This article considers a consensus problem of multiagent systems with double integrator dynamics under nonuniform sampling. In the considered problem, the maximum sampling time can be selected arbitrarily. Moreover, the communication graph can change to any possible topology as long as its associated graph Laplacian has eigenvalues in an arbitrarily selected region. Existence of a controller that ensures consensus in this setting is shown when the changing topology graphs are undirected and have a spanning tree. Also, explicit bounds for controller parameters are given. A sufficient condition is given to solve the consensus problem based on making the closed loop system matrix a contraction using a particular coordinate system for general linear dynamics. It is shown that the given condition immediately generalizes to changing topology in the case of undirected topology graphs. This condition is applied to double integrator dynamics to obtain explicit bounds on the controller.
Citation: Ufuk Sevim, Leyla Goren-Sumer. Consensus of double integrator multiagent systems under nonuniform sampling and changing topology[J]. AIMS Mathematics, 2023, 8(7): 16175-16190. doi: 10.3934/math.2023827
This article considers a consensus problem of multiagent systems with double integrator dynamics under nonuniform sampling. In the considered problem, the maximum sampling time can be selected arbitrarily. Moreover, the communication graph can change to any possible topology as long as its associated graph Laplacian has eigenvalues in an arbitrarily selected region. Existence of a controller that ensures consensus in this setting is shown when the changing topology graphs are undirected and have a spanning tree. Also, explicit bounds for controller parameters are given. A sufficient condition is given to solve the consensus problem based on making the closed loop system matrix a contraction using a particular coordinate system for general linear dynamics. It is shown that the given condition immediately generalizes to changing topology in the case of undirected topology graphs. This condition is applied to double integrator dynamics to obtain explicit bounds on the controller.
[1] | A. Abdessameud, A. Tayebi, On consensus algorithms for double-integrator dynamics without velocity measurements and with input constraints, Syst. Control Lett., 59 (2010), 812–821. https://doi.org/10.1016/j.sysconle.2010.06.019 doi: 10.1016/j.sysconle.2010.06.019 |
[2] | A. Abdessameud, A. Tayebi, On consensus algorithms design for double integrator dynamics, Automatica, 49 (2013), 253–260. https://doi.org/10.1016/j.automatica.2012.08.044 doi: 10.1016/j.automatica.2012.08.044 |
[3] | S. A. Ajwad, E. Moulay, M. Defoort, T. Menard, P. Coirault, Leader-following consensus of second-order multi-agent systems with switching topology and partial aperiodic sampled data, IEEE Control Syst. Lett., 5 (2021), 1567–1572. https://doi.org/10.1109/LCSYS.2020.3041566 doi: 10.1109/LCSYS.2020.3041566 |
[4] | M. Andreasson, D. V. Dimarogonas, H. Sandberg, K. H. Johansson, Distributed control of networked dynamical systems: Static feedback, integral action and consensus, IEEE T. Automat. Control, 59 (2014), 1750–1764. https://doi.org/10.1109/TAC.2014.2309281 doi: 10.1109/TAC.2014.2309281 |
[5] | R. Carli, A. Chiuso, L. Schenato, S. Zampieri, A PI consensus controller for networked clocks synchronization, IFAC Proc. Vol., 41 (2008), 10289–10294. https://doi.org/10.3182/20080706-5-KR-1001.01741 doi: 10.3182/20080706-5-KR-1001.01741 |
[6] | L. Cheng, Z. G. Hou, M. Tan, X. Wang, Necessary and sufficient conditions for consensus of double-integrator multi-agent systems with measurement noises, IEEE T. Automat. Control, 56 (2011), 1958–1963. https://doi.org/10.1109/TAC.2011.2139450 doi: 10.1109/TAC.2011.2139450 |
[7] | G. Dong, C. Yang, W. Zhu, Event-triggered average consensus of multiagent systems with switching topologies, Discrete Dyn. Nat. Soc., 2020 (2020), 8742014. https://doi.org/10.1155/2020/8742014 doi: 10.1155/2020/8742014 |
[8] | Y. Gao, L. Wang, Consensus of multiple double-integrator agents with intermittent measurement, Int. J. Robust Nonlin. Control, 20 (2010), 1140–1155. https://doi.org/10.1002/rnc.1496 doi: 10.1002/rnc.1496 |
[9] | Y. Gao, B. Liu, M. Zuo, T. Jiang, J. Yu, Consensus of continuous-time multiagent systems with general linear dynamics and nonuniform sampling, Math. Prob. Eng., 2013 (2013), 718759. https://doi.org/10.1155/2013/718759 doi: 10.1155/2013/718759 |
[10] | D. Goldin, Double integrator consensus systems with application to power systems, IFAC Proc. Vol., 46 (2013), 206–211. https://doi.org/10.3182/20130925-2-DE-4044.00023 doi: 10.3182/20130925-2-DE-4044.00023 |
[11] | T. A. Jesus, L. C. A. Pimenta, L. A. B. Tôrres, E. M. A. M. Mendes, Consensus for double-integrator dynamics with velocity constraints, Int. J. Control Autom. Syst., 12 (2014), 930–938. https://doi.org/10.1007/s12555-013-0309-0 doi: 10.1007/s12555-013-0309-0 |
[12] | F. L. Lewis, H. Zhang, K. H. Movric, A. Das, Cooperative control of multi-agent systems, London: Springer, 2014. |
[13] | Y. Li, C. Tan, A survey of the consensus for multi-agent systems, Syst. Sci. Control Eng., 7 (2019), 468–482. https://doi.org/10.1080/21642583.2019.1695689 doi: 10.1080/21642583.2019.1695689 |
[14] | D. Liberzon, A. S. Morse, Basic problems in stability and design of switched systems, IEEE Control Syst., 19 (1999), 59–70. |
[15] | P. Lin, Y. Jia, Further results on decentralised coordination in networks of agents with second-order dynamics, IET Control Theor. Appl., 3 (2009), 957–970. https://doi.org/10.1049/iet-cta.2008.0263 doi: 10.1049/iet-cta.2008.0263 |
[16] | H. Liu, G. Xie, L. Wang, Necessary and sufficient conditions for solving consensus problems of double-integrator dynamics via sampled control, Int. J. Robust Nonlin. Control, 20 (2010), 1706–1722. https://doi.org/10.1002/rnc.1543 doi: 10.1002/rnc.1543 |
[17] | X. Liu, Y. Xie, F. Li, W. Gui, Consensus tracking of singular multiagent systems via sliding mode approach, IEEE T. Automat. Control, 2022, 1–7. https://doi.org/10.1109/TAC.2022.3214472 |
[18] | X. Liu, Y. Xie, F. Li, W. Gui, Sliding-mode-based admissible consensus tracking of nonlinear singular multiagent systems under jointly connected opologies, IEEE T. Cybernetics, 52 (2022), 12491–12500. https://doi.org/10.1109/TCYB.2021.3081801 doi: 10.1109/TCYB.2021.3081801 |
[19] | C. Q. Ma, J. F. Zhang, Necessary and sufficient conditions for consensusability of linear multi-agent systems, IEEE T. Automat. Control, 55 (2010), 1263–1268. https://doi.org/10.1109/TAC.2010.2042764 doi: 10.1109/TAC.2010.2042764 |
[20] | L. Qi, Some simple estimates for singular values of a matrix, Linear Algebra Appl., 56 (1984), 105–119. |
[21] | J. Qin, H. Gao, A sufficient condition for convergence of sampled-data consensus for double-integrator dynamics with nonuniform and time-varying communication delays, IEEE T. Automat. Control, 57 (2012), 2417–2422. https://doi.org/10.1109/TAC.2012.2188425 doi: 10.1109/TAC.2012.2188425 |
[22] | J.Qin, Q. Ma, Y. Shi, L. Wang, Recent advances in consensus of multi-agent systems: a brief survey, IEEE T. Ind. Electron., 64 (2017), 4972–4983. https://doi.org/10.1109/TIE.2016.2636810 doi: 10.1109/TIE.2016.2636810 |
[23] | W. J. Rugh, Linear system theory, New York: John Wiley and Sons, 1996. |
[24] | A. Seuret, D. V. Dimarogonas, K. H. Johansson, Consensus of double integrator multi-agents under communication delay, IFAC Proc, Vol., 42 (2009), 376–381. https://doi.org/10.3182/20090901-3-RO-4009.00062 doi: 10.3182/20090901-3-RO-4009.00062 |
[25] | Z. G. Wu, Y. Xu, R. Lu, Y. Wu, T. Huang, Event-triggered control for consensus of multiagent systems with fixed/switching topologies, IEEE T. Syst. Man Cybernet. Syst., 48 (2018), 1736–1746. https://doi.org/10.1109/TSMC.2017.2744671 doi: 10.1109/TSMC.2017.2744671 |
[26] | J. Zhan, X. Li, Consensus of multiple double-integrators with aperiodic sampled-data and switching topology, In: 34th Chinese Control Conference (CCC), 2015, 7113–7117. https://doi.org/10.1109/ChiCC.2015.7260765 |
[27] | X. Y. Zhang, J. Zhang, Sampled-data consensus of multi-agent systems with general linear dynamics based on a continuous-time model, Acta Automat. Sin., 40 (2014), 2549–2555. https://doi.org/10.1016/S1874-1029(14)60400-6 doi: 10.1016/S1874-1029(14)60400-6 |
[28] | X. Y. Zhang, J. Zhang, Sampled-data consensus of general linear multi-agent systems under switching topologies: averaging method, Int. J. Control, 90 (2017), 275–288. https://doi.org/10.1080/00207179.2016.1177776 doi: 10.1080/00207179.2016.1177776 |
[29] | L. Zou, Z. D. Wang, D. H. Zhou, Event-based control and filtering of networked systems: a survey, Int. J. Autom. Comput., 14 (2017), 239–253. https://doi.org/10.1007/s11633-017-1077-8 doi: 10.1007/s11633-017-1077-8 |