Research article

Complete solutions of the simultaneous Pell equations $ (a^2+1)y^2-x^2 = y^2-bz^2 = 1 $

  • Received: 25 February 2021 Accepted: 18 June 2021 Published: 05 July 2021
  • MSC : 11D25, 11B37, 11B39

  • In this paper, we consider the simultaneous Pell equations $ (a^2+1)y^2-x^2 = y^2-bz^2 = 1 $ where $ a > 0 $ is an integer and $ b > 1 $ is squarefree and has at most three prime divisors. We obtained the necessary and sufficient conditions that the above simultaneous Pell equations have positive integer solutions by using only the elementary methods of factorization, congruence, the quadratic residue and fundamental properties of Lucas sequence and the associated Lucas sequence. Moreover, we prove that these simultaneous Pell equations have at most one solution. When a solution exists, assuming the positive solutions of the Pell equation $ x^2(a^2+1)-y^2 = -1 $ are $ x = x_m $ and $ y = y_m $ with $ m\geq 1 $ odd, then the only solution of the system is given by $ m = 3 $ or $ m = 5 $ or $ m = 7 $ or $ m = 9 $.

    Citation: Changsheng Luo, Jiagui Luo. Complete solutions of the simultaneous Pell equations $ (a^2+1)y^2-x^2 = y^2-bz^2 = 1 $[J]. AIMS Mathematics, 2021, 6(9): 9919-9938. doi: 10.3934/math.2021577

    Related Papers:

  • In this paper, we consider the simultaneous Pell equations $ (a^2+1)y^2-x^2 = y^2-bz^2 = 1 $ where $ a > 0 $ is an integer and $ b > 1 $ is squarefree and has at most three prime divisors. We obtained the necessary and sufficient conditions that the above simultaneous Pell equations have positive integer solutions by using only the elementary methods of factorization, congruence, the quadratic residue and fundamental properties of Lucas sequence and the associated Lucas sequence. Moreover, we prove that these simultaneous Pell equations have at most one solution. When a solution exists, assuming the positive solutions of the Pell equation $ x^2(a^2+1)-y^2 = -1 $ are $ x = x_m $ and $ y = y_m $ with $ m\geq 1 $ odd, then the only solution of the system is given by $ m = 3 $ or $ m = 5 $ or $ m = 7 $ or $ m = 9 $.



    加载中


    [1] S. Akhtari, The Diophantine equation $aX^4-bY^2 = 1$, J. Reine Angew. Math., 630 (2009), 33-57.
    [2] X. C. Ai, J. H. Chen, S. L. Zhang, H. Hu, Complete solutions of the simultaneous Pell equations $x^2-24y^2 = 1$ and $y^2-pz^2 = 1$, J. Number Theory, 147 (2015), 103-108. doi: 10.1016/j.jnt.2014.07.009
    [3] M. A. Bennett, On the number of solutions of simultaneous Pell equations, J. Reine Angew. Math., 498 (1998), 173-199.
    [4] M. A. Bennett, G. Walsh, The Diophantine equation $b^2X^4-dY^2 = 1$, Proc. Amer. Math. Soc., 127 (1999), 3481-3491. doi: 10.1090/S0002-9939-99-05041-8
    [5] M. A. Bennett, A. Togbé, P. G. Walsh, A generalization of a theorem of Bumby on quartic Diophantine equations, Int. J. Number Theory, 2 (2006), 195-206. doi: 10.1142/S1793042106000474
    [6] R. D. Carmichael, On the numerical factors of the arithmetic forms $\alpha^n\pm\beta^n$, Ann. Math., 15 (1913), 49-70. doi: 10.2307/1967798
    [7] M. Cipu, Pairs of Pell equations having at most one common solution in positive integers, An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat., 15 (2007), 55-66.
    [8] M. Cipu, M. Mignotte, On the number of solutions to systems of Pell equations, J. Number Theory, 125 (2007), 356-392. doi: 10.1016/j.jnt.2006.09.016
    [9] M. Cipu, Explicit formula for the solution of simultaneous Pell equations $x^2-(a^2-1)y^2 = 1$, $y^2-bz^2 = 1$, Proc. Amer. Math. Soc., 146 (2018), 983-992.
    [10] J. H. E. Cohn, The Diophantine equation $x^4-Dy^2 = 1$. II, Acta Arith., 78 (1997), 401-403. doi: 10.4064/aa-78-4-401-403
    [11] J. H. E. Cohn, The Diophantine equation $x^4+1 = Dy^2$, Math. Comput., 66 (1997), 1347-1351. doi: 10.1090/S0025-5718-97-00851-X
    [12] M. T. Damir, B. Faye, F. Luca, Members of Lucas sequences whose Euler function is a power of 2, Fibonacci Quart., 52 (2014), 3-9.
    [13] X. G. Guan, Complete solutions of the simultaneous Pell equations $x^2-(c^2-1)y^2 = y^2-2p_1p_2p_3z^2 = 1$, Acta Math. Sin. (Chin. Ser.), 63 (2020), 63-76.
    [14] N. Irmak, On solutions of the simultaneous Pell equations $x^2-(a^2-1)y^2 = 1$ and $y^2-pz^2 = 1$, Period. Math. Hungar., 73 (2016), 130-136. doi: 10.1007/s10998-016-0137-0
    [15] R. Keskin, O. Karaath, Z. Şiar, Ü. Öǧüt, On the determination of solutions of simultaneous Pell equations $x^2-(a^2-1)y^2 = y^2-pz^2 = 1$, Period. Math. Hungar., 75 (2017), 336-344. doi: 10.1007/s10998-017-0203-2
    [16] D. H. Lehmer, An extended theory of Lucas' functions, Ann. Math., 31 (1930), 419-448. doi: 10.2307/1968235
    [17] W. Ljunggren, Ein Satz über die diophantische Gleichung $Ax^2-By^4 = C (C = 1, 2, 4)$, (German) Tolfte Skand. Matematikerkongressen, Lund, (1953), 188-194. Lunds Univ. Matematiska Inst., Lund, 1954.
    [18] J. G. Luo, P. Z. Yuan, Square terms and square classes in Lehmer sequences, Acta Math. Sin. (Chin. Ser.), 48 (2005), 707-714.
    [19] J. G. Luo, P. Z. Yuan, On the solutions of a system of two Diophantine equations, Sci. China Math., 57 (2014), 1401-1418. doi: 10.1007/s11425-014-4800-8
    [20] P. Ribenboim, The book of prime number records, 2 Eds., New York: Springer-Verlag, 1989.
    [21] Q. Sun, P. Z. Yuan, A note on the Diophantine equation $x^4-Dy^2 = 1$, J. Sichuan Univ., 34 (1997), 265-268.
    [22] A. Togbe, P. M. Voutier, P. G. Walsh, Solving a family of Thue equations with an application to the equation $x^2-Dy^4 = 1$, Acta Arith., 120 (2005), 39-58. doi: 10.4064/aa120-1-3
    [23] P. M. Voutier, Primitive divisors of Lucas and Lehmer sequences, Math. Comput., 64 (1995), 869-888. doi: 10.1090/S0025-5718-1995-1284673-6
    [24] P. Z. Yuan, A note on the divisibility of the generalized Lucas sequences, Fibonacci Quart., 40 (2002), 153-156.
    [25] P. Z. Yuan, On the number of solutions of $x^2-4m(m+1)y^2 = y^2-bz^2 = 1$, Proc. Amer. Math. Soc., 132 (2004), 1561-1566. doi: 10.1090/S0002-9939-04-07418-0
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2279) PDF downloads(151) Cited by(0)

Article outline

Figures and Tables

Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog