Research article

A new spectral method with inertial technique for solving system of nonlinear monotone equations and applications

  • Received: 27 July 2022 Revised: 13 November 2022 Accepted: 23 November 2022 Published: 05 December 2022
  • MSC : 90C30, 90C06, 90C56

  • Many problems arising from science and engineering are in the form of a system of nonlinear equations. In this work, a new derivative-free inertial-based spectral algorithm for solving the system is proposed. The search direction of the proposed algorithm is defined based on the convex combination of the modified long and short Barzilai and Borwein spectral parameters. Also, an inertial step is introduced into the search direction to enhance its efficiency. The global convergence of the proposed algorithm is described based on the assumption that the mapping under consideration is Lipschitz continuous and monotone. Numerical experiments are performed on some test problems to depict the efficiency of the proposed algorithm in comparison with some existing ones. Subsequently, the proposed algorithm is used on problems arising from robotic motion control.

    Citation: Sani Aji, Aliyu Muhammed Awwal, Ahmadu Bappah Muhammadu, Chainarong Khunpanuk, Nuttapol Pakkaranang, Bancha Panyanak. A new spectral method with inertial technique for solving system of nonlinear monotone equations and applications[J]. AIMS Mathematics, 2023, 8(2): 4442-4466. doi: 10.3934/math.2023221

    Related Papers:

    [1] Sani Aji, Poom Kumam, Aliyu Muhammed Awwal, Mahmoud Muhammad Yahaya, Kanokwan Sitthithakerngkiet . An efficient DY-type spectral conjugate gradient method for system of nonlinear monotone equations with application in signal recovery. AIMS Mathematics, 2021, 6(8): 8078-8106. doi: 10.3934/math.2021469
    [2] Austine Efut Ofem, Jacob Ashiwere Abuchu, Godwin Chidi Ugwunnadi, Hossam A. Nabwey, Abubakar Adamu, Ojen Kumar Narain . Double inertial steps extragadient-type methods for solving optimal control and image restoration problems. AIMS Mathematics, 2024, 9(5): 12870-12905. doi: 10.3934/math.2024629
    [3] Ting Lin, Hong Zhang, Chaofan Xie . A modulus-based modified multivariate spectral gradient projection method for solving the horizontal linear complementarity problem. AIMS Mathematics, 2025, 10(2): 3251-3268. doi: 10.3934/math.2025151
    [4] Younes Talaei, Sanda Micula, Hasan Hosseinzadeh, Samad Noeiaghdam . A novel algorithm to solve nonlinear fractional quadratic integral equations. AIMS Mathematics, 2022, 7(7): 13237-13257. doi: 10.3934/math.2022730
    [5] Ziqi Zhu, Kaiye Zheng, Shenghua Wang . A new double inertial subgradient extragradient method for solving a non-monotone variational inequality problem in Hilbert space. AIMS Mathematics, 2024, 9(8): 20956-20975. doi: 10.3934/math.20241020
    [6] Aliyu Muhammed Awwal, Poom Kumam, Kanokwan Sitthithakerngkiet, Abubakar Muhammad Bakoji, Abubakar S. Halilu, Ibrahim M. Sulaiman . Derivative-free method based on DFP updating formula for solving convex constrained nonlinear monotone equations and application. AIMS Mathematics, 2021, 6(8): 8792-8814. doi: 10.3934/math.2021510
    [7] Yali Zhao, Qixin Dong, Xiaoqing Huang . A self-adaptive viscosity-type inertial algorithm for common solutions of generalized split variational inclusion and paramonotone equilibrium problem. AIMS Mathematics, 2025, 10(2): 4504-4523. doi: 10.3934/math.2025208
    [8] Hasanen A. Hammad, Habib ur Rehman, Manuel De la Sen . Accelerated modified inertial Mann and viscosity algorithms to find a fixed point of $ \alpha - $inverse strongly monotone operators. AIMS Mathematics, 2021, 6(8): 9000-9019. doi: 10.3934/math.2021522
    [9] Zhensheng Yu, Peixin Li . An active set quasi-Newton method with projection step for monotone nonlinear equations. AIMS Mathematics, 2021, 6(4): 3606-3623. doi: 10.3934/math.2021215
    [10] Fiza Zafar, Alicia Cordero, Dua-E-Zahra Rizvi, Juan Ramon Torregrosa . An optimal eighth order derivative free multiple root finding scheme and its dynamics. AIMS Mathematics, 2023, 8(4): 8478-8503. doi: 10.3934/math.2023427
  • Many problems arising from science and engineering are in the form of a system of nonlinear equations. In this work, a new derivative-free inertial-based spectral algorithm for solving the system is proposed. The search direction of the proposed algorithm is defined based on the convex combination of the modified long and short Barzilai and Borwein spectral parameters. Also, an inertial step is introduced into the search direction to enhance its efficiency. The global convergence of the proposed algorithm is described based on the assumption that the mapping under consideration is Lipschitz continuous and monotone. Numerical experiments are performed on some test problems to depict the efficiency of the proposed algorithm in comparison with some existing ones. Subsequently, the proposed algorithm is used on problems arising from robotic motion control.



    Spectral gradient methods are among the widely known first-order methods for unconstrained optimization problems minmRnf(m), where f:RnR is a smooth nonlinear function that is bounded below. These methods generate a sequence of approximations using the iterative formula:

    mk+1=mk+Λktk, (1.1)

    where Λk is called the step size and is obtained using some line search procedures, and tk is called a search direction, defined as

    tk:={gk,ifk=0,¯γkgk,ifk1, (1.2)

    where gk:=f(mk), and the coefficient ¯γk is a scalar known as the spectral parameter, which differentiates any two spectral gradient methods (see Barzilai and Borwein (BB) [1]). The classical forms of the parameter ¯γk given in [1] are

    ¯γlongk=mk+1mk2g(mk+1)g(mk),mk+1mk, (1.3)
    ¯γshortk=g(mk+1)g(mk),mk+1mkg(mk+1)g(mk)2. (1.4)

    Among the advantages of the spectral gradient method is its simplicity in implementation and low storage requirement; thus, it is suitable for large-scale problems. As a result, researchers have extended the spectral gradient method to solve systems of nonlinear equations (see, [2,3,4]). A system of nonlinear equations involves finding a vector m in a nonempty, closed and convex set CRn such that

    Γ(m)=0, (1.5)

    where Γ:RnRn is continuous. When the mapping Γ is monotone, i.e.,

    Γ(m)Γ(¯m),m¯m0,m,¯mRn,

    Problem (1.5) becomes a system of nonlinear monotone equations. Many problems arising from science and engineering can be translated into the form of problem (1.5). For example, applications of system of nonlinear equations (1.5) have appeared in different fields [5,6,7,8,9,10]. In recent years, algorithms for solving systems of nonlinear monotone equations have been used in signal and image recovery, (see [11,12,13,14,15,16,17]).

    Motivated by the hyperplane projection strategy of Solodov and Svaiter [18], spectral gradient-like methods for solving (1.5) have gained more attention. Zhang and Zhou [19] developed a spectral gradient projection method for unconstrained nonlinear equations based on the modified version of the ¯γlongk (1.3). Later on, Yu et al.[20] extended the work in [19] to solve convex constrained nonlinear equations. In addition, Yu et al. [21] proposed another spectral method for solving a system of nonlinear equations. The search direction in their work uses a convex combination of the modified ¯γlongk (1.3) and ¯γshortk (1.4). Their work revealed that combining the modified BB parameters gives better numerical performance than deploying them separately. This means that the efficiency of the convex combination of the ¯γlongk (1.3) and ¯γshortk (1.4) can be further explored.

    Nowadays, there is a growing interest in incorporating the inertial technique into algorithms for solving systems of nonlinear equations (see, for example, [22,23]). The inertial step defined as ik+1:=mk+1+αk(mk+1mk),αk(0,1), was proposed by Polyak [24] in order to speed up the performance of iterative algorithms. It can be observed that the inertial technique is using two previous iterates to compute the current iterate. This has also been shown to accelerate the iteration process of algorithms for solving nonlinear problems such as the proximal point method [25,26] and auxiliary problem principle [27].

    Motivated by the contributions of the above-mentioned literature, this work seeks to explore the effect of the inertial technique on the convex combination of the ¯γlongk and ¯γshortk based on some modifications. This idea can be viewed as the modification of the work of Yu et al. [21]. Numerical experiments conducted in Section 3 reveal some level of improvement in numerical performance. Some of the notable contributions of this work include the following:

    ● A new spectral method for solving a system of nonlinear monotone equations based on the inertial technique is proposed.

    ● This work generalizes some existing algorithms in the literature.

    ● The global convergence of the proposed method is discussed under standard conditions.

    ● To depict the efficiency of the new method, a numerical experiment on a collection of test problems in comparison with some existing methods is presented.

    ● Subsequently, the proposed algorithm is applied to problems arising from robotic motion control.

    In the remaining part of this work, the next section gives some definitions, details of the algorithms and global convergence. Section three gives some numerical experiments, while the application part is in Section four. In the final section, some concluding remarks are given.

    We begin this section by recalling the definition of the projection operator as follows:

    Definition 2.1. Suppose CRn is a convex, nonempty and closed set. Then, any point mRn can be projected onto the set C using

    PC(m)=argmin{m¯m :¯mC}. (2.1)

    The relation (2.1) satisfies the following useful property:

    PC(m)¯mm¯m,¯mC. (2.2)

    Definition 2.2. Any vector-valued map that satisfies

    Γ(m)Γ(¯m)Lm¯m,m,¯mRn,L>0,

    is said to be Lipschitz continuous.

    In what follows, we present the proposed algorithm and subsequently give some remarks.

    Algorithm 1: Derivative-Free Spectral Method with Inertia (iSDFM).
        Input: Choose m1,m0C, 0<η<2, κ>0, σ,μ,ς,αk(0,1), r>0 and Tol>0.
        Step 0: Set k=0, compute t0:=Γ(m0) and i0:=m0+α0(m0m1).
        Step 1: If Γ(mk)Tol, then terminate; else, continue with Step 2.
        Step 2: Set
    pk:=mk+Λktk,Λk=κςj,(2.3)
        where j is the least non–negative integer such that
    Γ(mk+κςjtk),tkσκςjtk2min{1,Γ(mk+κςjtk)1c},c1.(2.4)
        Step 3: If Γ(pk)=0, stop. Else, compute
    mk+1:=PC[mkηΓ(pk),mkpkΓ(pk)2Γ(pk)].(2.5)
    Step 4: Set k:=k+1 and redo the task from step 1, where the inertial step is updated as ik+1:=mk+1+αk(mk+1mk) with the search direction as
    tk:=γkΓ(mk),(2.6)
        where
    γk=(1θk)¯βk+θkˆβk,(2.7)
    ¯βk=ik+1ik2ik+1ik,Γ(ik+1)Γ(ik)+r(ik+1ik),(2.8)
    ˆβk=ik+1ik,Γ(ik+1)Γ(ik)+r(ik+1ik)Γ(ik+1)Γ(ik)+r(ik+1ik)2,(2.9)
    θk=1μΓ(mk),ik+1ik2¯Γ(mk)2ik+1ik2,(2.10)
    ¯Γ(mk)=max{Γ(mk1),Γ(mk)}.(2.11)

     | Show Table
    DownLoad: CSV

    Remark 2.3. The choice of the θk defined by (2.10) is prompted by the work of Awwal et al. [28]. Now, since max{Γ(mk1),Γ(mk)}Γ(mk), then by the Cauchy-Schwarz inequality we have

    0Γ(mk),ik+1ik2¯Γ(mk)2ik+1ik2Γ(mk)2ik+1ik2Γ(mk)2ik+1ik2=1, (2.12)

    and by the fact that μ(0,1), we get

    0θk1. (2.13)

    Remark 2.4. We note that if for all k, ik=mk (2.8) and (2.9) and θk[0,1], then the search direction (2.6) reduces to that of Yu et al. [21]. Moreover, if for all k, ik=mk in (2.8) and θk=0, then the search direction (2.6) reduces to that of Yu et al.[20]. Furthermore, the new search direction (2.6) also reduces to DAIS1 and DAIS2 of Awwal et al. in [22] if θk=1 and θk=0, respectively. Hence, our proposed work is regarded as an extension of the algorithms proposed in [21,22].

    To show the global convergence of the proposed algorithms, we assumed the following:

    (A1) The mapping Γ is monotone.

    (A2) The mapping Γ is Lipschitz continuous.

    (A3) The solution set of problem (1.5) is nonempty.

    Lemma 2.5. Suppose that the assumptions (A1)–(A3) hold, and that {mk} and {ik} are produced by Algorithm 1. Then,

    (ⅰ) limkmkˆm exists.

    (ⅱ) {mk}, {ik} and Γ(mk) are bounded.

    (ⅲ) The search direction is bounded, i.e.,

    tkc1,c1>0. (2.14)

    (ⅳ) The search direction satisfies

    Γ(mk),tkc2Γ(mk)2,c2>0. (2.15)

    (ⅴ)

    limkΛktk=0. (2.16)

    Proof. Let ˆm be a solution of problem (1.5), and by the assumption (A1), we have

    Γ(pk),mkˆm=Γ(pk),mkpk+pkˆm=Γ(pk),mkpk+Γ(pk)Γ(ˆm),pkˆmΓ(pk),mkpk. (2.17)

    Now, since 0<η<2, from (2.2), (2.5) and (2.17) we have

    mk+1ˆm2=PC[mkηΓ(pk),mkpkΓ(pk)2Γ(pk)]ˆm2mkˆmηΓ(pk),mkpkΓ(pk)2Γ(pk)2=mkˆm22ηΓ(pk),mkpkΓ(pk)2Γ(pk),mkˆm+η2Γ(pk),mkpk2Γ(pk)2mkˆm22ηΓ(pk),mkpkΓ(pk)2Γ(pk),mkpk+η2Γ(pk),mkpk2Γ(pk)2=mkˆm2η(2η)Γ(pk),mkpk2Γ(pk)2mkˆm2. (2.18)

    This means that mkˆmmk1ˆmm0ˆm, and thus limkmkˆm exists.

    (ⅱ) Since limkmkˆm exists, {mk} is bounded. Combined with the fact that 0<αk<1,k, this gives the boundedness of {ik}.

    In addition, since the mapping Γ is Lipschitz continuous and {mk} is bounded, we can find a positive constant c3>0 such that

    Γ(mk)c3. (2.19)

    (ⅲ) To prove that the search direction defined by (2.6) is bounded, we need to show that the parameter γk (2.7) is bounded.

    From assumption (A1), the mapping Γ is monotone. This gives us Γ(ik+1)Γ(ik),ik+1ik0, and thus

    Γ(ik+1)Γ(ik)+r(ik+1ik),ik+1ik=Γ(ik+1)Γ(ik),ik+1ik+rik+1ik2rik+1ik2. (2.20)

    Moreover, using the assumption that the mapping Γ is Lipschitz continuous, together with the Cauchy Schwarz inequality, we have

    Γ(ik+1)Γ(ik)+r(ik+1ik),ik+1ik=Γ(ik+1)Γ(ik),ik+1ik+rik+1ik2(L+r)ik+1ik2. (2.21)

    Thus, (2.20) and (2.21) imply

    rik+1ik2Γ(ik+1)Γ(ik)+r(ik+1ik),ik+1ik(L+r)ik+1ik2, (2.22)

    and therefore

    1L+r¯βk1r. (2.23)

    On the other hand,

    Γ(ik+1)Γ(ik)+r(ik+1ik)2=Γ(ik+1)Γ(ik)+r(ik+1ik),Γ(ik+1)Γ(ik)+r(ik+1ik)=Γ(ik+1)Γ(ik)2+2rΓ(ik+1)Γ(ik),ik+1ik+r2ik+1ik2Γ(ik+1)Γ(ik)2+r2ik+1ik2r2ik+1ik2. (2.24)

    Using Lipschitz continuity, we have

    Γ(ik+1)Γ(ik)+r(ik+1ik)(L+r)ik+1ik. (2.25)

    Combining (2.24) and (2.25) gives

    r2ik+1ik2Γ(ik+1)Γ(ik)+r(ik+1ik)2(L+r)2ik+1ik2. (2.26)

    Using (2.22) and (2.26), we have

    r(L+r)2ˆβk(L+r)r2. (2.27)

    Therefore, setting M=1r+L+rr2 yields

    ¯βk+ˆβkM. (2.28)

    Since k, θk1 (see Remark 1),

    γk=(1θk)¯βk+θkˆβk¯βk+ˆβkM. (2.29)

    Combining this with (2.19) gives (2.14) with c1=Mc3.

    (ⅳ) By the definition of θk, we have three possibilities, and thus the parameter γk may take any of the three different following forms: γk=¯βk, γk=ˆβk and γk=(1θk)¯βk+θkˆβk for θk=0, θk=1 and θk(0,1), respectively. Therefore, we divide this proof into three cases:

    Case Ⅰ: If θ=0,k, then the search direction (2.6) reduces to tk=¯βkΓk(mk), and therefore, using (2.23) gives

    Γ(mk),tk=¯βkΓ(mk)21L+rΓ(mk)2. (2.30)

    Case Ⅱ: If θ=1,k, then the search direction (2.6) becomes tk=ˆβkΓk(mk), and thus, using (2.27) yields

    Γ(mk),tk=ˆβkΓ(mk)2r(L+r)2Γ(mk)2. (2.31)

    Case Ⅲ: If 0<θ<1,k, then we can find some constant c4>0 such that θk>c4 and (1θk)>0. Therefore, from (2.7) and (2.27), we have

    γkθkˆβkc4r(L+r)2:=c5. (2.32)

    Thus, from the search direction (2.6) and (2.32), it holds that

    Γ(mk),tk=γkΓ(mk)2c5Γ(mk)2. (2.33)

    Hence, from the three cases above, we see that (2.15) holds.

    (ⅴ) Using the boundedness of {mk}, (2.14) and the definition of pk in (2.3), {pk} is bounded. Also, using the assumption that Γ is Lipschitz continuous, we get

    Γ(pk)n1,n1>0. (2.34)

    Since min{1,Γ(mk+Λktk)1c}1, squaring from both sides of (2.4) yields

    σ2Λ4ktk4Γ(pk),Λktk2. (2.35)

    Furthermore, since 0<η<2, from (2.18) we obtain

    Γ(pk),mkpk2Γ(pk)2(mkˆm2mk+1ˆm2)η(2η). (2.36)

    This together with (2.35) gives

    σ2Λ4ktk4Γ(pk)2(mkˆm2mk+1ˆm2)η(2η). (2.37)

    Recall that Γ(pk) is bounded by n1 (see (2.34)), and we obtain

    σ2Λ4ktk4Γ(pk)2(mkˆm2mk+1ˆm2)η(2η)n21(mkˆm2mk+1ˆm2)η(2η). (2.38)

    Since limkmkˆm exists, taking the limit as k on both sides of (2.38) gives

    σ2limkΛ4ktk4=0,

    which implies (2.16).

    Lemma 2.6. Suppose that the Assumption (A2) holds. Let the sequences {mk} and {pk} be generated by Algorithm 1. Then,

    Λkmax{κ,c2ςΓ(mk)2(L+σ)tk2}. (2.39)

    Proof. From (2.4), if Λkκ, then ˜Λk=Λkς1 violates (2.4), that is,

    Γ(mk+˜Λktk),tk<σtk2˜Λkmin{1,Γ(mk+ςjtk)1c}.

    We know that min{1,Γ(mk+ςjtk)1c}1. Thus, from (2.15) and Assumption (A2), we get

    c2Γ(mk)2Γ(mk)Ttk=(Γ(mk+˜Λktk)Γ(mk))TtkΓ(mk+˜Λktk),tkΓ(mk+˜Λktk)Γ(mk)tkΓ(mk+˜Λktk),tkLmk+˜Λktkmktk+σ˜Λktk2min{1,Γ(mk+ςjtk)1c}Lmk+˜Λktkmktk+σ˜Λktk2˜ΛkLtk2+σ˜Λktk2˜Λk(L+σ)tk2.

    Therefore,

    ˜Λkc2Γ(mk)2(L+σ)tk2. (2.40)

    Substituting ˜Λk=Λkς1 in (2.40) and solving for Λk, we get

    Λkc2ςΓ(mk)2(L+σ)tk2. (2.41)

    Thus, we have

    Λkmax{κ,c2ςΓ(mk)2(L+σ)tk2}.

    Theorem 2.7. If the Assumptions (A1A3) hold, and the sequence {mk} is produced by Algorithm 1, then

    lim infkΓ(mk)=0. (2.42)

    Proof. We show the proof by contradiction. Suppose (2.42) does not hold, and then there exists s>0 such that k0,

    Γ(mk)s. (2.43)

    From Eqs (2.15) and (2.43), we get k0,

    tksc2. (2.44)

    Multiplying tk on both sides of (2.39), and using (2.14) and (2.43), we obtain

    Λktkmax{κ,c2ςΓ(mk)2(L+σ)tk2}tkmax{κ,c2ςc23(L+σ)c22}c2s=max{κc2s,ςc23s(L+σ)}. (2.45)

    Taking the limit as k on both sides gives

    limkΛktk>0, (2.46)

    which contradicts (2.16). Hence, lim infkΓ(mk)=0.

    In this section, we present the numerical experiments performed by solving a set of test problems taken from the literature. To depict the efficiency of the iSDFM algorithm, we perform numerical comparison with two other existing methods. The first one is the DAIS1 algorithm proposed in [22], which is an inertial-based algorithm for solving a system of nonlinear equations. The second algorithm is the MSGPALG proposed by Yu et al. in [21] based on the convex combination of the modified BB long and short parameters. As noted in Remark 2.4, both DAIS1 and MSGPALG can be viewed as special cases of the proposed iSDFM algorithm. We test the performances of all these three algorithms on seven test problems with eight different initial points (see Table 1) and five dimensions (1000, 5000, 10000, 50000, and 100000), thus making the total number of the test problems 280. These three algorithms are coded on MATLAB R2019b which runs on a PC of corei3-4005U processor with 4 GB RAM and 1.70 GHz CPU. The choice of parameters for MSGPALG and DAIS1 are maintained as reported in their respective references [21,22]. In the iSDFM algorithm, we choose ς=0.47, αk=1/(k+1)2, η=1.79, μ=0.5, σ=0.01, r=0.001, c=2 and κ=1. The stopping criterion is set to be Γ(mk)<106.

    Table 1.  Initial guesses used for the problems.
    Initial guess Value
    m1 (1,1,1,,1)T
    m2 (0.1,0.1,0.1,,0.1)T
    m3 (12,122,123,,12n)T
    m4 (11n,12n,13n,,0)T
    m5 (0,1n,2n,,n1n)T
    m6 (1,12,13,,1n)T
    m7 (n1n,n2n,n3n,,0)T
    m8 (1n,2n,3n,,0)T

     | Show Table
    DownLoad: CSV

    We consider the following test problems, where Γ(m)=(g1(m),g2(m),,gn(m))T:

    Problem 1. [29]:

    g1(m)=em11,gj(m)=emj+mj1,forj=2,...,n,andC=Rn+.

    Problem 2. [28] Modified logarithmic function:

    gj(m)=ln(mj+1)mjn,forj=1,2,3,...,n,andC={mRn:nj=1mjn,mj>1,j=1,2,,n}.

    Problem 3. [30] Nonsmooth function:

    gj(m)=2mjsin|mj|,j=1,2,3,...,n,andC={mRn:nj=1mjn,mj0,j=1,2,,n}.

    Problem 4. [31] Strictly convex function:

    gj(m)=emj1,forj=1,2,...,n,andC=Rn+.

    Problem 5. [20] Nonsmooth function:

    gj(m)=mjsin|mj1|,j=1,2,3,...,n,andC={mRn:nj=1min,mj1,j=1,2,,n}.

    Problem 6.[29]:

    gj(m)=emj2+1.5sin(2mj)1,forj=1,2,...,n,andC=Rn+.

    Problem 7. [32]:

    g1(m)=52m1+m21,gj(m)=mj1+52mj+mj+11,forj=2,3,...,n1,gn(m)=mn1+52mn1andC=Rn+.

    Based on these settings, the results of the experiments are tabulated in Tables 28 with ITER, FVAL and TIME denoting the number of iterations, number of function evaluations and CPU time, respectively. Based on these metrics, it can be observed that the performances of the three algorithms varies in terms of the ITER, FVAL and TIME. However, taking the whole results of the experiment into consideration, it can be seen that the proposed iSDFM algorithm outperformed the DAIS1 and the MSGPALG algorithms in most instances. By outperforming we mean the new iSDFM recorded the least ITER, FVAL and TIME in most cases of the experiment.

    Table 2.  Numerical results of the three algorithms on Problem 1.
    iSDFM DAIS1 MSGPALG
    DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM
    1000 m1 1 2 0.0747 0.00E+00 5 7 0.1166 9.24E-08 8 9 0.1666 2.76E-07
    m2 1 2 0.0054 0.00E+00 5 7 0.0519 5.76E-08 7 8 0.0395 1.06E-07
    m3 2 3 0.0186 9.93E-16 10 11 0.0344 8.05E-08 10 11 0.0240 2.07E-07
    m4 2 3 0.0052 0.00E+00 6 8 0.0253 2.30E-07 8 9 0.0112 2.52E-07
    m5 2 3 0.0078 0.00E+00 6 8 0.0385 1.10E-07 8 9 0.0213 2.46E-07
    m6 3 4 0.0064 0.00E+00 9 11 0.0278 7.28E-08 9 10 0.0057 1.98E-07
    m7 2 3 0.0064 0.00E+00 6 8 0.0118 2.30E-07 8 9 0.0094 2.52E-07
    m8 2 3 0.0041 0.00E+00 6 8 0.0101 1.11E-07 8 9 0.0100 2.47E-07
    5000 m1 1 2 0.1996 0.00E+00 5 7 0.2617 2.37E-07 8 9 0.0676 6.05E-07
    m2 1 2 0.0113 0.00E+00 4 6 0.0242 8.65E-08 7 8 0.0182 1.65E-07
    m3 2 3 0.0138 9.93E-16 10 11 0.0423 8.05E-08 10 11 0.0224 2.07E-07
    m4 2 3 0.0145 0.00E+00 6 8 1.1522 2.91E-07 8 9 0.1283 5.54E-07
    m5 2 3 0.0556 0.00E+00 6 8 0.0308 2.55E-07 8 9 0.0286 5.52E-07
    m6 3 4 0.1059 0.00E+00 9 11 0.0446 7.33E-08 9 10 0.0253 1.95E-07
    m7 2 3 0.2689 0.00E+00 6 8 0.0281 2.91E-07 8 9 0.0196 5.54E-07
    m8 2 3 0.0683 0.00E+00 6 8 0.0291 2.55E-07 8 9 1.4239 5.52E-07
    10000 m1 1 2 0.0335 0.00E+00 5 7 0.9254 3.37E-07 8 9 0.0582 8.53E-07
    m2 1 2 0.0139 0.00E+00 4 6 0.0311 1.06E-07 7 8 0.3954 2.21E-07
    m3 2 3 1.7858 9.93E-16 10 11 0.1457 8.05E-08 10 11 0.1475 2.07E-07
    m4 2 3 0.0597 0.00E+00 6 8 0.0676 3.85E-07 8 9 0.0401 7.82E-07
    m5 2 3 0.0287 0.00E+00 6 8 0.0427 3.60E-07 8 9 0.0347 7.81E-07
    m6 3 4 0.0428 0.00E+00 9 11 0.4798 7.33E-08 9 10 0.0475 1.94E-07
    m7 2 3 0.0353 0.00E+00 6 8 0.0518 3.85E-07 8 9 0.1343 7.82E-07
    m8 2 3 0.5467 0.00E+00 6 8 0.1948 3.61E-07 8 9 2.2142 7.81E-07
    50000 m1 1 2 0.1128 0.00E+00 5 7 0.2563 7.55E-07 9 10 0.2087 9.07E-08
    m2 1 2 0.5707 0.00E+00 4 6 2.7546 1.93E-07 7 8 0.1446 4.74E-07
    m3 2 3 0.1359 9.93E-16 10 11 1.7252 8.05E-08 10 11 0.1304 2.07E-07
    m4 2 3 0.1764 0.00E+00 6 8 0.1702 8.17E-07 9 10 0.1625 8.32E-08
    m5 2 3 0.0968 0.00E+00 6 8 0.5717 8.07E-07 9 10 1.3341 8.31E-08
    m6 3 4 1.1641 0.00E+00 9 11 0.4882 7.34E-08 9 10 0.1229 1.94E-07
    m7 2 3 0.1440 0.00E+00 6 8 0.2247 8.17E-07 9 10 0.1264 8.32E-08
    m8 2 3 0.0931 0.00E+00 6 8 1.1037 8.07E-07 9 10 0.1459 8.31E-08
    100000 m1 1 2 0.1883 0.00E+00 6 8 0.4077 5.32E-09 9 10 0.9471 1.28E-07
    m2 1 2 0.6308 0.00E+00 4 6 0.2373 2.65E-07 7 8 0.2009 6.66E-07
    m3 2 3 0.2199 9.93E-16 10 11 4.2777 8.05E-08 10 11 0.2548 2.07E-07
    m4 2 3 0.1781 0.00E+00 7 9 0.4334 5.71E-09 9 10 0.2946 1.18E-07
    m5 2 3 0.8688 0.00E+00 7 9 1.8487 5.68E-09 9 10 0.2558 1.18E-07
    m6 3 4 0.1510 0.00E+00 9 11 0.6243 7.34E-08 9 10 2.5348 1.94E-07
    m7 2 3 0.3463 0.00E+00 7 9 0.3045 5.71E-09 9 10 0.2682 1.18E-07
    m8 2 3 0.3872 0.00E+00 7 9 3.9198 5.68E-09 9 10 0.3627 1.18E-07

     | Show Table
    DownLoad: CSV
    Table 3.  Numerical results of the three algorithms on Problem 2.
    iSDFM DAIS1 MSGPALG
    DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM
    1000 m1 4 6 0.0300 2.13E-07 8 10 0.0332 6.00E-08 9 10 0.0283 3.85E-07
    m2 19 21 0.0497 9.06E-07 4 6 0.0119 1.25E-07 6 7 0.0145 5.14E-07
    m3 7 9 0.0239 4.09E-07 7 9 0.0146 2.78E-08 7 8 0.0096 5.83E-07
    m4 7 9 0.0172 9.09E-07 8 10 0.0195 2.49E-07 9 10 0.0096 4.50E-07
    m5 7 9 0.0333 9.09E-07 8 10 0.0177 2.49E-07 9 10 0.0115 4.50E-07
    m6 8 10 0.0192 4.95E-08 8 10 0.0181 1.95E-08 7 8 0.0120 7.79E-07
    m7 7 9 0.0145 9.09E-07 8 10 0.0181 2.49E-07 9 10 0.0185 4.50E-07
    m8 7 9 0.0165 8.88E-07 8 10 0.0203 2.50E-07 9 10 0.0107 4.54E-07
    5000 m1 4 6 0.4667 9.03E-07 8 10 1.2040 1.34E-07 9 10 0.7974 8.59E-07
    m2 23 25 3.0068 7.92E-07 4 6 0.8070 2.75E-07 7 8 0.4587 1.03E-07
    m3 7 9 0.1027 4.14E-07 7 9 0.0807 2.75E-08 7 8 0.1973 5.62E-07
    m4 10 12 0.0980 8.56E-07 8 10 2.7056 5.64E-07 10 11 0.1100 9.17E-08
    m5 10 12 0.0644 8.56E-07 8 10 0.4899 5.64E-07 10 11 0.1570 9.17E-08
    m6 8 10 0.0563 1.62E-07 8 10 0.0748 2.00E-08 7 8 0.0203 7.77E-07
    m7 10 12 1.7635 8.56E-07 8 10 0.5620 5.64E-07 10 11 1.6032 9.17E-08
    m8 10 12 2.0989 8.51E-07 8 10 0.3175 5.64E-07 10 11 0.0398 9.18E-08
    10000 m1 6 8 0.0674 8.99E-07 8 10 3.0765 1.90E-07 10 11 0.0635 1.10E-07
    m2 24 26 4.3594 8.95E-07 4 6 0.8040 3.88E-07 7 8 0.4238 1.45E-07
    m3 7 9 0.0568 4.14E-07 7 9 0.1828 2.75E-08 7 8 0.1624 5.59E-07
    m4 11 13 0.1394 9.00E-07 8 10 0.2587 7.98E-07 10 11 1.5964 1.30E-07
    m5 11 13 1.8668 9.00E-07 8 10 0.1017 7.98E-07 10 11 0.7227 1.30E-07
    m6 8 10 0.0638 1.75E-07 8 10 0.1647 2.02E-08 7 8 0.0366 7.77E-07
    m7 11 13 0.1010 9.00E-07 8 10 2.4034 7.98E-07 10 11 0.1130 1.30E-07
    m8 11 13 0.7089 8.97E-07 8 10 0.2677 7.99E-07 10 11 0.0738 1.30E-07
    50000 m1 10 12 0.3468 8.09E-07 8 10 0.6028 4.24E-07 10 11 4.0162 2.47E-07
    m2 27 29 2.2526 9.72E-07 4 6 2.6259 8.66E-07 7 8 0.3940 3.23E-07
    m3 7 9 0.2112 4.15E-07 7 9 0.5050 2.75E-08 7 8 0.6980 5.57E-07
    m4 14 16 1.2757 9.82E-07 9 11 1.2621 1.77E-08 10 11 0.2290 2.90E-07
    m5 14 16 0.4675 9.82E-07 9 11 4.5622 1.77E-08 10 11 0.5405 2.90E-07
    m6 8 10 1.9899 1.84E-07 8 10 1.0180 2.04E-08 7 8 0.3657 7.77E-07
    m7 14 16 0.4672 9.82E-07 9 11 1.4871 1.77E-08 10 11 2.3145 2.90E-07
    m8 14 16 1.4642 9.82E-07 9 11 0.8096 1.77E-08 10 11 1.8791 2.90E-07
    100000 m1 11 13 4.5167 9.03E-07 8 10 1.1287 5.99E-07 10 11 1.8709 3.49E-07
    m2 29 31 2.7946 8.55E-07 5 7 0.3214 1.21E-08 7 8 0.3972 4.56E-07
    m3 7 9 1.2771 4.15E-07 7 9 1.3914 2.75E-08 7 8 0.5613 5.57E-07
    m4 16 18 2.8902 8.59E-07 9 11 0.8460 2.50E-08 10 11 1.2346 4.10E-07
    m5 16 18 2.5125 8.59E-07 9 11 2.1172 2.50E-08 10 11 0.5491 4.10E-07
    m6 8 10 1.8713 1.85E-07 8 10 0.5126 2.04E-08 7 8 0.4579 7.77E-07
    m7 16 18 2.3005 8.59E-07 9 11 1.5732 2.50E-08 10 11 1.2220 4.10E-07
    m8 16 18 2.3307 8.58E-07 9 11 1.8067 2.50E-08 10 11 0.5572 4.10E-07

     | Show Table
    DownLoad: CSV
    Table 4.  Numerical results of the three algorithms on Problem 3.
    iSDFM DAIS1 MSGPALG
    DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM
    1000 m1 2 3 0.0489 0.00E+00 7 9 0.0312 2.58E-08 9 10 0.0271 2.19E-07
    m2 2 3 0.0036 0.00E+00 5 7 0.0089 8.35E-07 7 8 0.0061 9.15E-07
    m3 2 3 0.0068 0.00E+00 6 8 0.0109 1.27E-08 7 8 0.0068 2.49E-07
    m4 2 3 0.0039 0.00E+00 6 8 0.0106 7.79E-07 9 10 0.0130 1.09E-07
    m5 2 3 0.0046 0.00E+00 6 8 0.0139 7.79E-07 9 10 0.0106 1.09E-07
    m6 2 3 0.0046 0.00E+00 6 8 0.0091 5.53E-08 8 9 0.0098 1.00E-07
    m7 2 3 0.0047 0.00E+00 6 8 0.0115 7.79E-07 9 10 0.0087 1.09E-07
    m8 2 3 0.0041 0.00E+00 6 8 0.0122 7.78E-07 9 10 0.0075 1.10E-07
    5000 m1 2 3 0.6745 0.00E+00 7 9 0.0553 5.78E-08 9 10 0.5417 4.89E-07
    m2 2 3 0.0132 0.00E+00 6 8 0.0326 1.85E-08 8 9 0.0784 1.86E-07
    m3 2 3 0.0482 0.00E+00 6 8 0.0719 1.27E-08 7 8 1.2708 2.49E-07
    m4 2 3 0.0132 0.00E+00 8 10 0.9730 5.57E-07 9 10 1.0767 2.45E-07
    m5 2 3 0.0159 0.00E+00 8 10 0.2707 5.57E-07 9 10 0.0275 2.45E-07
    m6 2 3 0.4898 0.00E+00 6 8 0.0905 5.53E-08 8 9 0.2965 1.00E-07
    m7 2 3 0.0259 0.00E+00 8 10 0.2239 5.57E-07 9 10 0.0474 2.45E-07
    m8 2 3 0.0089 0.00E+00 8 10 0.0748 5.57E-07 9 10 0.0289 2.45E-07
    10000 m1 2 3 0.6468 0.00E+00 7 9 0.0893 8.17E-08 9 10 1.1107 6.91E-07
    m2 2 3 0.0174 0.00E+00 6 8 2.0953 2.61E-08 8 9 0.0422 2.63E-07
    m3 2 3 0.0241 0.00E+00 6 8 0.1933 1.27E-08 7 8 0.0554 2.49E-07
    m4 2 3 0.0180 0.00E+00 8 10 0.5469 7.88E-07 9 10 0.7111 3.46E-07
    m5 2 3 1.5830 0.00E+00 8 10 2.3199 7.88E-07 9 10 0.0512 3.46E-07
    m6 2 3 0.0905 0.00E+00 6 8 0.1884 5.53E-08 8 9 1.9455 1.00E-07
    m7 2 3 0.0225 0.00E+00 8 10 0.0539 7.88E-07 9 10 0.0370 3.46E-07
    m8 2 3 0.4293 0.00E+00 8 10 0.5833 7.88E-07 9 10 0.2404 3.47E-07
    50000 m1 2 3 0.1251 0.00E+00 7 9 0.2378 1.83E-07 10 11 0.1597 1.41E-07
    m2 2 3 0.2099 0.00E+00 6 8 0.3338 5.84E-08 8 9 0.3668 5.88E-07
    m3 2 3 0.2718 0.00E+00 6 8 0.1467 1.27E-08 7 8 0.1518 2.49E-07
    m4 2 3 0.0892 0.00E+00 9 11 1.8976 1.74E-08 9 10 3.4018 7.75E-07
    m5 2 3 0.0738 0.00E+00 9 11 0.8494 1.74E-08 9 10 0.5303 7.75E-07
    m6 2 3 0.4336 0.00E+00 6 8 0.2686 5.53E-08 8 9 0.3395 1.00E-07
    m7 2 3 0.1016 0.00E+00 9 11 3.6617 1.74E-08 9 10 0.1285 7.75E-07
    m8 2 3 0.4282 0.00E+00 9 11 0.2094 1.74E-08 9 10 0.3406 7.75E-07
    100000 m1 2 3 0.1608 0.00E+00 7 9 0.3985 2.58E-07 10 11 2.8327 1.99E-07
    m2 2 3 0.4025 0.00E+00 6 8 2.4220 8.27E-08 8 9 0.5146 8.32E-07
    m3 2 3 0.4997 0.00E+00 6 8 0.4001 1.27E-08 7 8 0.4550 2.49E-07
    m4 2 3 0.2278 0.00E+00 9 11 1.2758 2.47E-08 10 11 0.6024 9.96E-08
    m5 2 3 1.4800 0.00E+00 9 11 1.1169 2.47E-08 10 11 0.6103 9.96E-08
    m6 2 3 0.1908 0.00E+00 6 8 1.1200 5.53E-08 8 9 0.3045 1.00E-07
    m7 2 3 2.2168 0.00E+00 9 11 0.4203 2.47E-08 10 11 2.8192 9.96E-08
    m8 2 3 0.5285 0.00E+00 9 11 1.6755 2.47E-08 10 11 0.5757 9.96E-08

     | Show Table
    DownLoad: CSV
    Table 5.  Numerical results of the three algorithms on Problem 4.
    iSDFM DAIS1 MSGPALG
    DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM
    1000 m1 2 3 0.0296 0.00E+00 1 2 0.0073 0.00E+00 1 2 0.0291 0
    m2 1 2 0.0027 0 1 2 0.0035 0.00E+00 1 2 0.0031 0
    m3 2 3 0.0042 4.97E-16 1 2 0.0034 0.00E+00 1 2 0.0026 0.00E+00
    m4 3 4 0.0049 0.00E+00 5 7 0.0093 2.75E-07 7 8 0.0060 6.10E-07
    m5 3 4 0.0055 0.00E+00 5 7 0.0105 2.75E-07 7 8 0.0078 6.10E-07
    m6 2 3 0.0034 0.00E+00 4 6 0.0067 1.70E-08 5 6 0.0046 2.61E-07
    m7 3 4 0.0049 0.00E+00 5 7 0.0072 2.75E-07 7 8 0.0064 6.10E-07
    m8 3 4 0.0071 0.00E+00 5 7 0.0083 2.84E-07 7 8 0.0056 6.18E-07
    5000 m1 2 3 0.0332 0.00E+00 1 2 0.0646 0.00E+00 1 2 0.0367 0
    m2 1 2 0.0099 0 1 2 0.0213 0.00E+00 1 2 0.0174 0
    m3 2 3 1.0121 4.97E-16 1 2 0.5463 0.00E+00 1 2 0.3020 0.00E+00
    m4 3 4 0.0686 0.00E+00 5 7 0.6076 6.23E-07 8 9 0.2798 1.25E-07
    m5 3 4 0.0281 0.00E+00 5 7 0.0214 6.23E-07 8 9 0.3643 1.25E-07
    m6 2 3 0.0487 0.00E+00 4 6 0.9525 1.57E-08 5 6 0.1231 2.41E-07
    m7 3 4 0.0160 0.00E+00 5 7 0.1311 6.23E-07 8 9 0.0235 1.25E-07
    m8 3 4 0.3845 0.00E+00 5 7 0.0238 6.27E-07 8 9 0.0280 1.25E-07
    10000 m1 2 3 0.0432 0.00E+00 1 2 0.0152 0.00E+00 1 2 0.1671 0
    m2 1 2 0.0130 0 1 2 0.6404 0.00E+00 1 2 0.2411 0
    m3 2 3 0.3455 4.97E-16 1 2 0.1039 0.00E+00 1 2 0.0879 0.00E+00
    m4 3 4 0.0962 0.00E+00 5 7 0.1264 8.83E-07 8 9 0.1373 1.76E-07
    m5 3 4 0.0206 0.00E+00 5 7 0.0717 8.83E-07 8 9 0.0563 1.76E-07
    m6 2 3 0.0129 0.00E+00 4 6 0.0410 1.56E-08 5 6 0.0300 2.39E-07
    m7 3 4 2.1280 0.00E+00 5 7 2.0752 8.83E-07 8 9 0.0345 1.76E-07
    m8 3 4 0.0435 0.00E+00 5 7 0.3836 8.85E-07 8 9 0.2295 1.77E-07
    50000 m1 2 3 0.1215 0.00E+00 1 2 0.0786 0.00E+00 1 2 0.2465 0
    m2 1 2 0.9649 0 1 2 0.0727 0.00E+00 1 2 0.1039 0
    m3 2 3 1.1914 4.97E-16 1 2 0.1050 0.00E+00 1 2 0.0993 0.00E+00
    m4 3 4 0.0787 0.00E+00 6 8 0.4597 1.96E-08 8 9 0.9459 3.95E-07
    m5 3 4 0.5360 0.00E+00 6 8 1.9008 1.96E-08 8 9 0.1311 3.95E-07
    m6 2 3 0.0827 0.00E+00 4 6 1.4476 1.54E-08 5 6 1.6395 2.37E-07
    m7 3 4 0.5580 0.00E+00 6 8 0.8577 1.96E-08 8 9 1.1280 3.95E-07
    m8 3 4 0.1724 0.00E+00 6 8 0.1708 1.96E-08 8 9 0.1320 3.95E-07
    100000 m1 2 3 0.1040 0.00E+00 1 2 0.2292 0.00E+00 1 2 0.0971 0
    m2 1 2 0.5020 0 1 2 0.3929 0.00E+00 1 2 0.0608 0
    m3 2 3 0.6183 4.97E-16 1 2 0.5716 0.00E+00 1 2 1.2024 0.00E+00
    m4 3 4 0.6508 0.00E+00 6 8 0.8017 2.77E-08 8 9 1.1241 5.58E-07
    m5 3 4 2.7106 0.00E+00 6 8 0.2833 2.77E-08 8 9 0.5422 5.58E-07
    m6 2 3 0.2422 0.00E+00 4 6 0.4995 1.54E-08 5 6 0.1569 2.37E-07
    m7 3 4 0.4045 0.00E+00 6 8 0.8315 2.77E-08 8 9 0.6378 5.58E-07
    m8 3 4 1.2673 0.00E+00 6 8 0.2407 2.77E-08 8 9 2.2426 5.58E-07

     | Show Table
    DownLoad: CSV
    Table 6.  Numerical results of the three algorithms on Problem 5.
    iSDFM DAIS1 MSGPALG
    DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM
    1000 m1 24 26 0.0584 9.23E-07 4 6 0.0278 4.28E-07 6 7 0.0106 3.94E-07
    m2 23 25 0.0523 9.30E-07 4 6 0.0085 2.03E-07 7 8 0.0083 3.89E-07
    m3 12 14 0.0252 5.60E-07 6 8 0.0112 1.37E-08 7 8 0.0103 5.04E-07
    m4 12 14 0.0248 8.98E-07 7 9 0.0125 4.92E-08 8 9 0.0077 1.11E-07
    m5 12 14 0.0275 8.98E-07 7 9 0.0142 4.92E-08 8 9 0.0118 1.11E-07
    m6 19 21 0.0250 8.22E-07 8 10 0.0347 8.90E-09 8 9 0.0077 2.35E-07
    m7 12 14 0.0258 8.98E-07 7 9 0.0133 4.92E-08 8 9 0.0090 1.11E-07
    m8 12 14 0.0186 8.96E-07 7 9 0.0120 5.06E-08 8 9 0.0098 1.12E-07
    5000 m1 28 30 0.1528 8.04E-07 4 6 0.0764 9.58E-07 6 7 0.1398 8.81E-07
    m2 27 29 0.6379 8.10E-07 4 6 0.3117 4.53E-07 7 8 0.4172 8.70E-07
    m3 15 17 0.0647 5.18E-07 6 8 0.2211 1.30E-08 8 9 0.0829 5.70E-08
    m4 16 18 0.1284 7.87E-07 7 9 0.0740 1.11E-07 8 9 0.1978 2.50E-07
    m5 16 18 1.3222 7.87E-07 7 9 0.2236 1.11E-07 8 9 0.5069 2.50E-07
    m6 15 17 0.0576 6.47E-07 7 9 0.7438 5.65E-07 8 9 0.9363 8.56E-07
    m7 16 18 0.5002 7.87E-07 7 9 0.5365 1.11E-07 8 9 0.7172 2.50E-07
    m8 16 18 0.2607 7.86E-07 7 9 0.0450 1.12E-07 8 9 0.0370 2.51E-07
    10000 m1 29 31 2.2261 9.03E-07 5 7 0.5164 7.20E-09 7 8 0.0696 6.32E-08
    m2 28 30 0.1845 9.10E-07 4 6 0.2108 6.40E-07 8 9 0.3887 6.24E-08
    m3 15 17 0.1033 6.58E-07 6 8 0.0598 1.23E-08 8 9 1.9183 8.06E-08
    m4 17 19 1.0910 8.89E-07 7 9 1.2817 1.58E-07 8 9 0.0453 3.54E-07
    m5 17 19 0.1082 8.89E-07 7 9 0.0601 1.58E-07 8 9 0.2457 3.54E-07
    m6 15 17 0.4385 7.90E-07 8 10 0.2200 1.32E-08 9 10 0.4761 5.62E-08
    m7 17 19 0.5594 8.89E-07 7 9 0.1719 1.58E-07 8 9 0.0590 3.54E-07
    m8 17 19 2.5253 8.89E-07 7 9 0.0791 1.58E-07 8 9 0.4212 3.54E-07
    50000 m1 32 34 2.0660 9.88E-07 5 7 0.2138 1.61E-08 7 8 0.2570 1.41E-07
    m2 31 33 1.7560 9.95E-07 5 7 1.2728 7.61E-09 8 9 0.3223 1.39E-07
    m3 18 20 1.1115 9.18E-07 6 8 0.6486 1.15E-08 8 9 4.0013 1.80E-07
    m4 20 22 1.9429 9.68E-07 7 9 0.4158 3.53E-07 8 9 0.3523 7.92E-07
    m5 20 22 0.5584 9.68E-07 7 9 0.9673 3.53E-07 8 9 0.2946 7.92E-07
    m6 17 19 1.4478 9.79E-07 8 10 0.2156 4.69E-08 9 10 0.2300 5.16E-08
    m7 20 22 4.0180 9.68E-07 7 9 1.8746 3.53E-07 8 9 0.6637 7.92E-07
    m8 20 22 0.6509 9.68E-07 7 9 0.2024 3.54E-07 8 9 0.1919 7.92E-07
    100000 m1 34 36 3.6145 8.70E-07 5 7 0.9745 2.28E-08 7 8 2.1130 2.00E-07
    m2 33 35 2.2467 8.77E-07 5 7 2.2109 1.08E-08 8 9 1.3419 1.97E-07
    m3 16 18 1.2758 1.67E-07 6 8 0.4651 1.13E-08 8 9 0.2564 2.55E-07
    m4 22 24 2.1591 8.54E-07 7 9 0.8911 5.00E-07 9 10 0.7061 5.68E-08
    m5 22 24 2.1281 8.54E-07 7 9 0.3940 5.00E-07 9 10 0.7502 5.68E-08
    m6 21 23 1.4187 9.59E-07 8 10 2.1780 5.35E-08 8 9 0.2659 9.73E-07
    m7 22 24 2.3113 8.54E-07 7 9 0.8201 5.00E-07 9 10 2.4092 5.68E-08
    m8 22 24 1.9841 8.54E-07 7 9 0.5536 5.00E-07 9 10 0.7111 5.68E-08

     | Show Table
    DownLoad: CSV
    Table 7.  Numerical results of the three algorithms on Problem 6.
    iSDFM DAIS1 MSGPALG
    DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM
    1000 m1 1 2 0.0438 0.00E+00 5 7 0.0154 3.13E-08 6 7 0.0362 5.08E-07
    m2 2 3 0.0055 0.00E+00 4 6 0.0116 4.07E-09 6 7 0.0090 7.74E-08
    m3 1 2 0.0059 3.14E-16 4 6 0.0074 1.95E-08 6 7 0.0126 1.35E-07
    m4 2 3 0.0056 0.00E+00 10 12 0.0173 6.36E-08 9 10 0.0108 2.10E-08
    m5 2 3 0.0070 0.00E+00 10 12 0.0204 6.36E-08 9 10 0.0153 2.10E-08
    m6 2 3 0.0053 0.00E+00 6 8 0.0132 1.63E-08 8 9 0.0082 2.34E-07
    m7 2 3 0.0056 0.00E+00 10 12 0.0232 6.36E-08 9 10 0.0091 2.10E-08
    m8 2 3 0.0099 0.00E+00 10 12 0.0185 9.54E-08 9 10 0.0085 2.17E-08
    5000 m1 1 2 0.0374 0.00E+00 5 7 1.0327 7.00E-08 7 8 0.5082 2.23E-08
    m2 2 3 0.0205 0.00E+00 4 6 0.0221 9.11E-09 6 7 1.3592 1.73E-07
    m3 1 2 0.0747 3.14E-16 4 6 0.3235 1.95E-08 6 7 0.2540 1.35E-07
    m4 2 3 0.5673 0.00E+00 11 13 0.3735 4.00E-09 9 10 0.0230 4.77E-08
    m5 2 3 0.1877 0.00E+00 11 13 0.2003 4.00E-09 9 10 0.2913 4.77E-08
    m6 2 3 0.0243 0.00E+00 6 8 0.5030 1.63E-08 8 9 0.0371 2.34E-07
    m7 2 3 0.0166 0.00E+00 11 13 0.3037 4.00E-09 9 10 0.0259 4.77E-08
    m8 2 3 0.1480 0.00E+00 11 13 0.7863 4.34E-09 9 10 1.1625 4.80E-08
    10000 m1 1 2 1.5394 0.00E+00 5 7 0.3123 9.90E-08 7 8 0.1095 3.15E-08
    m2 2 3 0.3070 0.00E+00 4 6 0.7642 1.29E-08 6 7 0.0387 2.45E-07
    m3 1 2 0.0315 3.14E-16 4 6 0.0600 1.95E-08 6 7 0.6297 1.35E-07
    m4 2 3 0.2660 0.00E+00 11 13 0.4963 1.34E-08 9 10 2.2974 6.75E-08
    m5 2 3 0.3858 0.00E+00 11 13 1.1199 1.34E-08 9 10 0.0373 6.75E-08
    m6 2 3 0.1753 0.00E+00 6 8 0.2915 1.63E-08 8 9 2.9723 2.34E-07
    m7 2 3 0.5146 0.00E+00 11 13 0.4325 1.34E-08 9 10 0.1870 6.75E-08
    m8 2 3 0.2806 0.00E+00 11 13 0.1227 1.42E-08 9 10 0.0536 6.78E-08
    50000 m1 1 2 1.1916 0.00E+00 5 7 0.2469 2.21E-07 7 8 0.1870 7.04E-08
    m2 2 3 0.9393 0.00E+00 4 6 1.1379 2.88E-08 6 7 1.6610 5.47E-07
    m3 1 2 0.0926 3.14E-16 4 6 0.2889 1.95E-08 6 7 0.1471 1.35E-07
    m4 2 3 1.2706 0.00E+00 11 13 1.1981 2.10E-07 9 10 1.4916 1.51E-07
    m5 2 3 0.1308 0.00E+00 11 13 0.5316 2.10E-07 9 10 0.1756 1.51E-07
    m6 2 3 0.8749 0.00E+00 6 8 0.7440 1.63E-08 8 9 2.3692 2.34E-07
    m7 2 3 0.1153 0.00E+00 11 13 0.3875 2.10E-07 9 10 0.1597 1.51E-07
    m8 2 3 1.6229 0.00E+00 11 13 1.9796 2.12E-07 9 10 0.2254 1.51E-07
    100000 m1 1 2 0.1545 0.00E+00 5 7 0.3623 3.13E-07 7 8 0.9581 9.96E-08
    m2 2 3 0.5466 0.00E+00 4 6 0.3900 4.07E-08 6 7 0.2321 7.74E-07
    m3 1 2 0.4549 3.14E-16 4 6 0.6795 1.95E-08 6 7 0.4348 1.35E-07
    m4 2 3 1.1598 0.00E+00 11 13 0.5917 5.11E-07 9 10 0.9209 2.14E-07
    m5 2 3 0.2296 0.00E+00 11 13 2.1472 5.11E-07 9 10 0.9297 2.14E-07
    m6 2 3 0.5503 0.00E+00 6 8 0.3154 1.63E-08 8 9 1.7438 2.34E-07
    m7 2 3 1.1678 0.00E+00 11 13 1.3542 5.11E-07 9 10 1.0237 2.14E-07
    m8 2 3 0.2391 0.00E+00 11 13 0.6503 5.14E-07 9 10 0.3572 2.14E-07

     | Show Table
    DownLoad: CSV
    Table 8.  Numerical results of the three algorithms on Problem 7.
    iSDFM DAIS1 MSGPALG
    DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM
    1000 m1 19 21 0.0328 9.46E-07 67 69 0.1959 9.10E-07 67 68 0.0613 9.89E-07
    m2 52 53 0.0584 9.20E-07 101 103 0.1120 9.84E-07 61 62 0.0533 9.84E-07
    m3 57 59 0.0884 9.41E-07 76 78 0.1511 9.29E-07 87 88 0.0644 9.38E-07
    m4 55 57 0.0840 6.99E-07 83 85 0.2007 9.36E-07 83 84 0.0643 8.91E-07
    m5 56 58 0.0663 8.51E-07 81 83 0.1548 9.41E-07 83 84 0.0635 8.91E-07
    m6 47 49 0.0655 9.14E-07 81 83 0.1694 9.87E-07 68 69 0.0403 8.99E-07
    m7 55 57 0.0831 9.64E-07 85 87 0.1402 9.92E-07 83 84 0.0378 8.91E-07
    m8 54 56 0.0986 8.26E-07 83 85 0.2083 8.98E-07 82 83 0.0417 9.64E-07
    5000 m1 44 46 0.4975 9.72E-07 101 103 4.4357 9.03E-07 47 48 3.9616 7.95E-07
    m2 41 43 2.1529 9.63E-07 91 93 0.4886 9.98E-07 93 94 0.1564 9.74E-07
    m3 50 52 0.1946 9.94E-07 94 96 1.1680 9.55E-07 80 81 0.4414 9.74E-07
    m4 53 55 0.3218 8.21E-07 89 91 4.2258 8.31E-07 65 66 0.7041 9.19E-07
    m5 51 53 0.3422 9.93E-07 90 92 0.5222 8.89E-07 65 66 0.5813 9.19E-07
    m6 56 58 1.4298 9.63E-07 73 75 0.8748 9.42E-07 56 57 0.2107 9.25E-07
    m7 54 56 0.2158 9.01E-07 96 98 1.8010 6.68E-07 65 66 4.0542 9.19E-07
    m8 52 54 0.5704 8.94E-07 89 91 1.7997 9.43E-07 67 68 1.2837 9.44E-07
    10000 m1 49 51 3.5965 8.84E-07 106 108 2.0185 8.15E-07 52 53 0.2338 8.65E-07
    m2 39 41 0.3701 8.64E-07 91 93 1.3319 9.24E-07 94 95 1.4506 9.72E-07
    m3 54 56 1.3825 8.64E-07 95 97 1.5026 9.24E-07 70 71 0.6796 8.77E-07
    m4 56 58 3.5432 6.98E-07 96 98 2.1861 9.18E-07 57 58 4.7632 8.81E-07
    m5 52 54 0.9342 8.00E-07 97 99 1.6761 9.85E-07 57 58 0.4527 8.81E-07
    m6 59 60 1.5782 8.65E-07 91 93 1.8383 9.48E-07 58 59 0.5386 7.32E-07
    m7 57 59 0.4248 7.88E-07 103 105 1.7186 7.81E-07 57 58 0.4381 8.81E-07
    m8 58 60 1.2930 9.43E-07 99 101 2.3954 9.07E-07 53 54 4.5234 6.99E-07
    50000 m1 46 48 5.1900 8.32E-07 74 76 5.7164 9.08E-07 36 37 0.6755 6.71E-07
    m2 55 57 2.7338 9.19E-07 96 98 14.8517 9.62E-07 95 96 2.5677 9.62E-07
    m3 62 64 2.8549 8.89E-07 101 103 7.6005 9.46E-07 88 89 2.2433 9.13E-07
    m4 59 61 2.7944 7.58E-07 105 107 7.4685 9.10E-07 81 82 2.4065 9.25E-07
    m5 61 63 2.9541 7.11E-07 103 105 5.6730 9.09E-07 81 82 2.6295 9.25E-07
    m6 54 56 2.7075 9.94E-07 102 104 5.4700 9.54E-07 56 57 1.5636 8.15E-07
    m7 63 65 3.1767 8.45E-07 101 103 5.2194 9.21E-07 81 82 2.1452 9.25E-07
    m8 60 62 2.8825 9.99E-07 96 98 5.2916 9.82E-07 81 82 2.2370 9.30E-07
    100000 m1 35 36 3.2271 9.76E-07 110 112 11.6739 9.71E-07 50 51 2.3679 9.55E-07
    m2 58 60 4.4230 9.75E-07 103 105 13.3138 8.57E-07 67 68 2.9833 7.51E-07
    m3 57 59 5.5342 8.21E-07 80 82 10.3855 9.39E-07 72 73 3.3898 9.29E-07
    m4 55 56 5.0986 9.16E-07 88 90 10.7673 7.47E-07 88 89 4.4502 9.38E-07
    m5 55 57 5.3401 9.05E-07 99 101 9.7451 9.95E-07 88 89 4.9388 9.38E-07
    m6 57 59 5.4860 9.28E-07 103 105 11.7762 7.17E-07 74 75 3.1878 9.23E-07
    m7 59 60 5.4163 8.97E-07 88 90 9.7121 8.46E-07 88 89 3.9409 9.38E-07
    m8 54 56 5.1927 9.03E-07 99 101 10.0416 9.68E-07 88 89 3.6687 9.40E-07

     | Show Table
    DownLoad: CSV

    With the help of the Dolan and Moré performance profile [33], we present the information in Tables 28 graphically for better and easier visualization of each algorithm's performance. These graphs are plotted in Figures 13. It can be clearly observed from Figure 1 that the iSDFM algorithm solved about 72% of the problems with the least ITER, as compared to the DAIS1 and MSGPALG with around 30% and 12%, respectively. Figure 2 shows that the iSDFM outperformed the other two methods by solving around 70% of the problems with the least FVAL. In terms of TIME, iSDFM algorithm competes favorably with the MSGPALG algorithm. In general, our proposed iSDFM algorithm shows better efficiency as compared to the DAIS1 and MSGPALG algorithms. This might not be unconnected with taking the convex combination of the BB-like parameters incorporated with the inertial technique.

    Figure 1.  Performance profile on number of iterations.
    Figure 2.  Performance profile on function evaluations.
    Figure 3.  Performance profile on CPU 21:31:38.

    In robotics, manipulators and effectors are the aspects in which some parts of the robots interact with other objects by performing different tasks such as picking from one point and placing on another. For stability and accuracy in the robots' movement, the characteristics of motor dynamics, which are contemporarily used as actuators in nlink and 1link robot systems, need to be considered [34,35]. This is a tracking control problem of a nonlinear system, and the motor dynamics are required to satisfy the condition that the actual output of the system can track the desired trajectory with least possible error [36].

    Some of the developed methods for tracking control problems of nonlinear systems include proportional-integral-derivative (PID) control [37,38], feedback linearization [39,40] and optimal output tracking control by using approximation approach [41].

    We present an application of our proposed algorithm in motion control of two planar robotic manipulators. Consider the following model:

    minmRnf(m), (4.1)

    where f:RnR is a smooth and convex function. In the case of motion control, the function in (4.1) has the form f(vk):=12υkyuk22. Subsequently, we minimize

    minυkR212υkyuk22 (4.2)

    at each computational time interval τk[0,τf].

    As described in [42], the discrete-time kinematics equation of a two-joint planar robot manipulator at the position level is given as

    ψ(θk)=υk. (4.3)

    The kinematics map ψ() is given as

    ψ(θ)=[l1cos(θ1)+l2cos(θ1+θ2)l1sin(θ1)+l2sin(θ1+θ2)], (4.4)

    where l1 and l2 are the lengths of the rod links, and θkR2 is the joint angle vector.

    From (4.2), the term υk is controlled to track a Lissajous curve:

    yuk=[32+15sin(3τk)32+15sin(2τk)]. (4.5)

    For our algorithm to fit (4.1), we present its slight modification as follows:

    Algorithm 2: Modified iSDFM.
      Input: Let αk=0 for k0 in Algorithm 1. Consider the same inputs as in Algorithm 1, and let Γ(mk)=f(mk). Replace Step 2 and Step 3 of the Algorithm 1 with the followings:
      Step 2: Compute Λk=κςj, where j is the smallest non–negative integer such that
    f(mk+κςjtk)f(mk)σκςjΓ(mk)Ttk.(4.6)
      Step 3: To update the next iterate, use
    mk+1:=mk+Λktk.(4.7)

     | Show Table
    DownLoad: CSV

    Remark 4.1. Assume that the solution to problem (4.1) exists and that the level set {mRn:f(m)f(m0)} is bounded. Using Assumption A2 and Theorem 2 of [43], we conclude that Algorithm 2 converges, that is, lim infkΓ(mk)=0 holds.

    In this experiment, we chose initial joint angle vector θ0=[0,π3]T, l1=l2=1, ς=0.2 and σ=0.08. The task duration [0,20] is subdivided into 200 equal parts. The performance of Algorithm 2 in the motion control problem is shown in the Figure 4.

    Figure 4.  Performance generated by Algorithm 2: (a) robot trajectories; (b) end effector trajectory and desired path; (c) residual error on x-axis; (d) residual error on y-axis.

    Figure 4(a) represents the robot trajectories synthesized by Algorithm 2. Figure 4(b) shows the end effector and the desired path. Figure 4(c, d) shows the performance errors on x and y axes, respectively. These figures indicate that Algorithm 2 efficiently performed the assignment with an error as low as 105 on both the x-axis and y-axis.

    In conclusion, we have proposed an inertial-based spectral method for solving a system of nonlinear equations. The inertial-step introduced is believed to have enhanced the performance of the new method. We have discussed the global convergence of the proposed algorithm under the monotonicity and Lipschitz continuity assumptions. We have also presented some numerical experiments which depicted the efficiency of the proposed algorithm. The proposed algorithm is reported to have better numerical performance than the methods in [21,22]. Subsequently, we have demonstrated the applicability of the new method in motion control problems arising from robotics. However, the numerical results showed that the proposed method won about 72% and 70% of the experiments in terms of ITER and FVAL. Therefore, we recommend further research in order to improve its performance to the optimum.

    The authors would like to thank the anonymous referees for their valuable comments and suggestions. The sixth author was funded by Chiang Mai University and the NSRF via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation (grant number B05F640183).

    The authors declare that they have no conflicts of interest.



    [1] J. Barzilai, J. M. Borwein, Two-point step size gradient methods, IMA J. Numer. Anal., 8 (1988), 141–148. https://doi.org/10.1093/imanum/8.1.141 doi: 10.1093/imanum/8.1.141
    [2] W. La Cruz, M. Raydan, Nonmonotone spectral methods for large-scale nonlinear systems, Optim. Methods Software, 18 (2002), 583–599. https://doi.org/10.1080/10556780310001610493 doi: 10.1080/10556780310001610493
    [3] H. Mohammad, A. M. Awwal, Globally convergent diagonal Polak–Ribière–Polyak like algorithm for nonlinear equations, Numer. Algor., 91 (2022), 1441–1460. https://doi.org/10.1007/s11075-022-01309-8 doi: 10.1007/s11075-022-01309-8
    [4] W. La Cruz, J. Martínez, M. Raydan, Spectral residual method without gradient information for solving large-scale nonlinear systems of equations, Math. Comput., 75 (2006), 1429–1448. https://doi.org/10.1090/S0025-5718-06-01840-0 doi: 10.1090/S0025-5718-06-01840-0
    [5] S. P. Dirkse, M. J. Ferris, A collection of nonlinear mixed complementarity problems, Optim. Methods Soft., 5 (1995), 319–345. https://doi.org/10.1080/10556789508805619 doi: 10.1080/10556789508805619
    [6] A. M. Awwal, P. Kumam, K. Sitthithakerngkiet, A. M. Bakoji, A. S. Halilu, I. M. Sulaiman, Derivative-free method based on DFP updating formula for solving convex constrained nonlinear monotone equations and application, AIMS Math., 6 (2021), 8792–8814. https://doi.org/10.3934/math.2021510 doi: 10.3934/math.2021510
    [7] A. J. Wood, B. F. Wollenberg, G. B. Sheblé, Power generation, operation, and control, John Wiley & Sons, 2013.
    [8] A. S. Halilu, A. Majumder, M. Y. Waziri, A. M. Awwal, K. Ahmed, On solving double direction methods for convex constrained monotone nonlinear equations with image restoration, Comput. Appl. Math., 40 (2021), 239. https://doi.org/10.1007/s40314-021-01624-1 doi: 10.1007/s40314-021-01624-1
    [9] K. Meintjes, A. P. Morgan, A methodology for solving chemical equilibrium systems, Appl. Math. Comput., 22 (1987), 333–361. https://doi.org/10.1016/0096-3003(87)90076-2 doi: 10.1016/0096-3003(87)90076-2
    [10] I. M. Sulaiman, A. M. Awwal, M. Malik, N. Pakkaranang, B. Panyanak, A derivative-free MZPRP projection method for convex constrained nonlinear equations and its application in compressive sensing, Mathematics, 10 (2022), 2884. https://doi.org/10.3390/math10162884 doi: 10.3390/math10162884
    [11] M. A. T. Figueiredo, R. D. Nowak, S. J. Wright, Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems, IEEE J. Selected Topics Signal Process., 1 (2007), 586–597. https://doi.org/10.1109/JSTSP.2007.910281 doi: 10.1109/JSTSP.2007.910281
    [12] Y. Xiao, Q. Wang, Q. Hu, Non-smooth equations based method for 1-norm problems with applications to compressed sensing, Nonlinear Anal.: Theory Methods Appl., 74 (2011), 3570–3577. https://doi.org/10.1016/j.na.2011.02.040 doi: 10.1016/j.na.2011.02.040
    [13] N. Pakkaranang, P. Kumam, V. Berinde, Y. I. Suleiman, Superiorization methodology and perturbation resilience of inertial proximal gradient algorithm with application to signal recovery, J. Supercomput., 76 (2020), 9456–9477. https://doi.org/10.1007/s11227-020-03215-z doi: 10.1007/s11227-020-03215-z
    [14] Y. Xiao, H. Zhu, A conjugate gradient method to solve convex constrained monotone equations with applications in compressive sensing, J. Math. Anal. Appl., 405 (2013), 310–319. https://doi.org/10.1016/j.jmaa.2013.04.017 doi: 10.1016/j.jmaa.2013.04.017
    [15] S. Aji, P. Kumam, A. M. Awwal, M. M. Yahaya, K. Sitthithakerngkiet, An efficient DY-type spectral conjugate gradient method for system of nonlinear monotone equations with application in signal recovery, AIMS Math., 6 (2021), 8078–8106. https://doi.org/10.3934/math.2021469 doi: 10.3934/math.2021469
    [16] A. B. Abubakar, P. Kumam, H. Mohammad, A. M. Awwal, A Barzilai-Borwein gradient projection method for sparse signal and blurred image restoration, J. Franklin Inst., 357 (2020), 7266–7285. https://doi.org/10.1016/j.jfranklin.2020.04.022 doi: 10.1016/j.jfranklin.2020.04.022
    [17] A. M. Awwal, P. Kumam, H. Mohammad, W. Watthayu, A. B. Abubakar, A {Perry-type} derivative-free algorithm for solving nonlinear system of equations and minimizing 1 regularized problem, Optimization, 70 (2021), 1231–1259. https://doi.org/10.1080/02331934.2020.1808647 doi: 10.1080/02331934.2020.1808647
    [18] M. V. Solodov, B. F. Svaiter, A globally convergent inexact Newton method for systems of monotone equations, In: M. Fukushima, L. Qi, Reformulation: nonsmooth, piecewise smooth, semismooth and smoothing methods, Springer, 22 (1998), 355–369. https://doi.org/10.1007/978-1-4757-6388-1_18
    [19] L. Zhang, W. Zhou, Spectral gradient projection method for solving nonlinear monotone equations, J. Comput. Appl. Math., 196 (2006), 478–484. https://doi.org/10.1016/j.cam.2005.10.002 doi: 10.1016/j.cam.2005.10.002
    [20] Z. Yu, J. Lin, J. Sun, Y. Xiao, L. Liu, Z. Li, Spectral gradient projection method for monotone nonlinear equations with convex constraints, Appl. Numer. Math., 59 (2009), 2416–2423. https://doi.org/10.1016/j.apnum.2009.04.004 doi: 10.1016/j.apnum.2009.04.004
    [21] Z. Yu, L. Li, P. Li, A family of modified spectral projection methods for nonlinear monotone equations with convex constraint, Math. Probl. Eng., 2020 (2020), 2018243. https://doi.org/10.1155/2020/2018243 doi: 10.1155/2020/2018243
    [22] A. M. Awwal, P. Kumam, L. Wang, S. Huang, W. Kumam, Inertial-based derivative-free method for system of monotone nonlinear equations and application, IEEE Access, 8 (2020), 226921–226930. https://doi.org/10.1109/ACCESS.2020.3045493 doi: 10.1109/ACCESS.2020.3045493
    [23] S. Aji, P. Kumam, A. M. Awwal, M. M. Yahaya, W. Kumam, Two hybrid spectral methods with inertial effect for solving system of nonlinear monotone equations with application in robotics, IEEE Access, 9 (2021), 30918–30928. https://doi.org/10.1109/ACCESS.2021.3056567 doi: 10.1109/ACCESS.2021.3056567
    [24] B. T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Math. Phys., 4 (1964), 1–17. https://doi.org/10.1016/0041-5553(64)90137-5 doi: 10.1016/0041-5553(64)90137-5
    [25] A. Moudafi, Proximal point algorithm extended to equilibrium problems, J. Nat. Geom., 15 (1999), 91–100.
    [26] N. Pakkaranang, P. Kumam, Y. I. Suleiman, B. Ali, Bounded perturbation resilience of viscosity proximal algorithm for solving split variational inclusion problems with applications to compressed sensing and image recovery, Math. Methods Appl. Sci., 45 (2022), 4085–4107. https://doi.org/10.1002/mma.7023 doi: 10.1002/mma.7023
    [27] G. Mastroeni, On auxiliary principle for equilibrium problems, In: P. Daniele, F. Giannessi, A. Maugeri, Equilibrium problems and variational models, Springer, 68 (2003), 289–298. https://doi.org/10.1007/978-1-4613-0239-1_15
    [28] A. M. Awwal, P. Kumam, A. B. Abubakar, A modified conjugate gradient method for monotone nonlinear equations with convex constraints, Appl. Numer. Math., 145 (2019), 507–520. https://doi.org/10.1016/j.apnum.2019.05.012 doi: 10.1016/j.apnum.2019.05.012
    [29] A. M. Awwal, L. Wang, P. Kumam, H. Mohammad, W. Watthayu, A projection Hestenes–Stiefel method with spectral parameter for nonlinear monotone equations and signal processing, Math. Comput. Appl., 25 (2020), 27. https://doi.org/10.3390/mca25020027 doi: 10.3390/mca25020027
    [30] W. J. Zhou, D. H. Li, A globally convergent BFGS method for nonlinear monotone equations without any merit functions, Math. Comput., 77 (2008), 2231–2240. https://doi.org/10.1090/S0025-5718-08-02121-2 doi: 10.1090/S0025-5718-08-02121-2
    [31] A. A. Muhammed, P. Kumam, A. B. Abubakar, A. Wakili, N. Pakkaranang, A new hybrid spectral gradient projection method for monotone system of nonlinear equations with convex constraints, Thai J. Math., 16 (2018), 125–147.
    [32] J. Liu, Y. Feng, A derivative-free iterative method for nonlinear monotone equations with convex constraints, Numer. Algor., 82 (2019) 245–262. https://doi.org/10.1007/s11075-018-0603-2 doi: 10.1007/s11075-018-0603-2
    [33] E. D. Dolan, J. J. Moré, Benchmarking optimization software with performance profiles, Math. Program., 91 (2002), 201–213. https://doi.org/10.1007/s101070100263 doi: 10.1007/s101070100263
    [34] Y. Qiang, F. Jing, J. Zeng, Z. Hou, Dynamic modeling and vibration mode analysis for an industrial robot with rigid links and flexible joints, 2012 24th Chinese Control and Decision Conference (CCDC), IEEE, 2012. https://doi.org/10.1109/CCDC.2012.6244526
    [35] Y. Zhang, W. Li, B. Qiu, Y. Ding, D. Zhang, Three-state space reformulation and control of md-included one-link robot system using direct-derivative and zhang-dynamics methods, 2017 29th Chinese Control and Decision Conference (CCDC), IEEE, 2017. https://doi.org/10.1109/CCDC.2017.7979152
    [36] G. Y. Tang, L. Sun, C. Li, M. Q. Fan, Successive approximation procedure of optimal tracking control for nonlinear similar composite systems, Nonlinear Anal.: Theory Methods Appl., 70 (2009), 631–641. https://doi.org/10.1016/j.na.2008.01.021 doi: 10.1016/j.na.2008.01.021
    [37] E. M. Jafarov, M. N. A. Parlakci, Y. Istefanopulos, A new variable structure pid-controller design for robot manipulators, IEEE T. Control Syst. Technol., 13 (2004) 122–130. https://doi.org/10.1109/TCST.2004.838558 doi: 10.1109/TCST.2004.838558
    [38] V. Parra-Vega, S. Arimoto, Y. H. Liu, G. Hirzinger, P. Akella, Dynamic sliding pid control for tracking of robot manipulators: theory and experiments, IEEE T. Robot. Autom., 19 (2003), 967–976. https://doi.org/10.1109/TRA.2003.819600 doi: 10.1109/TRA.2003.819600
    [39] J. Na, X. Ren, D. Zheng, Adaptive control for nonlinear pure-feedback systems with high-order sliding mode observer, IEEE T. Neur. Net. Lear. Syst., 24 (2013), 370–382. https://doi.org/10.1109/TNNLS.2012.2225845 doi: 10.1109/TNNLS.2012.2225845
    [40] B. S. Chen, H. J. Uang, C. S. Tseng, Robust tracking enhancement of robot systems including motor dynamics: a fuzzy-based dynamic game approach, IEEE T. Fuzzy Syst., 6 (1998), 538–552. https://doi.org/10.1109/91.728449 doi: 10.1109/91.728449
    [41] G. Y. Tang, Y. D. Zhao, B. L. Zhang, Optimal output tracking control for nonlinear systems via successive approximation approach, Nonlinear Anal.: Theory Methods Appl., 66 (2007), 1365–1377. https://doi.org/10.1016/j.na.2006.01.021 doi: 10.1016/j.na.2006.01.021
    [42] Y. Zhang, L. He, C. Hu, J. Guo, J. Li, Y. Shi, General four-step discrete-time zeroing and derivative dynamics applied to time-varying nonlinear optimization, J. Comput. Appl. Math., 347 (2019), 314–329. https://doi.org/10.1016/j.cam.2018.08.017 doi: 10.1016/j.cam.2018.08.017
    [43] M. Sun, J. Liu, Y. Wang, Two improved conjugate gradient methods with application in compressive sensing and motion control, Math. Probl. Eng., 2020 (2020), 9175496. https://doi.org/10.1155/2020/9175496 doi: 10.1155/2020/9175496
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1561) PDF downloads(48) Cited by(0)

Figures and Tables

Figures(4)  /  Tables(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog