Based on the variable separation method, the Kadomtsev-Petviashvili equation is transformed into a system of equations, in which one is a fractional ordinary differential equation with respect to time variable $ t $, and the other is an integer order variable coefficients partial differential equation with respect to spatial variables $ x, y $. Assuming that the coefficients of the obtained partial differential equation satisfy certain conditions, the equation is further reduced. The extended homogeneous balance method is used to find the exact solutions of the reduced equation. According to the solutions of some special fractional ordinary differential equations, we obtain some hyperbolic function solutions of time-fractional Kadomtsev-Petviashvili equation with variable coefficients.
Citation: Cheng Chen. Hyperbolic function solutions of time-fractional Kadomtsev-Petviashvili equation with variable-coefficients[J]. AIMS Mathematics, 2022, 7(6): 10378-10386. doi: 10.3934/math.2022578
Based on the variable separation method, the Kadomtsev-Petviashvili equation is transformed into a system of equations, in which one is a fractional ordinary differential equation with respect to time variable $ t $, and the other is an integer order variable coefficients partial differential equation with respect to spatial variables $ x, y $. Assuming that the coefficients of the obtained partial differential equation satisfy certain conditions, the equation is further reduced. The extended homogeneous balance method is used to find the exact solutions of the reduced equation. According to the solutions of some special fractional ordinary differential equations, we obtain some hyperbolic function solutions of time-fractional Kadomtsev-Petviashvili equation with variable coefficients.
[1] | C. Wu, W. G. Rui, Method of separation variables combined with homogenous balanced principle for searching exact solutions of nonlinear time-fractional biological population model, Commun. Nonlinear Sci., 63 (2018), 88–100. https://doi.org/10.1016/j.cnsns.2018.03.009 doi: 10.1016/j.cnsns.2018.03.009 |
[2] | W. G. Rui, Idea of invariant subspace combined with elementary integral method for investigating exact solutions of time-fractional NPDEs, Appl. Math. Comput., 339 (2018), 158–171. https://doi.org/10.1016/j.amc.2018.07.033 doi: 10.1016/j.amc.2018.07.033 |
[3] | W. G. Rui, Applications of homogenous balanced principle on investigating exact solutions to a series of time fractional nonlinear PDEs, Commun. Nonlinear Sci., 47 (2017), 253–266. https://doi.org/10.1016/j.cnsns.2016.11.018 doi: 10.1016/j.cnsns.2016.11.018 |
[4] | R. Sahadevan, T. Bakkyaraj, Invariant subspace method and exact solutions of certain nonlinear time fractional partial differential equations, Fract. Calc. Appl. Anal., 18 (2015), 146–162. https://doi.org/10.1515/fca-2015-0010 doi: 10.1515/fca-2015-0010 |
[5] | R. Sahadevan, P. Prakash, Exact solution of certain time fractional nonlinear partial differential equations, Nonlinear Dyn., 85 (2016), 659–673. https://doi.org/10.1007/s11071-016-2714-4 doi: 10.1007/s11071-016-2714-4 |
[6] | P. A. Harris, R. Garra, Analytic solution of nonlinear fractional Burgers-type equation by invariant subspace method, Nonlinear Stud., 20 (2013), 471–481. |
[7] | V. Daftardar-Gejji, H. Jafari, Adomian decomposition: A tool for solving a system of fractional differential equations, J. Math. Anal. Appl., 301 (2005), 508–518. https://doi.org/10.1016/j.jmaa.2004.07.039 doi: 10.1016/j.jmaa.2004.07.039 |
[8] | T. Bakkyaraj, R. Sahadevan, An approximate solution to some classes of fractional nonlinear partial differential-difference equation using Adomian decomposition method, J. Fract. Calc. Appl., 5 (2014), 37–52. |
[9] | J. Prates, D. M. Moreira, Fractional derivatives in geophysical modelling: Approaches using the modified Adomian decomposition method, Pure Appl. Geophys., 177 (2020), 4309–4323. https://doi.org/10.1007/s00024-020-02480-6 doi: 10.1007/s00024-020-02480-6 |
[10] | W. Rui, Dynamical system method for investigating existence and dynamical property of solution of nonlinear time-fractional PDEs, Nonlinear Dyn., 99 (2020), 2421–2440. https://doi.org/10.1007/s11071-019-05410-x doi: 10.1007/s11071-019-05410-x |
[11] | W. Rui, Applications of integral bifurcation method together with homogeneous balanced principle on investigating exact solutions of time fractional nonlinear PDEs, Nonlinear Dyn., 91 (2018), 697–712. https://doi.org/10.1007/s11071-017-3904-4 doi: 10.1007/s11071-017-3904-4 |
[12] | R. K. Gazizov, A. A. Kasatkin, S. Y. Lukashchuk, Symmetry properties of fractional diffusion equations, Phys. Scr., 2009 (2009), 014016. https://doi.org/10.1088/0031-8949/2009/T136/014016 doi: 10.1088/0031-8949/2009/T136/014016 |
[13] | R. K. Gazizov, A. A. Kasatkin, S. Y. Lukashchuk, Group-invariant solutions of fractional differential equations, In: Nonlinear science and complexity, Dordrecht: Springer, 2011. https://doi.org/10.1007/978-90-481-9884-9-5 |
[14] | C. Chen, Y. L. Jiang, Lie group Analysis and invariant solutions for nonlinear time-fractional diffusion-convection equations, Commun. Theor. Phys., 68 (2017), 295. https://doi.org/10.1088/0253-6102/68/3/295 doi: 10.1088/0253-6102/68/3/295 |
[15] | S. Zhang, S. Hong, Variable separation method for a nonlinear time fractional partial differential equation with forcing term, J. Comput. Appl. Math., 339 (2018), 297–305. https://doi.org/10.1016/j.cam.2017.09.045 doi: 10.1016/j.cam.2017.09.045 |
[16] | S. Zhang, B. Cai, B. Xu, Variable separation method for nonlinear time fractional biological population model, Int. J. Numer. Method H., 25 (2015), 1531–1541. https://doi.org/10.1108/HFF-03-2013-0092 doi: 10.1108/HFF-03-2013-0092 |
[17] | X. Y. Wu, B. Tian, L. Liu, Y. Sun, Rogue waves for a variable-coefficient Kadomtsev-CPetviashvili equation in fluid mechanics, Comput. Math. Appl., 76 (2018), 215–223. https://doi.org/10.1016/j.camwa.2017.12.021 doi: 10.1016/j.camwa.2017.12.021 |
[18] | J. P. Wu, Bilinear Backlund Transformation for a Variable-Coefficient Kadomtsev-Petviashvili equation, Chinese Phys. Lett., 28 (2011), 060207. https://doi.org/10.1088/0256-307x/28/6/060207 doi: 10.1088/0256-307x/28/6/060207 |
[19] | A. Kilbas, H. M. Srivastava, J. J Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[20] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Yverdon: Gordon and Breach, 1993. |
[21] | K. S. Miller, B. Ross, An Introduction to the fractional calculus and fractional differential equations, Wiley, 1993. |
[22] | E. Fan, H. Q. Zhang, A new approach to Backlund transformations of nonlinear evolution equations, Appl. Math. Mech., 19 (1998), 645–650. https://doi.org/10.1007/BF02452372 doi: 10.1007/BF02452372 |
[23] | C. Q. Dai, G. Zhou, J. F. Zhang, Exotic localized structures of the (2+ 1)-dimensional Nizhnik-Novikov-Veselov system obtained via the extended homogeneous balance method, Z. Naturforsch. A, 61 (2006), 216–224. https://doi.org/10.1515/zna-2006-5-602 doi: 10.1515/zna-2006-5-602 |
[24] | C. Chen, Z. L. Wang, New exact solutions, dynamical and chaotic behaviors for the fourth-order nonlinear generalized Boussinesq water wave equation, Adv. Math. Phys., 2021 (2021), 8409615. https://doi.org/10.1155/2021/8409615 doi: 10.1155/2021/8409615 |