A spectral collocation method is proposed to solve variable order fractional stochastic Volterra integro-differential equations. The new technique relies on shifted fractional order Legendre orthogonal functions outputted by Legendre polynomials. The original equations are approximated using the shifted fractional order Legendre-Gauss-Radau collocation technique. The function describing the Brownian motion is discretized by means of Lagrange interpolation. The integral components are interpolated using Legendre-Gauss-Lobatto quadrature. The approach reveals superiority over other classical techniques, especially when treating problems with non-smooth solutions.
Citation: Obaid Algahtani, M. A. Abdelkawy, António M. Lopes. A pseudo-spectral scheme for variable order fractional stochastic Volterra integro-differential equations[J]. AIMS Mathematics, 2022, 7(8): 15453-15470. doi: 10.3934/math.2022846
A spectral collocation method is proposed to solve variable order fractional stochastic Volterra integro-differential equations. The new technique relies on shifted fractional order Legendre orthogonal functions outputted by Legendre polynomials. The original equations are approximated using the shifted fractional order Legendre-Gauss-Radau collocation technique. The function describing the Brownian motion is discretized by means of Lagrange interpolation. The integral components are interpolated using Legendre-Gauss-Lobatto quadrature. The approach reveals superiority over other classical techniques, especially when treating problems with non-smooth solutions.
[1] | C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral methods: Fundamentals in single domains, New York: Springer-Verlag, 2006. |
[2] | X. J. Yang, F. Gao, J. A. T. Machado, D. Baleanu, A new fractional derivative involving the normalized sinc function without singular kernel, Eur. Phys. J. Spec. Top., 226 (2017), 3567–3575. https://doi.org/10.1140/epjst/e2018-00020-2 doi: 10.1140/epjst/e2018-00020-2 |
[3] | R. Koskodan, E. Allen, Construction of consistent discrete and continuous stochastic models for multiple assets with application to option valuation, Math. Comput, Model., 48 (2008), 1775–1786. https://doi.org/10.1016/j.mcm.2007.06.032 doi: 10.1016/j.mcm.2007.06.032 |
[4] | J. A. T. Machado, A. M. Lopes, Rare and extreme events: The case of COVID-19 pandemic, Nonlinear Dyn., 100 (2020), 2953–2972. https://doi.org/10.1007/s11071-020-05680-w doi: 10.1007/s11071-020-05680-w |
[5] | A. Ashyralyev, On modified Crank-Nicholson difference schemes for stochastic parabolic equation, Numer. Func. Anal. Optim., 29 (2008), 268–282. https://doi.org/10.1080/01630560801998138 doi: 10.1080/01630560801998138 |
[6] | M. Kamrani, S. M. Hosseini, The role of coefficients of a general SPDE on the stability and convergence of a finite difference method, J. Comput. Appl. Math., 234 (2010), 1426–1434. https://doi.org/10.1016/j.cam.2010.02.018 doi: 10.1016/j.cam.2010.02.018 |
[7] | C. Roth, A combination of finite difference and Wong-Zakai methods for hyperbolic stochastic partial differential equations, Stoch. Anal. Appl., 24 (2006), 221–240. https://doi.org/10.1080/07362990500397764 doi: 10.1080/07362990500397764 |
[8] | E. Hausenblas, Finite element approximation of stochastic partial differential equations driven by Poisson random measures of jump type, SIAM J. Numer. Anal., 46 (2007), 437–471. https://doi.org/10.1137/050654141 doi: 10.1137/050654141 |
[9] | D. Liu, Convergence of the spectral method for stochastic Ginzburg-Landau equation driven by space-time white noise, Commun. Math. Sci., 1 (2003), 361–375. |
[10] | G. J. Lord, T. Shardlow, Post processing for stochastic parabolic partial differential equations, SIAM J. Numer. Anal., 45 (2007), 870–889. https://doi.org/10.1137/050640138 doi: 10.1137/050640138 |
[11] | J. B. Walsh, Finite element methods for parabolic stochastic PDE's, Potential Anal., 23 (2005), 1–43. https://doi.org/10.1007/s11118-004-2950-y doi: 10.1007/s11118-004-2950-y |
[12] | Y. Yan, Galerkin finite element methods for stochastic parabolic partial differential equations, SIAM J. Numer. Anal., 43 (2005), 1363–1384. https://doi.org/10.1137/040605278 doi: 10.1137/040605278 |
[13] | Z. Taheri, S. Javadi, E. Babolian, Numerical solution of stochastic fractional integro-differential equation by the spectral collocation method, J. Comput. Appl. Math., 237 (2017), 336–347. https://doi.org/10.1016/j.cam.2017.02.027 doi: 10.1016/j.cam.2017.02.027 |
[14] | P. E. Kloeden, E. Platen, Numerical solution of stochastic differential equations, Berlin: Springer-Verlag, 1992. https://doi.org/10.1007/978-3-662-12616-5 |
[15] | G. N. Milstein, Numerical integration of stochastic differential equations, Dordrecht: Kluwer Academic Publishers, 1995. https://doi.org/10.1007/978-94-015-8455-5 |
[16] | N. Samadyar, F. Mirzaee, Orthonormal Bernoulli polynomials collocation approach for solving stochastic Itô‐Volterra integral equations of Abel type, Int. J. Numer. Model.: Electron. Networks, Devices Fields, 33 (2020), e2688. |
[17] | F. Mirzaee, N. Samadyar, Application of Bernoulli wavelet method for estimating a solution of linear stochastic Itô-Volterra integral equations, Multidiscip. Model. Mater. Struct., 15 (2019), 575–598. https://doi.org/10.1108/MMMS-04-2018-0075 doi: 10.1108/MMMS-04-2018-0075 |
[18] | F. Mirzaee, S. Alipour, Bicubic B-spline functions to solve linear two-dimensional weakly singular stochastic integral equation, Iran. J. Sci. Technol., Trans. A: Sci., 45 (2021) 965–972. https://doi.org/10.1007/s40995-021-01109-0 |
[19] | F. Mirzaee, S. Alipour, Quintic B-spline collocation method to solve n-dimensional stochastic Itô-Volterra integral equations, J. Comput. Appl. Math., 384 (2021), 113153. https://doi.org/10.1016/j.cam.2020.113153 doi: 10.1016/j.cam.2020.113153 |
[20] | S. Alipour, F. Mirzaee, An iterative algorithm for solving two dimensional nonlinear stochastic integral equations: A combined successive approximations method with bilinear spline interpolation, Appl. Math. Comput., 371 (2020), 124947. https://doi.org/10.1016/j.amc.2019.124947 doi: 10.1016/j.amc.2019.124947 |
[21] | F. Mirzaee, S. Alipour, An efficient cubic B-spline and bicubic B-spline collocation method for numerical solutions of multidimensional nonlinear stochastic quadratic integral equations, Math. Methods Appl. Sci., 43 (2020), 384–397. https://doi.org/10.1002/mma.5890 doi: 10.1002/mma.5890 |
[22] | N. Samadyar, F. Mirzaee, Numerical solution of two-dimensional weakly singular stochastic integral equations on non-rectangular domains via radial basis functions, Eng. Anal. Boundary Elem., 101 (2019), 27–36. https://doi.org/10.1016/j.enganabound.2018.12.008 doi: 10.1016/j.enganabound.2018.12.008 |
[23] | F. Mirzaee, N. Samadyar, On the numerical solution of fractional stochastic integro-differential equations via meshless discrete collocation method based on radial basis functions, Eng. Anal. Boundary Elem., 100 (2019), 246–255. https://doi.org/10.1016/j.enganabound.2018.05.006 doi: 10.1016/j.enganabound.2018.05.006 |
[24] | F. Mirzaee, S. Alipour, Cubic B-spline approximation for linear stochastic integro-differential equation of fractional order, J. Comput. Appl. Math., 366 (2020), 112440. https://doi.org/10.1016/j.cam.2019.112440 doi: 10.1016/j.cam.2019.112440 |
[25] | F. Mirzaee, E. Solhi, S. Naserifar, Approximate solution of stochastic Volterra integro-differential equations by using moving least squares scheme and spectral collocation method, Appl. Math. Comput., 410 (2021), 126447. https://doi.org/10.1016/j.amc.2021.126447 doi: 10.1016/j.amc.2021.126447 |
[26] | E. H. Doha, M. A. Abdelkawy, A. Z. M. Amin, A. M. Lopes, Shifted fractional Legendre spectral collocation technique for solving fractional stochastic Volterra integro-differential equations, Eng. Comput., 38 (2022), 1363–1373. https://doi.org/10.1007/s00366-020-01263-w doi: 10.1007/s00366-020-01263-w |
[27] | X. Dai, W. Bu, A. Xiao, Well-posedness and EM approximations for non-Lipschitz stochastic fractional integro-differential equations, J. Comput. Appl. Math., 356 (2019), 377–390. https://doi.org/10.1016/j.cam.2019.02.002 doi: 10.1016/j.cam.2019.02.002 |
[28] | X. Dai, A. Xiao, W. Bu, Stochastic fractional integro-differential equations with weakly singular kernels: Well-posedness and Euler-Maruyama approximation, Discrete Cont. Dyn. Syst.-B, 2021, 1–23. https://doi.org/10.3934/dcdsb.2021225 |
[29] | Y. H. Youssri, W. M. Abd‐Elhameed, M. Abdelhakem, A robust spectral treatment of a class of initial value problems using modified Chebyshev polynomials, Math. Methods Appl. Sci., 44 (2021), 9224–9236. https://doi.org/10.1002/mma.7347 doi: 10.1002/mma.7347 |
[30] | M. A. Abdelkawy, M. A. Zaky, A. H. Bhrawy, D. Baleanu, Numerical simulation of time variable fractional order mobile-immobile advection-dispersion model, Rom. Rep. Phys., 67 (2015), 773–791. |
[31] | E. H. Doha, On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomials, J. Phys. A: Math. Gen., 37 (2004), 657–675. |
[32] | A. H. Bhrawy, E. A. Ahmed, D. Baleanu, An efficient collocation technique for solving generalized Fokker-Planck type equations with variable coefficients, Proc. Rom. Acad. Ser. A, 15 (2014), 322–330. |
[33] | A. H. Bhrawy, A Jacobi-Gauss-Lobatto collocation method for solving generalized Fitzhugh-Nagumo equation with time-dependent coefficients, Appl. Math. Comput., 222 (2013), 255–264. https://doi.org/10.1016/j.amc.2013.07.056 doi: 10.1016/j.amc.2013.07.056 |
[34] | M. Abbaszadeh, M. Dehghan, M. A. Zaky, A. S. Hendy, Interpolating stabilized element free Galerkin method for neutral delay fractional damped diffusion-wave equation, J. Funct. Spaces, 2021 (2021), 1–11. https://doi.org/10.1155/2021/6665420 doi: 10.1155/2021/6665420 |
[35] | A. S. Hendy, M. A. Zaky, Graded mesh discretization for coupled system of nonlinear multi-term time-space fractional diffusion equations, Eng. Comput., 38 (2020), 1351–1363. https://doi.org/10.1007/s00366-020-01095-8 doi: 10.1007/s00366-020-01095-8 |
[36] | M. A. Zaky, A. S. Hendy, J. E. Macías-Díaz, Semi-implicit Galerkin-Legendre spectral schemes for nonlinear time-space fractional diffusion-reaction equations with smooth and nonsmooth solutions, J. Sci. Comput., 82 (2020), 1–27. https://doi.org/10.1007/s10915-019-01117-8 doi: 10.1007/s10915-019-01117-8 |
[37] | A. S. Hendy, M. A. Zaky, Global consistency analysis of $L$1-Galerkin spectral schemes for coupled nonlinear space-time fractional Schrödinger equations, Appl. Numer. Math., 156 (2020), 276–302. https://doi.org/10.1016/j.apnum.2020.05.002 doi: 10.1016/j.apnum.2020.05.002 |
[38] | M. A. Zaky, A. S. Hendy, Convergence analysis of an $L$1-continuous Galerkin method for nonlinear time-space fractional Schrödinger equations, Int. J. Comput. Math., 98 (2020), 1420–1437. https://doi.org/10.1080/00207160.2020.1822994 doi: 10.1080/00207160.2020.1822994 |
[39] | A. H. Bhrawy, M. A. Zaky, Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation, Nonlinear Dyn., 80 (2015), 101–116. https://doi.org/10.1007/s11071-014-1854-7 doi: 10.1007/s11071-014-1854-7 |
[40] | M. A. Zaky, Recovery of high order accuracy in Jacobi spectral collocation methods for fractional terminal value problems with non-smooth solutions, J. Comput. Appl. Math., 357 (2019), 103–122. https://doi.org/10.1016/j.cam.2019.01.046 doi: 10.1016/j.cam.2019.01.046 |
[41] | M. A. Zaky, An accurate spectral collocation method for nonlinear systems of fractional differential equations and related integral equations with nonsmooth solutions, Appl. Numer. Math., 154 (2020), 205–222. https://doi.org/10.1016/j.apnum.2020.04.002 doi: 10.1016/j.apnum.2020.04.002 |
[42] | E. H. Doha, A. H. Bhrawy, M. A. Abdelkawy, R. A. V. Gorder, Jacobi-Gauss-Lobatto collocation method for the numerical solution of 1+1 nonlinear Schrödinger equations, J. Comput. Phys., 261 (2014), 244–255. https://doi.org/10.1016/j.jcp.2014.01.003 doi: 10.1016/j.jcp.2014.01.003 |
[43] | A. H. Bhrawy, M. A. Abdelkawy, A fully spectral collocation approximation for multi-dimensional fractional Schrödinger equations, J. Comput. Phys., 294 (2015), 462–483. https://doi.org/10.1016/j.jcp.2015.03.063 doi: 10.1016/j.jcp.2015.03.063 |
[44] | A. H. Bhrawy, A. A. Al-Zahrani, Y. A. Alhamed, D. Baleanu, A new generalized Laguerre-Gauss collocation scheme for numerical solution of generalized fractional Pantograph equations, Rom. J. Phys., 59 (2014), 646–657. |
[45] | M. Abdelhakem, M. Biomy, S. A. Kandil, D. Baleanu, A numerical method based on Legendre differentiation matrices for higher order ODEs, Inf. Sci. Lett., 9 (2020), 1–7. |
[46] | M. Abdelhakem, Y. H. Youssri, Two spectral Legendre's derivative algorithms for Lane-Emden, Bratu equations, and singular perturbed problems, Appl. Numer. Math., 169 (2021), 243–255. https://doi.org/10.1016/j.apnum.2021.07.006 doi: 10.1016/j.apnum.2021.07.006 |
[47] | A. H. Bhrawy, M. A. Zaky, Shifted fractional-order Jacobi orthogonal functions: application to a system of fractional differential equations, Appl. Math. Model., 40 (2016), 832–845. https://doi.org/10.1016/j.apm.2015.06.012 doi: 10.1016/j.apm.2015.06.012 |
[48] | M. A. Zaky, E. H. Doha, J. A. Tenreiro Machado, A spectral framework for fractional variational problems based on fractional Jacobi functions, Appl. Numer. Math., 132 (2018), 51–72. https://doi.org/10.1016/j.apnum.2018.05.009 doi: 10.1016/j.apnum.2018.05.009 |