Research article

$ A_{\alpha} $ matrix of commuting graphs of non-abelian groups

  • Received: 03 January 2022 Revised: 08 June 2022 Accepted: 16 June 2022 Published: 20 June 2022
  • MSC : 15A18, 05C50, 05C25

  • For a finite group $ \mathcal{G} $ and a subset $ X\neq \emptyset $ of $ \mathcal{G} $, the commuting graph, indicated by $ G = \mathcal{C}(\mathcal{G}, X) $, is the simple connected graph with vertex set $ X $ and two distinct vertices $ x $ and $ y $ are edge connected in $ G $ if and only if they commute in $ X $. The $ A_{\alpha} $ matrix of $ G $ is specified as $ A_{\alpha}(G) = \alpha D(G)+(1-\alpha) A(G), \; \alpha\in[0, 1] $, where $ D(G) $ is the diagonal matrix of vertex degrees while $ A(G) $ is the adjacency matrix of $ G. $ In this article, we investigate the $ A_{\alpha} $ matrix for commuting graphs of finite groups and we also find the $ A_{\alpha} $ eigenvalues of the dihedral, the semidihedral and the dicyclic groups. We determine the upper bounds for the largest $ A_{\alpha} $ eigenvalue for these graphs. Consequently, we get the adjacency eigenvalues, the Laplacian eigenvalues, and the signless Laplacian eigenvalues of these graphs for particular values of $ \alpha $. Further, we show that these graphs are Laplacian integral.

    Citation: Bilal A. Rather, Fawad Ali, Nasim Ullah, Al-Sharef Mohammad, Anwarud Din, Sehra. $ A_{\alpha} $ matrix of commuting graphs of non-abelian groups[J]. AIMS Mathematics, 2022, 7(8): 15436-15452. doi: 10.3934/math.2022845

    Related Papers:

  • For a finite group $ \mathcal{G} $ and a subset $ X\neq \emptyset $ of $ \mathcal{G} $, the commuting graph, indicated by $ G = \mathcal{C}(\mathcal{G}, X) $, is the simple connected graph with vertex set $ X $ and two distinct vertices $ x $ and $ y $ are edge connected in $ G $ if and only if they commute in $ X $. The $ A_{\alpha} $ matrix of $ G $ is specified as $ A_{\alpha}(G) = \alpha D(G)+(1-\alpha) A(G), \; \alpha\in[0, 1] $, where $ D(G) $ is the diagonal matrix of vertex degrees while $ A(G) $ is the adjacency matrix of $ G. $ In this article, we investigate the $ A_{\alpha} $ matrix for commuting graphs of finite groups and we also find the $ A_{\alpha} $ eigenvalues of the dihedral, the semidihedral and the dicyclic groups. We determine the upper bounds for the largest $ A_{\alpha} $ eigenvalue for these graphs. Consequently, we get the adjacency eigenvalues, the Laplacian eigenvalues, and the signless Laplacian eigenvalues of these graphs for particular values of $ \alpha $. Further, we show that these graphs are Laplacian integral.



    加载中


    [1] A. Abdollahi, Commuting graph of full matrix rings over finite fields, Linear Algebra Appl., 428 (2008), 2947–2954. https://doi.org/10.1016/j.laa.2008.01.036 doi: 10.1016/j.laa.2008.01.036
    [2] Abdussakir, Sudarman, M. N. Jauhari, F. Ali, Survey on topological indices and graphs associated with a commutative ring, J. Phys.: Conf. Ser., 1562 (2020), 012008.
    [3] A. Abdussakir, R. R. Elvierayani, M. Nafisah, On the spectra of commuting and non commuting graph on dihedral groups, Cauchy, 4 (2017), 176–182.
    [4] F. Ali, M. Salman, S. Huang, On the commuting graph of dihedral group, Commun. Algebra, 44 (2016), 2389–2401.
    [5] F. Ali, Y. Li, The connectivity and the spectral radius of commuting graphs on certain finite groups, Linear Multilinear Algebra, 69 (2019), 2945–2958. http://doi.org/10.1080/03081087.2019.1700893. doi: 10.1080/03081087.2019.1700893
    [6] F. Ali, B. A. Rather, N. Fatima, M. Sarfraz, A. Ullah, K. A. M. Alharbi, et al., On the topological indices of commuting graphs for finite non-Abelian groups, Symmetry, 14 (2022), 1266.
    [7] F. Ali, S. Fatima, W. Wang, On the power graph of certain of certain finite groups, Linear Multilinear Algebra, 2020. https://doi.org/10.1080/03081087.2020.1856028 doi: 10.1080/03081087.2020.1856028
    [8] F. Ali, B. A. Rather, A. Din, T. Saeed, A. Ullah, Power graphs of finite groups determined by Hosoya properties, Entropy, 24 (2022), 213. https://doi.org/10.3390/e24020213 doi: 10.3390/e24020213
    [9] D. F. Anderson, T. Asir, A. Badawi, T. T. Chelvam, Graphs from rings, Springer Nature Switzerland, 2021.
    [10] M. Ashraf, J. H. Asaloon, A. M. Alanazi, A. Alamer, An ideal-based dot total graph of a commutative ring, Mathematics, 9 (2021), 3072. https://doi.org/10.3390/math9233072 doi: 10.3390/math9233072
    [11] T. T. Chelvam, K. Selvakumar, S. Raja, Commuting graph on dihedral group, J. Math. Comput. Sci., 2 (2011), 402–406.
    [12] J. Chen, L. Tang, The commuting graphs on dicyclic groups, Algebra Colloq., 27 (2020), 799–806. https://doi.org/10.1142/S1005386720000668 doi: 10.1142/S1005386720000668
    [13] T. Cheng, M. Dehmer, F. Emmert-Strein, Y. Li, W. Liu, Properties of commuting graphs over semidihedral groups, Symmetry, 13 (2021). http://doi.org/10.3390/sym13010103 doi: 10.3390/sym13010103
    [14] D. M. Cvetković, P. Rowlison, S. Simić, An introduction to theory of graph spectra, UK: Cambridge University Press, 2011. https://doi.org/10.1017/CBO9780511801518
    [15] D. Dolžan, P. Oblak, Commuting graph of matrices over semirings, Linear Algebra Appl., 435 (2011), 1657–1665. https://doi.org/10.1016/j.laa.2010.04.014 doi: 10.1016/j.laa.2010.04.014
    [16] W. N. T. Fasfous, R. K. Nath, R. Sharafdini, Various spectra and energy of commuting graphs of finite rings, Hacettepe J. Math. Stat., 49 (2020), 1915–1925.
    [17] E. Fritscher, V. Trevisan, Exploring symmetries to decompose matrices and graphs preserving the spectrum, SIAM J. Matrix Anal. Appl., 37 (2016), 260–289. https://doi.org/10.1137/15M1013262 doi: 10.1137/15M1013262
    [18] M. Ghorbani, Z. G. Alkhansari, A. Z. Bashi, On the eigenvalue of non commuting graphs of groups, Alg. Struc. Appl., 4 (2017), 27–38. https://doi.org/10.29252/ASTA.4.2.27 doi: 10.29252/ASTA.4.2.27
    [19] R. Horn, C. Johnson, Matrix analysis, 2 Eds., Cambridge University Press, 2013.
    [20] V. Kakkar, G. S. Rawat, On commuting graph of generalized dihedral groups, Discrete Math. Algorithms Appl., 11 (2019), 1950024. http://doi.org/10.1142/S1793830919500241. doi: 10.1142/S1793830919500241
    [21] D. Li, Y. Chen, J. Meng, The $A_{\alpha}$ spectral radius of trees and unicyclic graphs with given degree sequence, Appl. Math. Comput., 363 (2019), 124622. https://doi.org/10.1016/j.amc.2019.124622 doi: 10.1016/j.amc.2019.124622
    [22] W. K. Nicholson, Introduction to abstract algebra, 4 Eds., John Wiley and sons, New Jersey, 2012.
    [23] V. Nikiforov, Merging the $A- $and $Q-$spectral theories, Appl. Anal. Discrete Math., 11 (2017), 18–107.
    [24] V. Nikiforov, G. Pasten, O. Rojo, R. L. Soto, On the $A_{\alpha}$ spectra of trees, Linear Algebra Appl., 520 (2017), 286–305. https://doi.org/10.1016/j.laa.2017.01.029 doi: 10.1016/j.laa.2017.01.029
    [25] S. Pirzada, B. A. Rather, H. A. Ganie, R. Shaban, On $ \alpha -$adjacency energy of graphs, AKCE Int. J. Graphs Comb., 18 (2021), 39–46. https://doi.org/10.1080/09728600.2021.1917973 doi: 10.1080/09728600.2021.1917973
    [26] S. Pirzada, B. A. Rather, T. A. Chishti, U. Samee, On normalized Laplacian spectrum of zero divisor graphs of commutative ring $\mathbb{Z}_{n} $, Electron. J. Graph Theory Appl., 9 (2021), 331–345. http://dx.doi.org/10.5614/ejgta.2021.9.2.7 doi: 10.5614/ejgta.2021.9.2.7
    [27] B. A. Rather, On distribution of Laplacian eigenvalues of graphs, 2021. https://doi.org/10.48550/arXiv.2107.09161.
    [28] B. A. Rather, M. Aijaz, F. Ali, N. Mlaiki, A. Ullah, On distance signless Laplacian eigenvalues of zero divisor graph of commutative rings, AIMS Math., 7 (2022), 12635–12649. https://doi.org/10.3934/math.2022699 doi: 10.3934/math.2022699
    [29] B. A. Rather, S. Pirzada, T. A. Chishti, A. M. A. Alghamdi, On normalized Laplacian eigenvalues of power graphs associated to finite cyclic groups, Discrete Math. Algorithms Appl., 2022. https://doi.org/10.1142/S1793830922500707 doi: 10.1142/S1793830922500707
    [30] B. A. Rather, S. Pirzada, T. A. Naikoo, On distance signless Laplacian spectra of power graphs of the integer modulo group, Art Discrete Appl. Math., 2022. https://doi.org/10.26493/2590-9770.1393.2be doi: 10.26493/2590-9770.1393.2be
    [31] W. So, Commutativity and spectra of Hermitian matrices, Linear Algebra Appl., 212-213 (1994), 121–129. https://doi.org/10.1016/0024-3795(94)90399-9 doi: 10.1016/0024-3795(94)90399-9
    [32] M. Torktaz, A. R. Ashrafi, Spectral properties of the commutating graphs of certain finite groups, AKCE Int. J. Graphs Comb., 16 (2019), 300–309. https://doi.org/10.1016/j.akcej.2018.09.006 doi: 10.1016/j.akcej.2018.09.006
    [33] C. Wang, S. Wang, The $A_{\alpha}$-spectral radii of graphs with given connectivity, Mathematics, 7 (2019), 44. http://doi.org/10.3390/math7010044 doi: 10.3390/math7010044
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1600) PDF downloads(82) Cited by(4)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog