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Abstract: This article considers a consensus problem of multiagent systems with double integrator
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be selected arbitrarily. Moreover, the communication graph can change to any possible topology as
long as its associated graph Laplacian has eigenvalues in an arbitrarily selected region. Existence of
a controller that ensures consensus in this setting is shown when the changing topology graphs are
undirected and have a spanning tree. Also, explicit bounds for controller parameters are given. A
sufficient condition is given to solve the consensus problem based on making the closed loop system
matrix a contraction using a particular coordinate system for general linear dynamics. It is shown that
the given condition immediately generalizes to changing topology in the case of undirected topology
graphs. This condition is applied to double integrator dynamics to obtain explicit bounds on the
controller.
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1. Introduction

The consensus problem of multi agent systems has received great attention in the last decade [22],
mostly due to the broad application areas, such as mobile robot coordination [4], sensor network time
synchronization [5], frequency synchronization in a microgrid [10], mitigating cybersecurity
attacks [17] and many more [13]. Although general agent dynamics has received attention
recently [9, 27, 28], the study of double integrator agent dynamics is
common [6, 11, 15, 16, 21, 24, 26], partly because of their applicability to a broad range of
applications.
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Many different aspects of the real world challenges are also studied extensively, such as consensus
under switching topologies [28], consensus with communication delays [24], nonuniformly sampled-
data consensus [26], asynchronous consensus [8], event-based consensus [29], partial state feedback
consensus [2], saturated input consensus [1], and consensus under uncertainties and nonlinearities [18],
to name a few.

The study of nonuniform sampling and changing topology is particularly related to the topic of this
paper, where sampling intervals and the communication topology cannot be determined reliably due
to real-world constraints such as energy saving requirements, unreliable communication links and
roaming agents. While there are numerous studies that deal with either nonuniform sampling or
changing topology, there are relatively few that address both simultaneously. In [26] it is shown that
consensus can be reached if the sampling intervals are constrained in a region that is determined by
the max in-degree of the communication graph. However, the feasible sampling interval region gets
smaller significantly when the max in-degree gets larger. In [3] an average dwell time approach was
used to ensure the leader-following consensus. However, the set of switchable communication graphs
must be known a priori, which limits the usability of the method, especially when the number of
agents gets larger. There are also some works that tackle these aspects simultaneously in an
event-triggered consensus framework, such as [7, 25]. However, these methods rely on continuous
monitoring of triggering conditions on the agents, which may not be suitable for some applications.
Also, the time between event triggers tends to get smaller as the network gets larger.

This paper proposes a new approach to the double integrator consensus problem that can address
the nonuniform sampling and changing topology constraints simultaneously. Assuming all changing
topology graphs have a spanning tree and undirected at every sampling interval, this method has the
following advantages: (1) Minimum and maximum sampling intervals can be selected arbitrarily, (2)
it is not necessary to know the graphs of the switchable topologies beforehand as long as the
Laplacian eigenvalues fall within a given interval, (3) the Laplacian eigenvalue interval can be
selected arbitrarily, (4) switching between all possible topologies at any sampling time is feasible, (5)
a state feedback controller exists for any given sampling intervals and Laplacian eigenvalue intervals,
and (6) the controller gain inequalities are given explicitly. To the best of our knowledge, there is no
study in the literature on double integrator consensus that achieves these results.

We use the equivalent problem of stabilizing a subsystem of the overall system to solve the
consensus problem for general linear dynamics, which was proven in [9]. Therefore, existing
stabilization results can be utilized to solve the consensus problem. In particular, we use a coordinate
transformation that makes the overall system matrix a contraction for all possible sampling intervals.
We also show that this approach immediately generalizes to changing topology in the case of
undirected topology graphs. The obtained results for the general linear dynamics are then applied to
the double integrator dynamics to find explicit bounds for the controller.

The rest of the paper is organized as follows. In section 2, we give necessary definitions and
basic results that are used throughout the paper. In section 3, a sufficient condition is given to solve
the consensus problem for general linear dynamics. In section 4, the given condition is applied to
the double integrator dynamics to obtain explicit bounds for the controller parameters. In section 5,
numerical examples are given to demonstrate the accuracy of the method. Finally, conclusions are
given in section 6.

We use subscripts i, j for the indices and k ∈ N for the discrete time instance, where N represents
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the nonnegative integers. For a matrix A ∈ Cn×n, σ(A) denotes the set of singular values. ∥A∥ = σ̄(A)
denotes the maximum singular value of A. We say A is a contraction if σ̄(A) < 1 and |·| denotes the
Euclidean vector norm.

2. Preliminaries

2.1. Graph theory

The network topology of a multiagent system with N agents is represented by a graph which is
defined as a pair G = (V, E) where V = {v1, . . . , vN} is the set of nodes, and E ⊆ V × V is the set of
edges. The nodes of the graph correspond to the agents, and an edge (vi, v j) ∈ E denotes a directed
information flow from agent j to agent i. We assume that the topology graph of the multiagent system
is simple, i.e., there are no self-loops, that is, (vi, vi) < E,∀i, and there are no multiple edges between
pairs of nodes.

The neighbor set of node i is the index set defined as Ni := { j | (vi, v j) ∈ E}, that is, only the nodes
with edges incoming to vi are considered neighbors. A directed tree is a graph where every node has
exactly one neighbor except the so-called root node, which has no neighbors. If a subset of the edges of
a graph forms a directed tree, then the graph is said to have a spanning tree. If a graph has a spanning
tree, then all of the nodes are reachable from the root by following the (directed) edges.

The weighted adjacency matrix W = (wi j) ∈ RN×N represents the nonnegative weights associated
with edges, where wi j > 0 if (vi, v j) ∈ E and wi j = 0 if (vi, v j) < E. A graph is called undirected if
wi j = w ji,∀i, j, that is, W = WT is symmetric.

The weighted in-degree of node i is defined as di :=
∑

j∈Ni
wi j. The Laplacian matrix of a graph is

defined as L := D −W where D := diag{di}. Obviously, L1 = 0 where 1T :=
[
1 . . . 1

]
. Therefore,

0 is an eigenvalue of L. By the Gershgorin circle theorem, all eigenvalues of L lie in the disc {z ∈
C | |z − dmax| ≤ dmax} where dmax := maxi{di}. Therefore, Re(λ) ≥ 0 for all eigenvalues λ of L.

Theorem 1 (Lewis et al. [12]). The zero eigenvalue of L is simple, i.e., it has algebraic multiplicity 1,
if and only if graph G has a spanning tree.

2.2. Stability of time-varying discrete systems

It is well-known that the stability conditions for nonuniformly sampled systems are not trivial [14].
Stability of nonuniformly sampled systems can be analyzed by investigating the time-varying discrete
systems. Such an investigation can be found in [23]. A sufficient stability result is given in this
subsection.

Definition 1. The system
xk+1 = Fkxk (2.1)

is uniformly exponentially stable if there exist γ > 0 and 0 ≤ α < 1 such that for any r ∈ N and xr ∈ R
n

|xk| ≤ γα
k−r |xr| , ∀k ≥ r.

Theorem 2. If there exist an invertible T ∈ Rn×n and a constant α < 1 such that
∥∥∥T−1FkT

∥∥∥ ≤ α,∀k ∈ N,
then the system (2.1) is uniformly exponentially stable.
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Proof. Select γ := ∥T∥
∥∥∥T−1

∥∥∥. Therefore,

|xk| ≤ ∥T∥
∥∥∥T−1Fk−1T

∥∥∥ ∥∥∥T−1Fk−2T
∥∥∥ . . . ∥∥∥T−1FrT

∥∥∥ ∥∥∥T−1
∥∥∥ |xr|

≤ γαk−r |xr| . □

2.3. Stability of nonuniformly sampled systems

Consider the continuous time system

ẋ(t) = Ax(t) + Bu(t) (2.2)

where x(t) ∈ Rn, u(t) ∈ Rm, A ∈ Rn×n, B ∈ Rn×m, rank B = m ≤ n, and (A, B) is stabilizable.
Define the sequence of sampling time instances {tk}k∈N where

0 = t0 < t1 < · · · < tk < . . .

with limk→∞ tk = ∞. We assume that sampling intervals hk := tk+1−tk are bounded, i.e., hk ∈ [h, h],∀k ∈
N, for some h > h > 0.

Let u(t) := Kx(tk),∀t ∈ [tk, tk+1) where K ∈ Rm×n is the state feedback controller. Then, the closed
loop system becomes

ẋ(t) = Ax(t) + BKx(tk), ∀t ∈ [tk, tk+1). (2.3)

The following result is standard:

Lemma 1. Let x0 := x(t0). Then, the solutions of (2.3) and

xk+1 = (F(hk) +G(hk)K) xk (2.4)

are the same at the sampling instances, i.e., xk = x(tk),∀k ∈ N, where

F(h) := eAh and G(h) :=
(∫ h

0
eAτdτ

)
B. (2.5)

Proof. We prove with induction. x(t0) = x0 by assumption. Assume that x(tk) = xk, so

x(tk+1) = eA(tk+1−tk)x(tk) +
∫ tk+1

tk
eA(tk+1−η)Bu(η)dη

= eAhk x(tk) +
(∫ hk

0
eAτdτ

)
Bu(tk)

= F(hk)xk +G(hk)Kxk

= xk+1. □

Theorem 3. The closed loop system (2.3) is uniformly exponentially stable for an arbitrary selection
of sampling intervals hk ∈ [h, h],∀k ∈ N, if there exists an invertible T ∈ Rn×n such that

σ̄
(
T−1 (F(h) +G(h)K) T

)
< 1, ∀h ∈ [h, h]. (2.6)
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Proof. It is well-known that norm of a continuous matrix-valued function is also continuous. Due to
the Extreme Value Theorem, if a real-valued function is continuous on a closed interval, it attains a
maximum. Let

α := max
h
σ̄

(
T−1 (F(h) +G(h)K) T

)
< 1.

Then, the result follows from Theorem 2 and Lemma 1. □

Note that if T satisfies (2.6), then T := TV also satisfies (2.6) for any orthogonal matrix VT V = I.

2.4. Bounds on singular values

A Gershgorin type bound is given in [20] along with some other simple estimates for singular
values. Since we are only interested in the maximum singular value of a square matrix, a corollary is
given as follows:

Corollary 1 (of Theorem 2 in [20]). Let A = (ai j) ∈ Cn×n. Then,

σ̄(A) ≤ max
i
{si} (2.7)

where si := max{ri, ci}, ri :=
∑n

j=1

∣∣∣ai j

∣∣∣ and ci :=
∑n

j=1

∣∣∣a ji

∣∣∣.
Corollary 1 is a fairly standard result, and one can easily show this using other methods such as

Hölder’s inequality. We extend this result to block matrices using the proof idea in [20].

Lemma 2. Let A = (Ai j) ∈ CnN×nN be a block matrix where each block is the same size, i.e., Ai j ∈ C
n×n.

Then,
σ̄(A) ≤ max

i
{si} (2.8)

where si := max{ri, ci}, ri :=
∑n

j=1 σ̄(Ai j) and ci :=
∑n

j=1 σ̄(A ji).

Proof. Let σ be a singular value of A. Then, there exist nonzero vectors

x =
[
xT

1 . . . xT
N

]T
∈ CnN and y =

[
yT

1 . . . yT
N

]T
∈ CnN

such that 
A11 . . . A1N
...
. . .

...

AN1 . . . ANN



x1
...

xN

 = σ

y1
...

yN

 and


A∗11 . . . A∗N1
...
. . .

...

A∗1N . . . A∗NN



y1
...

yN

 = σ

x1
...

xN


where xi, yi ∈ Cn, i = 1, . . . ,N, and A∗ is the conjugate transpose of A. Let
α := max{|x1| , . . . , |xN | , |y1| , . . . , |yN |} where |·| is the Euclidean norm. If α = |yi| for some i, then

σyi =

N∑
j=1

Ai jx j implies σ ≤
n∑

j=1

σ̄(Ai j) = ri.

If α = |xi| for some i, then

σxi =

N∑
j=1

A∗jiy j implies σ ≤
n∑

j=1

σ̄(A ji) = ci.

In any case σ ≤ max{ri, ci} = si. Since this holds for any singular value of A, we can conclude
the proof. □
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Lemma 3. Let A, B ∈ Rn×n and

C :=
[
A −B
B A

]
.

Then, σ(C) = σ(A − jB) ∪ σ(A + jB) where σ(·) is the set of singular values, and j =
√
−1.

Proof. It is well-known that
det(C) = det(A − jB) det(A + jB).

Noting that CCT has the same form as C, we have

det(CCT − λI) = det
([

A −B
B A

] [
AT BT

−BT AT

]
− λI

)
= det

[
AAT + BBT − λI ABT − BAT

BAT − ABT AAT + BBT − λI

]
= det

(
(AAT + BBT − λI) − j(BAT − ABT )

)
det

(
(AAT + BBT − λI) + j(BAT − ABT )

)
= det

(
(A − jB)(AT + jBT ) − λI

)
det

(
(A + jB)(AT − jBT ) − λI

)
.

The result follows from the definition of the singular values. □

3. Consensus of general linear dynamics

We first define the problem for fixed network topology, and then we show that our approach
immediately generalizes to changing topology in the case of undirected topology graphs. Consider the
N-agent system on the network topology graph G with identical dynamics

ẋi(t) = Axi(t) + Bui(t), i = 1, 2, . . . ,N, (3.1)

where xi(t) ∈ Rn is the state of agent i, and ui(t) ∈ Rm is its control input. The control input ui(t) is said
to solve the consensus problem asymptotically if they drive all the states to the same values for any
initial states, i.e.,

lim
t→∞

(
xi(t) − x j(t)

)
= 0, ∀i, j = 1, . . . ,N.

We select the control input as distributed local state feedback law, i.e., every agent only uses the
information from its neighbors, under nonuniform sampling with controller matrix K ∈ Rm×n

ui(t) = K
∑
j∈Ni

wi j(x j(tk) − xi(tk)), ∀t ∈ [tk, tk+1), (3.2)

where wi j are the elements of the weighted adjacency matrix of the topology graph.
The overall closed-loop graph dynamics can be written as [see 12]

ẋ(t) = (IN ⊗ A)x(t) − (L ⊗ BK)x(tk) (3.3)
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where x :=
[
xT

1 xT
2 . . . xT

N

]T
∈ RnN is the overall state vector, L is the graph Laplacian matrix and

⊗ is the Kronecker product.
Let z(t) := (M−1 ⊗ In)x(t) where M :=

[
1 M

]
so that

M−1LM =
[
0 ℓT

0 L

]
where 1 :=

[
1 1 . . . 1

]T
. So, the closed loop system dynamics can be separated as

ż1(t) = Az1(t) − (ℓT ⊗ BK)ξ(tk) (3.4)

ξ̇(t) = (IN−1 ⊗ A)ξ(t) − (L ⊗ BK)ξ(tk) (3.5)

where z =
[
zT

1 ξT
]T

and ξ :=
[
zT

2 . . . zT
N

]T
.

Lemma 4 (Gao et al. [9]). Control law (3.2) solves the consensus problem asymptotically if and only
if system (3.5) is asymptotically stable. In other words,

lim
t→∞
ξ(t) = 0 ⇐⇒ lim

t→∞
(xi(t) − x j(t)) = 0 i, j = 1, 2, . . . ,N.

Using Lemma 1, stability of (3.5) can be analyzed using its discretized model.

ξk+1 = e(IN−1⊗A)hkξk −

(∫ hk

0
e(IN−1⊗A)τdτ

) (
L ⊗ BK

)
ξk

=
(
IN−1 ⊗ eAhk

)
ξk −

(
IN−1 ⊗

(∫ hk

0
eAτdτ

)) (
L ⊗ BK

)
ξk

=

(
IN−1 ⊗ eAhk − L ⊗

(∫ hk

0
eAτdτ

)
BK

)
ξk

=
(
IN−1 ⊗ F(hk) − L ⊗G(hk)K

)
ξk. (3.6)

Using Lemma 4 and Theorem 3, we can conclude that if there exists an invertible T ∈ Rn×n such
that the transformed closed loop system matrix

Φ̂(h) :=
(
IN−1 ⊗ T−1

) (
IN−1 ⊗ F(h) − L ⊗G(h)K

)
(IN−1 ⊗ T )

= IN−1 ⊗ T−1F(h)T − L ⊗ T−1G(h)KT

= IN−1 ⊗ F̂(h) − L ⊗ Ĝ(h)K̂

is a contraction, i.e., σ̄(Φ̂(h)) < 1, for all h ∈ [h, h], then control law (3.2) solves the consensus problem
asymptotically for arbitrary selection of sampling intervals, where

F̂(h) := T−1F(h)T, Ĝ(h) := T−1G(h) and K̂ := KT.

Without losing generality, we can assume that L is in Jordan form whose off-diagonals are arbitrarily
small. Therefore Φ̂(h) = diag{Ĵi(h)} is in the block diagonal form where each block is as follows:

Ĵi(h) :=



Ŝ (h, λi) δĜ(h)K̂ 0 . . . 0
0 Ŝ (h, λi) δĜ(h)K̂ . . . 0
0 0 Ŝ (h, λi) . . . 0
...

...
...

. . .
...

0 0 0 . . . Ŝ (h, λi)


AIMS Mathematics Volume 8, Issue 7, 16175–16190.
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where λi is a possibly complex eigenvalue of L (see Lemma 3 for real block diagonal case), Ŝ (h, λi) :=
F̂(h) − λiĜ(h)K̂ and δ > 0 is arbitrarily small. Using Lemma 2, we can see that

σ̄
(
Φ̂(h)

)
= max

i

{
σ̄

(
Ĵi(h)

)}
≤ max

i

{
σ̄

(
Ŝ (h, λi)

)
+ δσ̄

(
Ĝ(h)K̂

)}
< 1

is sufficient to solve the consensus problem. Since δ is arbitrarily small and does not depend on the
selection of T or K, we can conclude that

max
i

{
σ̄

(
Ŝ (h, λi)

)}
< 1 (3.7)

is sufficient. We summarize all the discussions above with the following theorem:

Theorem 4. Let (A, B) be stabilizable system dynamics of the agents, and the topology graph has a
spanning tree. Then, control law (3.2) solves the consensus problem asymptotically if there exists an
invertible matrix T ∈ Rn×n such that

σ̄
(
T−1S (h, λi)T

)
< 1, ∀h ∈ [h, h], ∀i ∈ {2, . . . ,N}, (3.8)

where

S (h, λ) := eAh − λ

(∫ h

0
eAτdτ

)
BK, (3.9)

and λi are the eigenvalues of the Laplacian matrix of the topology graph.

Consider the case of changing topology at each sampling instance with graph Laplacian matrices
Lk. From the proof given in [9], it is easy to see that Lemma 4 still applies. In the case of undirected
graphs, i.e., Lk = LT

k , one can select M such that Lk = LT
k for all k. Indeed, this is true when MT M = I

and MT 1 = 0.
Any symmetric matrix is orthogonally diagonalizable, so there exists orthogonal matrices U−1

k = UT
k

such that UT
k LkUk is diagonal. Also, multiplication by orthogonal matrices does not change the singular

values of a matrix. Since Uk ⊗ In is also orthogonal, we can assume Lk is diagonal for all k. Therefore,
we can reach the following result.

Theorem 5. Let (A, B) be stabilizable system dynamics of the agents. Assume that the changing
topology graphs are undirected and have a spanning tree at each nonuniform sampling instance.
Then, control law (3.2) solves the consensus problem asymptotically if there exists an invertible
matrix T ∈ Rn×n such that

σ̄
(
T−1S (h, λ)T

)
< 1, ∀h ∈ [h, h], ∀λ ∈ [λ2, λN], (3.10)

where λ2 = inf
k,i
λi(Lk), and λN = sup

k,i
λi(Lk).

4. Consensus of double integrator dynamics

Although Theorems 4 and 5 are given for general system dynamics, it is hard to find T and K
that satisfy it in general. However, we give explicit bounds on the controller parameters in the case
of double integrator dynamics and undirected network topologies. The explicit bounds depend on

AIMS Mathematics Volume 8, Issue 7, 16175–16190.
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the maximum sampling interval and minimum and maximum eigenvalues of all possible Laplacian
matrices. These parameters can be selected arbitrarily depending on the application. Also, it is shown
that a controller always exists for any selection of these parameters, as long as the network graph has a
spanning tree, which is known to be a necessary condition for consensusability [19].

Consider double integrator agent dynamics, i.e.,

A :=
[
0 1
0 0

]
and B :=

[
0
1

]
.

Then,

S (h, λ) =
[
1 h
0 1

]
− λ

[
h2

2
h

]
K.

Also, let the nonzero eigenvalues of the Laplacian matrix of the changing topology graphs be in the
interval [λ2, λN].

We propose the following similarity transformation matrix:

T :=
[
−µ1 −µ2

1 1

] [
1 1
−1 1

]
=

[
µ2 − µ1 −(µ2 + µ1)

0 2

]
(4.1)

where 0 < µ1 < µ2. Therefore,

Ŝ := T−1S (h, λ)T =
[
1 − hλγk1

2
2h
µ2−µ1

−
hλγk2

2

−
hλk1

2 1 − hλk2
2

]
where

γ :=
µ1 + µ2 + h
µ2 − µ1

and K̂ := KT =
[
k1 k2

]
.

Using Corollary 1, we need

max{|s11| + |s12| , |s11| + |s21| , |s22| + |s12| , |s22| + |s21|} < 1 (4.2)

to solve the consensus problem where Ŝ = (si j). From (4.2), we have 4 inequalities to be satisfied,
since each of the sums must be smaller than 1.

First note that we have h, λ > 0, γ > 1 and µ2 > µ1 > 0. We also need k1, k2 > 0, as otherwise
s11, s22 > 1, so we cannot use the condition (4.2).

We also require s11, s22 > 0, since otherwise the lower limit for k1 and k2 can be large for small
values of h. So, immediately we have the following conditions to be satisfied:

s11 = 1 −
hλγk1

2
> 0 ⇒

2
hλγ
> k1,

s22 = 1 −
hλk2

2
> 0 ⇒

2
hλ
> k2.

Since s21 is already negative, we need to satisfy

|s11| + |s21| = 1 −
hλ(γ − 1)k1

2
< 1 ⇒ Already satisfied,

AIMS Mathematics Volume 8, Issue 7, 16175–16190.
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|s22| + |s21| = 1 −
hλ
2

(k2 − k1) < 1 ⇒ k2 − k1 > 0.

For s12 > 0 one can show that the resulting inequalities are inconsistent. Assuming s12 < 0, we
have the final set of conditions to be satisfied as follows:

s12 =
2h
µ2 − µ1

−
hλγk2

2
< 0 ⇒ k2 >

4
λ(µ1 + µ2 + h)

,

|s11| + |s12| = 1 −
2h
µ2 − µ1

+
hλγ

2
(k2 − k1) < 1 ⇒

4
λ(µ1 + µ2 + h)

> k2 − k1,

|s22| + |s12| = 1 −
2h
µ2 − µ1

+
hλ(γ − 1)k2

2
< 1 ⇒

4
λ(2µ1 + h)

> k2.

To solve the problem for all possible (h, λ), we must minimize the left sides and maximize the right
sides of the inequalities. This can be done by writing h = h and λ = λN for the left sides and h = h and
λ = λ2 for the right sides. Putting all of them together we finally obtain the following inequalities:

2(µ2 − µ1)

hλN(µ1 + µ2 + h)
> k1 > 0 (4.3)

min
 2

hλN

,
4

λN(2µ1 + h)

 > k2 >
4

λ2(µ1 + µ2 + h)
(4.4)

4

λN(µ1 + µ2 + h)
> k2 − k1 > 0. (4.5)

We can conclude that the controller K =
[
k1 k2

]
T−1 solves the consensus problem for the double

integrator agent dynamics for arbitrary selection of sampling intervals and changing undirected
topology graphs such that hk ∈ [h, h] and λ ∈ [λ2, λN] when k1, k2 satisfy (4.3)–(4.5).

Now, we can analyze the consistency of these inequalities.

Lemma 5. Let a, b, c, d > 0, and

a > k1 > 0
b > k2 > c

d > k2 − k1 > 0.

Then, the inequalities are consistent, i.e., there exist k1, k2 satisfying them, if and only if b > c and
a + d > c.

Proof. (⇒) Assume the inequalities are consistent, and then obviously b > c. By adding the first and
third one we obtain a + d > k2 > c.

(⇐) Let b > c and a + d > c. If d ≥ c, select k1 = α where min{a, c} > α > 0. Then, by the second
and third inequalities, we have

min{d + α, b} > k2 > max{c, α} = c,

and the inequalities are consistent. If c > d, select k2 − k1 = d − ϵ where a + d − c > ϵ > 0. Then, by
the first and second inequalities, we have

min{a, b − d + ϵ} > k1 > max{c − d + ϵ, 0} = c − d + ϵ,

and the inequalities are consistent. □
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Corollary 2. Inequalities (4.3)–(4.5) are consistent if and only if

µ1 + µ2 + h

h +max{h, 2µ1}
>
λN

λ2
. (4.6)

Proof. Let

a :=
2(µ2 − µ1)

hλN(µ1 + µ2 + h)
, b :=

4

λN

(
h +max{h, 2µ1}

) ,
c :=

4
λ2(µ1 + µ2 + h)

, d :=
4

λN(µ1 + µ2 + h)
.

According to Lemma 5, inequalities (4.3)–(4.5) are consistent if and only if b > c and a + d > c. It is
easy to see that b > c is equivalent to (4.6). We are going to show that a + d ≥ b to conclude the proof.
Therefore, we need

4h + 2(µ2 − µ1)

hλN(µ1 + µ2 + h)
≥

4

λN

(
h +max{h, 2µ1}

)
max{h, 2µ1} ≥

2h(µ1 + µ2 + h)

2h + µ2 − µ1

− h

=
h(3µ1 + µ2)

2h + µ2 − µ1

.

First, assume h ≥ 2µ1, and then

2h2 ≥ 4hµ1

2h2 + hµ2 − hµ1 ≥ 3hµ1 + hµ2

h ≥
h(3µ1 + µ2)

2h + µ2 − µ1

.

Now, assume 2µ1 ≥ h, and then

2µ1(µ2 − µ1) ≥ hµ2 − hµ1

2µ1(2h + µ2 − µ1) ≥ hµ2 + 3hµ1

2µ1 ≥
h(3µ1 + µ2)

2h + µ2 − µ1

. □

From this corollary, it can be inferred that a controller exists for arbitrary choices of h > h > 0 and
λN ≥ λ2 > 0. So, the designer should only know the limits of λN , λ2 for the changing topologies and
not the specific topologies themselves. They can also select the sampling time intervals arbitrarily.

AIMS Mathematics Volume 8, Issue 7, 16175–16190.
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5. Numerical examples

Given h, h, λ2 and λN , let a, b, c, d represents the limit values of inequalities (4.3)–(4.5) as defined
in the proof of Corollary 2. The following algorithm is used to calculate K that solves the consensus
problem for the double integrator agent dynamics:

Algorithm 1 Stabilizing controller design algorithm

µ1 ← h/2

µ2 ← −µ1 − h + 2hλN/λ2 + 1 ▷ See (4.6)

a←
2(µ2 − µ1)

hλN(µ1 + µ2 + h)
▷ See (4.3)

b←
2

hλN

▷ Simplified by the selection of µ1 above. See (4.4)

c←
4

λ2(µ1 + µ2 + h)
▷ See (4.4)

d ←
4

λN(µ1 + µ2 + h)
▷ See (4.5)

∆k ← 0.9d

k1 ← (min{a, b − ∆k} +max{0, c − ∆k}) /2

k2 ← k1 + ∆k

T ←
[
µ2 − µ1 −(µ2 + µ1)

0 2

]
K ←

[
k1 k2

]
T−1

Example 1. We consider the random switching between the following topologies. The sampling
intervals are generated randomly from [0.1, 3]. λ2 = 0.3 and λN = 6 are selected, which contains all
eigenvalues of the Laplacian matrices of the graphs in Figure 1. Using the algorithm above, the
controller is calculated to be K =

[
0.0009 0.1093

]
. Each curve in Figure 2 represents a simulation

of 400 time steps, done by selecting the sampling intervals randomly. At every 50th time step one of
the following topologies are selected randomly to show that no unstable behavior exist for any
particular topology. A total of 100 simulations were done. Only the maximum state difference
between agents, i.e., maxi j

∣∣∣xi(tk) − x j(tk)
∣∣∣, i, j = 1, . . . ,N, is plotted to be able to show many

simulations simultaneously.

Example 2. We consider switching between randomly created graph topologies for 100 agents. The
sampling intervals are generated randomly from [0.1, 1]. λ2 = 5 and λN = 60 are selected. Using
the algorithm above, the controller is calculated to be K =

[
0.0013 0.032

]
. Each curve in Figure 3

represents a simulation of 300 time steps, done by selecting the sampling intervals randomly. At
every 50th time step a new topology graph is generated randomly to show that no unstable behavior
exist for any particular topology. A total of 100 simulations were done. Only the maximum state

AIMS Mathematics Volume 8, Issue 7, 16175–16190.
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difference between agents, i.e. maxi j

∣∣∣xi(tk) − x j(tk)
∣∣∣, i, j = 1, . . . ,N, is plotted to be able to show many

simulations simultaneously.

Figure 1. Switching graph topologies.

Figure 2. maxi j

∣∣∣xi(tk) − x j(tk)
∣∣∣ for the controller K =

[
0.0009 0.1093

]
.

Figure 3. maxi j

∣∣∣xi(tk) − x j(tk)
∣∣∣ for the controller K =

[
0.0013 0.032

]
.

6. Conclusions

A sufficient condition is given for checking whether a distributed state feedback control law solves
the asymptotic consensus problem for the general linear dynamics in the case of nonuniform sampling.
The condition is based on the stabilization problem of a specific subsystem, which is equivalent to the
consensus problem. It depends on transforming the state coordinates, in which the amplitude of the
state vector gets smaller at every step. It is shown that the given condition immediately generalizes to
the changing topology in the case of undirected networks.

Simple and explicit inequalities are given to design a controller in the case of double integrator
dynamics and changing topology with undirected network graphs. These inequalities depend on the

AIMS Mathematics Volume 8, Issue 7, 16175–16190.
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maximum sampling time and the interval that contains all eigenvalues of the changing topology graph
Laplacian eigenvalues. So, the designer should only know the limits of the Laplacian eigenvalues and
not the specific topologies themselves. It is also shown that such a controller always exists as long as
the topology graphs have a spanning tree. Numerical examples are given to demonstrate the accuracy
of the theoretical results.
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