positive integers with d = AB not a square. The
Diophantine equation

AX4 − BY2 = 1 (2.7)

has at most two positive integer solutions. Moreover, (2.7) is solvable if and only if x0 is a square,
where ε = x0

√
A + y0

√
B is the minimal positive integer solution of the equation AU2 − BV2 = 1. And

if x2
√

A + y
√

B = εk, then k = 1 or k = p ≡ 3 (mod 4) is a prime.

AIMS Mathematics Volume 8, Issue 8, 19353–19373.
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Lemma 2.5. ( [16, 17]) Let the fundamental solution of the equation v2 − du2 = 1 be a + b
√

d. Then
the only possible solutions of the equation X4 − dY2 = 1 are given by X2 = a and X2 = 2a2 − 1; both
solutions occur in the following cases: d = 1785, 7140, 28560.

Lemma 2.6. ( [18]) Let D > 0 be a nonsquare integer. Define

Tn + Un

√
D = (T1 + U1

√
D)n,

where T1 + U1
√

D is the fundamental solution of the Pell equation

X2 − DY2 = 1. (2.8)

There are at most two positive integer solutions (X,Y) to the equation

X2 − DY4 = 1. (2.9)

(1) If two solutions Y1 < Y2 exist, then Y2
1 = U1 and Y2

2 = U2, except only if D = 1785 or
D = 16 · 1785, in which case Y2

1 = U1 and Y2
2 = U4.

(2) If only one positive integer solution (X,Y) to Eq (2.9) exists, then Y2 = Ul where U1 = lv2 for
some squarefree integer l, and either l = 1, l = 2 or l = p for some prime p ≡ 3 (mod 4).

Let (x1, y1) be the minimal positive integer solution to (2.1) with c = 2, and define

α =
x1
√

k + y1
√

l
√

2
.

Furthermore, for n odd, define

αn =
xn
√

k + yn
√

l
√

2
,

where xn, yn are positive integers.

Lemma 2.7. ( [19]) (1) If y1 is not a square, then equation

kx2 − ly4 = 2 (2.10)

has no solutions.
(2) If y1 is a square and y3 is not a square, then (x1, y1) is the only solution of (2.10).
(3) If y1 and y3 are both squares, then (x1, y1) and (x3, y3) are the only solutions of (2.10).

Lemma 2.8. ( [20]) The Diophantine equation

kx4 − ly2 = 2

has at most one solution in positive integers, and such a solution must arise from the minimal positive
integer solution to (2.1) with c = 2.

Lemma 2.9. The Diophantine equation

x2 − a2(a2 + 2)y4 = 1 (2.11)

has at most one positive integer solution other than (x, y) = (a2 + 1, 1), which is

(x, y2) = (2(a2 + 1)2 − 1, 2(a2 + 1)).
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Proof. It is easy to see that (x, y) = (a2 +1, 1) is the fundamental solution of (2.11) with D = a2(a2 +2).
The result immediately follows by Lemma 2.5. �

Lemma 2.10. The simultaneous Diophantine equations

x2 − 2y2 = 1, 3z2 − x2 = 2 (2.12)

has no positive integer solutions.

Proof. Assume that (x, y, z) is a positive integer solution of (2.12). By Lemma 2.1 we know that

z = V2m+1, x = U2m+1

for some positive integer m. We shall discuss separately two cases.
The case m is even, say m = 2k for some positive integer k. Since U2

4k+1 − 1 = 2y2, it follows
from (2.6) that 6U4kU4k+2 = (α + β)2U4kU4k+2 = 2y2, where α =

√
3+1
√

2
, β =

√
3−1
√

2
. Using the fact that

gcd(4k, 4k + 2) = 2, we get gcd(U4k,U4k+2) = U2 = 1 by (2.3). Then either

U4k = b2, U4k+2 = 3c2 (2.13)

or
U4k = 3b2, U4k+2 = c2 (2.14)

for some positive integers b and c.
The former equation of (2.13) yields U2kV2k = b2, so that U2k = b2

1, V2k = b2
2 for some positive

integers b1 and b2, which is impossible since v2(V2k) = 1 by Lemma 2.2.
The latter equation of (2.14) yields that

(
V4k+2

2 , c
)

is a solution of X2−3Y4 = 1. We get by Lemma 2.5
that c = 1, which leads to U4k+2 = 1 = U2, a contradiction, or U4k+2 = c2 = 4 = V2, which is impossible.
Hence, both of these are impossible.

The case m is odd, say m = 2k + 1 for some nonnegative integer k. Since U2
4k+3 − 1 = 2y2, it follows

from (2.6) that 6U4k+4U4k+2 = (α + β)2U4k+4U4k+2 = 2y2. Using the fact that gcd(4k + 4, 4k + 2) = 2,
we get gcd(U4k+4,U4k+2) = U2 = 1 by (2.3). Then either

U4k+4 = b2, U4k+2 = 3c2 (2.15)

or
U4k+4 = 3b2, U4k+2 = c2 (2.16)

for some positive integers b and c.
The former equation of (2.15) yields U2k+2V2k+2 = b2, so that U2k+2 = b2

1, V2k+2 = b2
2 for some

positive integers b1 and b2, which is impossible since v2(V2k+2) = 1 by Lemma 2.2.
According to the above discussion of (2.14), we know that (2.16) is impossible. Hence, both of

these are impossible.
�

The first equation of (1.6)
(a2 + 2)x2 − y2 = 2 (2.17)

AIMS Mathematics Volume 8, Issue 8, 19353–19373.
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has the minimal positive integer solution
√

a2 + 2 + a with a odd. Then all positive integer solutions of
the Eq (2.17) are given by

x = V2m+1(2(a2 + 2), 1), y = aU2m+1(2(a2 + 2), 1), m ≥ 0

by Lemma 2.1. If a is even, then let a = 2a1, the equation

(2a2
1 + 1)x2 − 2y2 = 1 (2.18)

has the minimal positive integer solution
√

2a2
1 + 1 + a1

√
2. Then all positive integer solutions of the

Eq (2.18) are given by

x = V2m+1(2(a2 + 2), 1), y = a1U2m+1(2(a2 + 2), 1), m ≥ 0

by Lemma 2.1. In the sequel, we write Vm and Um instead of Vm(2(a2 + 2), 1) and Um(2(a2 + 2), 1),
respectively. We have the following:

Lemma 2.11. Let a be positive integer.
(a) If U2m = 2�, then the equation there is no positive integer solutions.
(b) If, for m > 0, U2m = �, then m = 1 and x = 1 or m = 2 and a2 + 1 = 2�.

Proof. (a) Assume that U2m = 2x2 for some positive integers m and x. We get by Lemma 2.2 that m is
even. Write m = 2k. This yields U2k

V2k
2 = x2, so that U2k = u2, V2k

2 = v2 for some positive integers u
and v odd since v2(V2k) = 1 by Lemma 2.2. Then (v2, u) is a solution of (2.11) by Lemma 2.1. We get
by Lemma 2.9 that a2 + 1 = v2, which is impossible for a > 1, or

2(a2 + 1)2 − 1 = v2, 2(a2 + 1) = u2.

Therefore 8
(

u
2

)4
− v2 = 1. It follows v2 ≡ −1 (mod 8), which is impossible.

(b) Assume that U2m = x2 for some positive integer m and some positive integer x. This yields(
V2m

2 , x
)

is a solution of (2.11). We get by Lemma 2.9 that U2m = 1 = U2 or U2m = x2 = 2(a2 + 1) = V2.
The former case means that m = 1 and x = 1. The latter case yields m = 2, a2 + 1 = 2�. �

Lemma 2.12. Let p be odd prime.
(a) If, for m > 0, U2m = 2p�, then m = 2 or m = 4, a2 + 1 = 2�, 2a4 + 4a2 + 1 = p�.
(b) If, for m > 0, U4m+2 = p�, then 2m + 1 = P ≡ 3 (mod 4) is a prime and a is even.

Proof. (a) Assume that U2m = 2px2 for some positive integers m and x. We get by Lemma 2.2 that m
is even. Write m = 2k. This yields U2k

V2k
2 = px2, so that U2k = u2, V2k

2 = pv2 or U2k = pu2, V2k
2 = v2

for some positive integers u and v odd. By Lemma 2.11 and the former equation, we have k = 1 or
k = 2, a2 + 1 = 2� and 2a4 + 4a2 + 1 = V4

2 = p�. The latter equation yields (v, pu2) is a solution of
x4 − a2(a2 + 2)y2 = 1. Since a2(a2 + 2) , 1785, 4 · 1785, 16 · 1785, we get by Lemma 2.5 that pu2 = 1,
a contradiction, or U2k = pu2 = 2(a2 + 1) = U4. It follows that k = 2 and 2a4 + 4a2 + 1 = V4

2 = v2, 2 6 |a.
Taking modulo 8 yields 7 ≡ v2 (mod 8), which is impossible.

(b) Assume that U2m+1V2m+1 = U4m+2 = px2 for some positive integer m and some positive integer
x. This yields U2m+1 = pu2, V2m+1 = v2 or U2m+1 = u2, V2m+1 = pv2.

AIMS Mathematics Volume 8, Issue 8, 19353–19373.
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We first consider the case 2 6 |a. If U2m+1 = pu2, V2m+1 = v2, then (v, pu2) is a solution of (a2 + 2)x4−

a2y2 = 2. We get by Lemma 2.8 that pu2 = 1, which is impossible. If V2m+1 = pv2, U2m+1 = u2, then
(pv2, u) is a solution of (a2 + 2)x2 − a2y4 = 2. We get by Lemma 2.7 that pv2 = 1 or u2 = 2a2 + 3. Two
cases that are obviously not true.

We now consider the case 2|a. If U2m+1 = u2, V2m+1 = pv2, then (pv2, u) is a solution of (2a2
1 +

1)X2 − 2a2
1Y4 = 1. Since (1, 1) is the minimal positive integer solution of (2a2

1 + 1)U2 − 2a2
1V2 = 1,

we know that is impossible by Lemma 2.3. If U2m+1 = pu2, V2m+1 = v2, then (v, pu2) is a solution of
(2a2

1 + 1)X4 − 2a2
1Y2 = 1. Then we get by Lemma 2.4 that pu2 = 1, a contradiction, or V2m+1 = v2 = VP

for some prime P ≡ 3 (mod 4). �

3. Proof of Theorem 1.1

Case 1: a is odd. Assume that (x, y, z) is a positive integer solution of (1.7). By Lemma 2.1 we
know that

x = V2m+1, y = aU2m+1 (3.1)

for some positive integer m. We shall discuss separately two cases.
The case m is even, say m = 2k for some positive integer k. Since V2

4k+1 − 1 = pz2, it follows from
(2.6) that 2a2U4kU4k+2 = pz2. Using the fact that gcd(4k, 4k + 2) = 2, we get gcd(U4k,U4k+2) = U2 = 1
by (2.3). By Lemma 2.2, we have 2|U4k, 2 6 |U4k+2. Then we get by Lemma 2.10 that

U4k = 2pb2, U4k+2 = c2 (3.2)

for some positive integers b and c.
We get from the latter equation of (3.2) and Lemma 2.11 that k = 0, which contradicts k > 0.
The case m is odd, say m = 2k + 1 for some nonnegative integer k. Since V2

4k+3 − 1 = pz2, it
follows from (2.6) that 2a2U4k+4U4k+2 = pz2. Using the fact that gcd(4k + 4, 4k + 2) = 2, we get
gcd(U4k+4,U4k+2) = U2 = 1 by (2.3). By Lemma 2.2, we have 2|U4k+4, 2 6 |U4k+2. Then by Lemma 2.11,
we have

U4k+4 = 2pb2, U4k+2 = c2 (3.3)

for some integers b and c. Again by Lemma 2.11 and the latter equation of (3.3), we get that k = 0.
This means that m = 1 and 2(a2 + 1) = U2V2 = U4 = 2pb2, which implies a2 + 1 = pb2. Conversely,
when a2 + 1 = pb2, by calculation one can easily find that

(x, y, z) =

x3, y3,

√
x2

3 − 1
p

 = (2a2 + 1, 2a3 + 3a, 2ab)

is a solution of (1.7).
Case 2: a is even. Let a = 2a1. Then (1.7) becomes

(2a2
1 + 1)x2 − 2y2 = 1, x2 − pz2 = 1. (3.4)

Assume that (x, y, z) is a positive integer solution of (3.4). By Lemma 2.1 we know that

x = V2m+1, y = a1U2m+1 (3.5)
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for some positive integer m. We shall discuss separately two cases.
The case m is even, say m = 2k for some positive integer k. Since V2

4k+1 − 1 = pz2, it follows from
(2.6) that 2a2U4kU4k+2 = pz2. Using the fact that gcd(4k, 4k + 2) = 2, we get gcd(U4k,U4k+2) = U2 = 1
by (2.3). By Lemma 2.2, we have 2|U4k, 2 6 |U4k+2. Then we get by Lemma 2.10 that

U4k = 2pb2, U4k+2 = c2 (3.6)

for some positive integers b and c.
We get from the latter equation of (3.6) that k = 0, by Lemma 2.11, which contradicts the

assumption k > 0. Hence (3.6) is impossible.
The case m is odd, say m = 2k + 1 for some nonnegative integer k. Since V2

4k+3 − 1 = pz2, it
follows from (2.6) that 2a2U4k+4U4k+2 = pz2. Using the fact that gcd(4k + 4, 4k + 2) = 2, we get
gcd(U4k+4,U4k+2) = U2 = 1 by (2.3). By Lemma 2.2, we have 2|U4k+4, 2 6 |U4k+2. Then

U4k+4 = 2pb2, U4k+2 = c2 (3.7)

for some integers b and c.
By Lemma 2.11, we get from the latter equation of (3.7) that k = 0. This means that m = 1 and

2(a2 + 1) = U2V2 = U4 = 2pb2, which implies a2 + 1 = pb2. Conversely, when a2 + 1 = pb2, by
calculation one can easily find that

(x, y, z) =

x3, y3,

√
x2

3 − 1
p

 = (2a2 + 1, 8a3
1 + 3a1, 2ab)

is a solution of (3.4) and
(x, y, z) = (2a2 + 1, 2a3 + 3a, 2ab)

is a solution of (1.7). This completes the proof of Theorem 1.1.

4. Proof of Theorem 1.2

Case 1: a is odd. Assume that (x, y, z) is a positive integer solution of (1.8). By Lemma 2.1 we
know that

x = V2m+1, y = aU2m+1 (4.1)

for some positive integer m. We shall discuss separately two cases.
The case m is even, say m = 2k for some positive integer k. Since V2

4k+1 − 1 = pqz2, it follows from
(2.6) that 2a2U4kU4k+2 = pqz2. Using the fact that gcd(4k, 4k+2) = 2, we get gcd(U4k,U4k+2) = U2 = 1
by (2.3). By Lemma 2.2, we have 2|U4k, 2 6 |U4k+2. Then

U4k = 2pqb2, U4k+2 = c2 (4.2)

or
U4k = 2pb2, U2k+1V2k+1 = U4k+2 = qc2 (4.3)

for some integers b and c.
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Lemma 2.11 and the latter equation of (4.2) give k = 0, which contradicts k > 0. By Lemma 2.12
(2), we know that the latter equation of (4.3) is impossible. Hence, both (4.2) and (4.3) are impossible.

The case m is odd, say m = 2k +1 for some nonnegative integer k. Since V2
4k+3−1 = pqz2, it follows

from (2.6) that 2a2U4k+4U4k+2 = pqz2. Using the fact that gcd(4k + 4, 4k + 2) = 2, we get gcd(U4k+4,

U4k+2) = U2 = 1 by (2.3). By Lemma 2.2, we have 2|U4k+4, 2 6 |U4k+2. Then

U4k+4 = 2pqb2, U4k+2 = c2 (4.4)

or
U4k+4 = 2pb2, U2k+1V2k+1 = U4k+2 = qc2 (4.5)

for some integers b and c.
Lemma 2.12 (1) and the former equation of (4.5) give k = 0. Thus U2 = 1 = qc2, which is

impossible. Hence, (4.5) is impossible.
Lemma 2.11 and the latter equation of (4.4) give k = 0. Substituting the value into the former

Eq (4.4) gives 2(a2 + 1) = U2V2 = U4 = 2pqb2. It follows that a2 + 1 = pqb2. Clearly, when
a2 + 1 = pqb2, we get that

(x, y, z) =

x3, y3,

√
x2

3 − 1
pq

 = (2a2 + 1, 2a3 + 3a, 2ab)

is a solution of (1.8).
Case 2: a is even. Let a = 2a1. Then (1.8) becomes

(2a2
1 + 1)x2 − 2y2 = 1, x2 − pqz2 = 1. (4.6)

Assume that (x, y, z) is a positive integer solution of (4.6). By Lemma 2.1 we know that

x = V2m+1, y = a1U2m+1 (4.7)

for some positive integer m. We shall discuss separately two cases.
The case m is even, say m = 2k for some positive integer k. Then, as see before, either

U4k = 2pqb2, U4k+2 = c2 (4.8)

or
UkVkV2k = U4k = 2pb2, U2k+1V2k+1 = U4k+2 = qc2 (4.9)

for some integers b and c.
Lemma 2.11 and the latter equation of Eq (4.8) give k = 0, which leads to a contradiction. Hence,

(4.8) is impossible.
Lemma 2.12 (1) and the former equation of (4.9) yield k = 1. Substituting the value into Eq (4.9)

gives 2(a2 + 1) = V2 = 2pb2 and (2a2 + 1)(2a2 + 3) = U3V3 = qc2 that implies a2 + 1 = pb2,

2a2 + 1 = c2
1, 2a2 + 3 = qc2

2 since 2a2 + 3 is never a square. We claim that a ≡ 2 (mod 4). Otherwise
4|a. We get by Lemmas 2.1 and 2.2 that c1 + a

√
2 = (3 + 2

√
2)n for some even n. It follows that

c1 + a
√

2 = (17 + 12
√

2)n1 , n1 = n/2, so 3|a. We get from the equation 2a2 + 3 = qc2
2 that q = 3 and
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c2
1 − 2a2 = 1, 3c2

2 − c2
1 = 2, which is impossible by Lemma 2.10. Clearly, when a2 + 1 = pb2, 2a2 + 1 =

u2, 2a2 + 3 = qv2, we get

(x, y, z) =

x5, y5,

√
x2

5 − 1
pq

 = (4a4 + 6a2 + 1, 64a5
1 + 80a3

1 + 5a1, 2abuv)

is a solution of (4.6) and

(x, y, z) = (4a4 + 6a2 + 1, 4a5 + 10a3 + 5a, 2abuv)

is a solution of (1.8).
The case m is odd, say m = 2k + 1 for some nonnegative integer k. From V2

4k+3 − 1 = pqz2 we get
that one of the following holds:

U4k+4 = 2pqb2, U4k+2 = c2 (4.10)

or
U2k+2V2k+2 = U4k+4 = 2pb2, U2k+1V2k+1 = U4k+2 = qc2 (4.11)

for some integers b and c.
Lemma 2.12 (1) and the former equation of (4.11) yield k = 0. Thus we get from the latter equation

of (4.11) that U2 = 1 = qc2, which is impossible.
Lemma 2.11 and the latter equation of (4.10) give k = 0. Substituting the value into the former

Eq (4.10) gives 2(a2 + 1) = U2V2 = U4 = 2pqb2. It follows that a2 + 1 = pqb2. Clearly, when
a2 + 1 = pqb2, we get that

(x, y, z) =

x3, y3,

√
x2

3 − 1
pq

 = (2a2 + 1, 8a3
1 + 3a1, 2ab)

is a solution of (4.6) and
(x, y, z) = (2a2 + 1, 2a3 + 3a, 2ab)

is a solution of (1.8). This completes the proof of Theorem 1.2.

5. Proof of Theorem 1.3

Case 1: a is odd. Assume that (x, y, z) is a positive integer solution of (1.9). By Lemma 2.1 we
know that

x = V2m+1, y = aU2m+1 (5.1)

for some positive integer m. We shall discuss separately two cases.
The case m is even, say m = 2k for some positive integer k. From V2

4k+1 − 1 = pqrz2 we get that one
of the following holds:

U4k = 2pqrb2, U4k+2 = c2 (5.2)

or
U2kV2k = U4k = 2pqb2, U2k+1V2k+1 = U4k+2 = rc2 (5.3)
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or
U4k = 2pb2, U2k+1V2k+1 = U4k+2 = qrc2 (5.4)

for some integers b and c.
By Lemma 2.12 (2), we know that the latter equation of (5.3) is impossible. Lemma 2.11 and the

latter equation of (5.2) give k = 0, which contradicts the assumption k > 0.
Lemma 2.12 (1) and the former equation of (5.4) give k = 1 or k = 2. Substituting the value k = 1

into the (5.4) leads to

2(a2 + 1) = U2V2 = U4 = 2pb2, (2a2 + 1)(2a2 + 3) = U3V3 = U6 = qrc2.

Neither 2a2 + 1 nor 2a2 + 3 is square since a is odd. Therefore we get

a2 + 1 = pb2, 2a2 + 1 = qu2, 2a2 + 3 = rv2.

Clearly, when a2 + 1 = pb2, 2a2 + 1 = qu2, 2a2 + 3 = rv2, we get that

(x, y, z) =

x5, y5,

√
x2

5 − 1
pqr

 = (4a4 + 6a2 + 1, 4a5 + 10a3 + 5a, 2abuv)

is a solution of (1.9).
Substituting the value k = 2 into the latter Eq (5.4) gives 4a4 + 6a2 + 1 = V5 = qu2, 4a4 + 10a2 +

5 = U5 = rv2. Clearly, when 2(a2 + 1) = b2
1, 2(a2 + 1)2 − 1 = pb2

2, 4a4 + 6a2 + 1 = V5 = qu2,

4a4 + 10a2 + 5 = U5 = rv2, we get that

(x, y, z) =

x9, y9,

√
x2

9 − 1
pqr


= (16a8 + 56a6 + 60a4 + 20a2 + 1, 16a9 + 72a7 + 108a5 + 60a3 + 9a, 2abuv)

is a solution of (1.9).
The case m is odd, say m = 2k + 1 for some nonnegative integer k. As before, we get that one of the

following holds:
U4k+4 = 2pqrb2, U2k+1V2k+1 = U4k+2 = c2 (5.5)

or
U2k+2V2k+2 = U4k+4 = 2pqb2, U4k+2 = rc2 (5.6)

or
U2k+2V2k+2 = U4k+4 = 2pb2, U2k+1V2k+1 = U4k+2 = qrc2 (5.7)

for some integers b and c.
By Lemma 2.12 (2), we know that the latter equation of (5.6) is impossible.
The latter equation of (5.5) yields k = 0 by Lemma 2.11. Substituting the value k = 0 into the

former Eq (5.5) gives 2(a2 + 1) = U2V2 = U4 = 2pqrb2, so that a2 + 1 = pqrb2. Clearly, when
a2 + 1 = pqrb2, we get that

(x, y, z) =

x3, y3,

√
x2

3 − 1
pqr

 = (2a2 + 1, 2a3 + 3a, 2ab)
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is a solution of (1.9).
By Lemma 2.12 (1) and the former equation of (5.7), we get k = 0 or k = 1, a2 + 1 = 2�, 2a4 +

4a2 + 1 = p�. If k = 0, substituting the value into the latter Eq (5.7) gives 1 = U2 = qrc2, which is a
contradiction. Substituting the value k = 1, a2 + 1 = 2�, 2a4 + 4a2 + 1 = p� into the Eq (5.7) leads to

a2 + 1 = 2�, 2a4 + 4a2 + 1 = p�, a2 + 1 = 2a2 + 1 = qu2, 2a2 + 3 = rv2.

Clearly, when a2 + 1 = 2�, 2a4 + 4a2 + 1 = p�, 2a2 + 1 = qu2, 2a2 + 3 = rv2,we get that

(x, y, z) =

x7, y7,

√
x2

7 − 1
pqr

 = (8a6 + 20a4 + 12a2 + 1, 8a7 + 28a5 + 28a3 + 7a, 2abuv)

is a solution of (1.9).
Case 2: a is even. Let a = 2a1. Then (1.9) becomes

(2a2
1 + 1)x2 − 2y2 = 1, x2 − pqrz2 = 1. (5.8)

Assume that (x, y, z) is a positive integer solution of (5.8). By Lemma 2.1 we know that

x = V2m+1, y = a1U2m+1 (5.9)

for some positive integer m. We shall discuss separately two cases.
The case m is even, say m = 2k for some positive integer k. As before, we get that one of the

following holds:
U4k = 2pqrb2, U4k+2 = c2 (5.10)

or
UkVk

V2k

2
=

U4k

2
= pqb2, U2k+1V2k+1 = U4k+2 = rc2 (5.11)

or
U2k

V2k

2
=

U4k

2
= pb2, U2k+1V2k+1 = U4k+2 = qrc2 (5.12)

for some integers b and c.
Lemma 2.12 (2) and the latter equation of (5.11) give 2k + 1 = P ≡ 3 (mod 4) is a prime. We

claim that k = 1. Otherwise k > 1, then we know that Vk is not a square again by Lemma 2.4. The
former equation of (5.11) yields one of Uk and V2k

2 is a square. If Uk = u2, then (Vk, u) is a solution
of (2a2

1 + 1)X2 − 2a2
1Y4 = 1. Then we get by Lemma 2.3 that Vk = p� = 1, which is a contradiction.

If V2k
2 = v2, then (v,U2k) is a solution of X4 − a2(a2 + 2)Y2 = 1. Thus we get by Lemma 2.5 that

pq� = U2k = 1, which is impossible or U2k = 2(a2 + 1) = V2 = U4. It follows that k = 2, which
contradicts with 2k + 1 = P ≡ 3 (mod 4). Hence

k = 1, a2 + 1 = pqb2, 2a2 + 1 = u2, 2a2 + 3 = rv2,

with a ≡ 2 (mod 4) according to the discussion of (4.9). Clearly, when a2 + 1 = pqb2, 2a2 + 1 = u2,

2a2 + 3 = rv2, we get that

(x, y, z) =

x5, y5,

√
x2

5 − 1
pqr

 = (4a4 + 6a2 + 1, 64a5
1 + 80a3

1 + 5a1, 2abuv)

AIMS Mathematics Volume 8, Issue 8, 19353–19373.



19367

is a solution of (5.8) and

(x, y, z) = (4a4 + 6a2 + 1, 4a5 + 10a3 + 5a, 2abuv)

is a solution of (1.9).
Lemma 2.11 and the latter equation of (5.10) give k = 0, which contradicts the assumption k > 0.

Hence (5.10) cannot hold.
The former equation of (5.12) gives k = 1, a2 + 1 = pb2 according to the discussion of (4.9).

Substituting k = 1 into (5.12) leads to

(2a2 + 1)(2a2 + 3) = U3V3 = U6 = qrc2.

It is easy to see that 2a2 + 3 is not a square. Therefore we get a2 + 1 = pb2, 2a2 + 1 = u2, 2a2 + 3 = qrv2

or a2 + 1 = pb2, 2a2 + 1 = qu2, 2a2 + 3 = rv2. Clearly, when a2 + 1 = pb2, 2a2 + 1 = u2, 2a2 + 3 = qrv2

or a2 + 1 = pb2, 2a2 + 1 = qu2, 2a2 + 3 = rv2, we get that

(x, y, z) =

x5, y5,

√
x2

5 − 1
pqr

 = (4a4 + 6a2 + 1, 64a5
1 + 80a3

1 + 5a1, 2abuv)

is a solution of (5.8) and

(x, y, z) = (4a4 + 6a2 + 1, 4a5 + 10a3 + 5a, 2abuv)

is a solution of (1.9).
The case m is odd, say m = 2k + 1 for some nonnegative integer k. Then

U4k+4 = 2pqrb2, U2k+1V2k+1 = U4k+2 = c2 (5.13)

or
U2k+2V2k+2 = U4k+4 = 2pqb2, U2k+1V2k+1 = U4k+2 = rc2 (5.14)

or
U2k+2V2k+2 = U4k+4 = 2pb2, U2k+1V2k+1 = U4k+2 = qrc2 (5.15)

for some integers b and c.
According to the discussion of (5.11), we know that the Eq (5.14) leads to k = 1 and 2a2 +1 = U3 =

u2. Substituting the value k = 1 into the former Eq (5.14) yields

2a2 + 1 = �, 2a2 + 3 = r�, 4(a2 + 1)(2a4 + 4a2 + 1) = 2pqb2.

Therefore we get
p = 2, a2 + 1 = q�, 2a4 + 4a2 + 1 = �.

Clearly, when p = 2, a2 + 1 = q�, 2a4 + 4a2 + 1 = �, 2a2 + 1 = �, 2a2 + 3 = rv2, we get that

(x, y, z) =

x7, y7,

√
x2

7 − 1
pqr

 = (8a6 + 20a4 + 12a2 + 1, 512a7
1 + 448a5

1 + 112a3
1 + 7a1, 2abuv)
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is a solution of (5.8) and

(x, y, z) =

x7, y7,

√
x2

7 − 1
pqr

 = (8a6 + 20a4 + 12a2 + 1, 8a7 + 28a5 + 28a3 + 7a, 2abuv)

is a solution of (1.9).
Lemma 2.11 and the latter equation of (5.13) gives k = 0. Substituting the value into the former

Eq (5.13) gives 2(a2 + 1) = 2pqrb2. It follows that a2 + 1 = pqrb2. Thus in this case we proved that

(x, y, z) =

x3, y3,

√
y2

3 − 1
pqr

 = (2a2 + 1, 8a3
1 + 3a1, 2ab)

is a solution of (5.8) with a2 + 1 = pqrb2 and

(x, y, z) = (2a2 + 1, 2a3 + 3a, 2ab)

is a solution of (1.9) with a2 + 1 = pqrb2.

Lemma 2.12 (1) and the former equation of (5.15) give k = 0. Substituting the value into the latter
Eq (5.15) gives 1 = U2 = qrc2, which is a contradiction.

This completes the proof of Theorem 1.3.

6. Applications

In this section, we give some examples of applications of the results.
(1) Let p be a prime such that x2−py2 = −1 has solution, and let (a1, b1) be its fundamental solution.

Define
an + bn

√
p = (a1 + b1

√
p)n

for some odd integer. Let a = an. Then

(x, y, z) =
(
2a2

n + 1, 2a3
n + 3an, 2anbn

)
is the only solution of the simultaneous Pell equations (1.7).

Let p = 2. Then (a1, b1) = (1, 1) is the fundamental solution of

x2 − 2y2 = −1.

Define
an + bn

√
2 = (1 +

√
2)n

for some odd integer n. Then

(x, y, z) =
(
2a2

n + 1, 2a3
n + 3an, 2anbn

)
is the only solution of the simultaneous Pell equations

(a2
n + 2)x2 − y2 = 2, x2 − 2z2 = 1
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(results of n = 1, 3, 5, 7 see the following Table 1).

Table 1. Some examples of applications of Theorem 1.1.

n a = an b = bn x = 2a2 + 1 y = 2a3 + 3a z = 2ab

1 1 1 3 5 2
3 7 5 99 707 70
5 41 29 3363 137965 2378
7 239 169 114243 27304555 80782

(2) Let p and q be two distinct primes such that x2 − pqy2 = −1 has solution, and let (a1, b1) be its
fundamental solution. Define

an + bn
√

p = (a1 + b1
√

pq)n

for some odd integer n. Let a = an. Then

(x, y, z) =
(
2a2

n + 1, 2a3
n + 3an, 2anbn

)
is the only solution of the simultaneous Pell equations (1.8) satisfying the condition α) of Theorem 1.2.

Let p = 2, q = 5. Then (a1, b1) = (3, 1) is the fundamental solution of x2 − 10y2 = −1. Define

an + bn

√
10 = (3 +

√
10)n

for some odd integer n. Then

(x, y, z) =
(
2a2

n + 1, 2a3
n + 3an, 2anbn

)
is the only solution of the simultaneous Pell equations

(a2
n + 2)x2 − y2 = 2, x2 − 10z2 = 1

(results of n = 1, 3, 5, 7 see the following Table 2).

Table 2. Some examples of applications of Theorem 1.2 (satisfying the condition α).

n a = an b = bn x = 2a2 + 1 y = 2a3 + 3a z = 2ab

1 3 1 19 63 6
3 117 37 27379 3203577 8658
5 4443 1405 39480499 175411865943 12484830
7 168717 53353 56930852179 9605202587421777 18003116202

(3) Let a = 2. Then a2 + 1 = 5, 2a2 + 1 = 32, and 2a2 + 3 = 11. Thus

(a, p, q, x, y, z) = (2, 5, 11, 89, 218, 12)

is the only solution of the simultaneous Pell equations 6x2 − y2 = 2, x2 − 55z2 = 1 satisfying the
condition β) of Theorem 1.2.
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Let a = 70. Then a2 + 1 = 29 · 132, 2a2 + 1 = 992, and 2a2 + 3 = 9803. Thus

(a, p, q, x, y, z) = (70, 29, 9803, 96069401, 6726230350, 180180)

is the only solution of the simultaneous Pell equations 4902x2 − y2 = 2, x2 − 29 · 9803z2 = 1 satisfying
the condition β) of Theorem 1.2.

(4) Let p, q and r be three distinct primes such that x2 − pqry2 = −1 has solution, and let (a1, b1) be
its fundamental solution. Define

an + bn
√

pqr = (a1 + b1
√

pqr)n.

for some odd integer n. Let a = an. Then

(x, y, z) =
(
2a2

n + 1, 2a3
n + 3an, 2anbn

)
is the only solution of the simultaneous Pell equations (1.9) satisfying the condition α) of Theorem 1.3.

Let p = 2, q = 5, r = 17. Then (a1, b1) = (13, 1) is the fundamental solution of x2 − 170y2 = −1.
Define

an + bn

√
170 = (13 +

√
170)n.

Then
(x, y, z) =

(
2a2

n + 1, 2a3
n + 3an, 2anbn

)
is the only solution of the simultaneous Pell equations

(a2
n + 2)x2 − y2 = 2, x2 − 170z2 = 1

(results of n = 1, 3, 5 see the following Table 3).

Table 3. Some examples of applications of Theorem 1.3 (satisfying the condition α).

n a = an b = bn x = 2a2 + 1 y = 2a3 + 3a z = 2ab

1 13 1 339 4433 26
3 8827 677 155831859 1375527837047 11951758
5 5984693 459005 71633100608499 428702115779991675193 5494008020930

(5) Let a = 1. Then a2 + 1 = 2, 2a2 + 1 = 3 and 2a2 + 3 = 5. Thus

(a, p, q, r, x, y, z) = (1, 2, 3, 5, 11, 19, 2)

is the only solution of the simultaneous Pell equations 3x2 − y2 = 2, x2 − 30z2 = 1 satisfying the
condition β) of Theorem 1.3.

Let a = 7. Then a2 + 1 = 2 · 52, 2a2 + 1 = 11 · 32 and 2a2 + 3 = 101. Thus

(a, p, q, r, x, y, z) = (7, 2, 11, 101, 9899, 10099, 210)

is the only solution of the simultaneous Pell equations 51x2 − y2 = 2, x2 − 2222z2 = 1 satisfying the
condition β) of Theorem 1.3.
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Let a = 6. Then a2 + 1 = 37, 2a2 + 1 = 73 and 2a2 + 3 = 3 · 52. Thus

(a, p, q, r, x, y, z) = (6, 37, 73, 3, 33294, 5401, 60)

is the only solution of the simultaneous Pell equations 38x2 − y2 = 2, x2 − 8103z2 = 1 satisfying the
condition β) of Theorem 1.3.

Let a = 110. Then a2 + 1 = 12101, 2a2 + 1 = 2689 · 32 and 2a2 + 3 = 24203. Thus

(a, p, q, r, x, y, z) = (110, 12101, 2689, 24203, 64433710550, 585712601, 660)

is the only solution of the simultaneous Pell equations 12102x2 − y2 = 2, x2 − 787555672567z2 = 1
satisfying the condition β) of Theorem 1.3.

Let a = 160. Then a2 + 1 = 25601, 2a2 + 1 = 5689 · 32 and 2a2 + 3 = 51203. Thus

(a, p, q, r, x, y, z) = (160, 25601, 5689, 51203, 419471360800, 2621593601, 960)

is the only solution of the simultaneous Pell equations 25602x2 − y2 = 2, x2 − 7457414289067z2 = 1
satisfying the condition β) of Theorem 1.3.

(6) Let a = 1. Then a2 + 1 = 2, 2a4 + 4a2 + 1 = 7, 2a2 + 1 = 3 and 2a2 + 3 = 5. Thus

(a, p, q, r, x, y, z) = (1, 7, 3, 5, 41, 71, 16)

is the only solution of the simultaneous Pell equations 3x2 − y2 = 2, x2 − 105z2 = 1 satisfying the
condition γ) of Theorem 1.3.

Let a = 2. Then a2 + 1 = 5, 2a4 + 4a2 + 1 = 72, 2a2 + 1 = 32 and 2a2 + 3 = 11. Thus

(a, p, q, r, x, y, z) = (2, 2, 5, 11, 881, 2158, 989801, 84)

is the only solution of the simultaneous Pell equations 6x2 − y2 = 2, x2 − 110z2 = 1 satisfying the
condition γ) of Theorem 1.3.

Let a = 7. Then 2(a2 + 1) = 102,2a4 + 4a2 + 1 = 4999, 2a2 + 1 = 11 · 32 and 2a2 + 3 = 101. Thus

(a, p, q, r, x, y, z) = (7, 4999, 11, 101, 7068593, 989801, 420)

is the only solution of the simultaneous Pell equations 51x2 − y2 = 2, x2 − 5553889z2 = 1 satisfying
the condition γ) of Theorem 1.3.

(7) Let a = 1. Then a2 + 1 = 2, 2a4 + 4a2 + 1 = 7, 4a4 + 6a2 + 1 = 11 and 4a4 + 10a2 + 5 = 19. Thus

(a, p, q, r, x, y, z) = (1, 7, 11, 19, 153, 265, 4)

is the only solution of the simultaneous Pell equations 3x2 − y2 = 2, x2 − 1463z2 = 1 satisfying the
condition δ) of Theorem 1.3.
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7. Conclusions

Let a, b be distinct positive integers and b has at most three prime divisors. We proved that the
system Pell equations

(a2 + 2)x2 − y2 = 2, x2 − bz2 = 1

has at most one solutions and get the sufficient and necessary conditions for it to have a solution. When
a solution exists, assuming that x1

√
a2 + 2 + y1 is the fundamental solution of (a2 + 2)x2 − y2 = 2, then

the only solutions of the system is given by

x
√

a2 + 2 + y = xm

√
a2 + 2 + ym, m ∈ {3, 5, 7, 9} ,

where xm
√

a2+2+ym
√

2
=

(
x1
√

a2+2+y1
√

2

)m
, m is odd.
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