Research article Special Issues

A novel algorithm to solve nonlinear fractional quadratic integral equations

  • Received: 01 March 2022 Revised: 25 April 2022 Accepted: 06 May 2022 Published: 12 May 2022
  • MSC : 33C45, 45E10, 65M70

  • This paper addresses a new spectral collocation method for solving nonlinear fractional quadratic integral equations. The main idea of this method is to construct the approximate solution based on fractional order Chelyshkov polynomials (FCHPs). To this end, first, we introduce these polynomials and express some of their properties. The operational matrices of fractional integral and product are derived. The spectral collocation method is utilized together with operational matrices to reduce the problem to a system of algebraic equations. Finally, by solving this system, the unknown coefficients are computed. Further, the convergence analysis and numerical stability of the method are investigated. The proposed method is computationally simple and easy to implement in computer programming. The accuracy and applicability of the method is presented by some numerical examples.

    Citation: Younes Talaei, Sanda Micula, Hasan Hosseinzadeh, Samad Noeiaghdam. A novel algorithm to solve nonlinear fractional quadratic integral equations[J]. AIMS Mathematics, 2022, 7(7): 13237-13257. doi: 10.3934/math.2022730

    Related Papers:

  • This paper addresses a new spectral collocation method for solving nonlinear fractional quadratic integral equations. The main idea of this method is to construct the approximate solution based on fractional order Chelyshkov polynomials (FCHPs). To this end, first, we introduce these polynomials and express some of their properties. The operational matrices of fractional integral and product are derived. The spectral collocation method is utilized together with operational matrices to reduce the problem to a system of algebraic equations. Finally, by solving this system, the unknown coefficients are computed. Further, the convergence analysis and numerical stability of the method are investigated. The proposed method is computationally simple and easy to implement in computer programming. The accuracy and applicability of the method is presented by some numerical examples.



    加载中


    [1] M. Alsuyuti, E. Doha, S. Ezz-Eldien, B. Bayoumi, D. Baleanu, Modified Galerkin algorithm for solving multitype fractional differential equations, Math. Method. Appl. Sci., 42 (2019), 1389–1412. https://doi.org/10.1002/mma.5431 doi: 10.1002/mma.5431
    [2] M. Amin, M. Abbas, M. Iqbal, D. Baleanu, Non-polynomial quintic spline for numerical solution of fourth-order time fractional partial differential equations, Adv. Differ. Equ., 2019 (2019), 183. https://doi.org/10.1186/s13662-019-2125-1 doi: 10.1186/s13662-019-2125-1
    [3] M. Amin, M. Abbas, M. Iqbal, A. Ismail, D. Baleanu, A fourth order non-polynomial quintic spline collocation technique for solving time fractional superdiffusion equations, Adv. Differ. Equ., 2019 (2019), 514. https://doi.org/10.1186/s13662-019-2442-4 doi: 10.1186/s13662-019-2442-4
    [4] M. Amin, M. Abbas, M. Iqbal, D. Baleanu, Numerical treatment of time-fractional Klein-Gordon equation using redefined extended cubic B-spline functions, Front. Phys., 8 (2020), 288. https://doi.org/10.3389/fphy.2020.00288 doi: 10.3389/fphy.2020.00288
    [5] R. Amin, S. Yuzbasi, L. Gao, M. Asif, I. Khan, Algorithm for the numerical solutions of Volterra population growth model with fractional order via Haar wavelet, Contemporary Mathematics, 1 (2020), 54–111. https://doi.org/10.37256/cm.00056.102-111 doi: 10.37256/cm.00056.102-111
    [6] J. Banas, D. O'Regan, On existence and local attractivity of solutions of a quadratic Volterra integral equation of fractional order, J. Math. Anal. Appl., 345 (2008), 573–582. https://doi.org/10.1016/j.jmaa.2008.04.050 doi: 10.1016/j.jmaa.2008.04.050
    [7] S. Bazm, A. Hosseini, Numerical solution of nonlinear integral equations using alternative Legendre polynomials, J. Appl. Math. Comput., 56 (2018), 25–51. https://doi.org/10.1007/s12190-016-1060-5 doi: 10.1007/s12190-016-1060-5
    [8] A. Bhrawy, S. Ezz-Eldien, A new Legendre operational technique for delay fractional optimal control problems, Calcolo, 53 (2016), 521–543. https://doi.org/10.1007/s10092-015-0160-1 doi: 10.1007/s10092-015-0160-1
    [9] C. Canuto, M. Yousuff Hussaini, A. Quarteroni, T. Zang, Spectral methods: fundamentals in single domains, Berlin: Springer-Verlag, 2006. https://doi.org/10.1007/978-3-540-30726-6
    [10] V. Chelyshkov, Alternative orthogonal polynomials and quadratures, Electron. T. Numer. Anal., 25 (2006), 17–26.
    [11] E. Coutsias, T. Hagstrom, D. Torres, An efficient spectral method for ordinary differential equations with rational function, Math. Comput., 65 (1996), 611–635. https://doi.org/10.1090/S0025-5718-96-00704-1 doi: 10.1090/S0025-5718-96-00704-1
    [12] K. Deimling, Nonlinear functional analysis, Berlin: Springer-Verlag, 1985. https://doi.org/10.1007/978-3-662-00547-7
    [13] K. Diethelm, The analysis of fractional differential equations, Berlin: Springer, 2010. https://doi.org/10.1007/978-3-642-14574-2
    [14] E. Doha, A. Bhrawy, D. Baleanu, S. Ezz-Eldien, On shifted Jacobi spectral approximations for solving fractional differential equations, Appl. Math. Comput., 219 (2013), 8042–8056. https://doi.org/10.1016/j.amc.2013.01.051 doi: 10.1016/j.amc.2013.01.051
    [15] G. Elnagar, M. Kazemi, Chebyshev spectral solution of nonlinear Volterra-Hammerstein integral equations, J. Comput. Appl. Math., 76 (1996), 147–158. https://doi.org/10.1016/S0377-0427(96)00098-2 doi: 10.1016/S0377-0427(96)00098-2
    [16] A. El-Sayed, M. Mohamed, F. Mohamed, Existence of positive continuous solution of a quadratic integral equation of fractional orders, Journal of Fractional Calculus and Applications, 1 (2011), 1–7.
    [17] A. El-Sayed, H. Hashem, E. Ziada, Picard and Adomian decomposition methods for a quadratic integral equation of fractional order, Comput. Appl. Math., 33 (2014), 95–109. https://doi.org/10.1007/s40314-013-0045-3 doi: 10.1007/s40314-013-0045-3
    [18] A. El-Sayed, M. Saleh, A. Ziada, Numerical and analytic solution for nonlinear quadratic integral equations, Math. Sci. Res. J., 12 (2008), 183–191.
    [19] A. El-Sayed, H. Hashem, Y. Omar, Positive continuous solution of a quadratic integral equation of fractional orders, Mathematical Sciences Letters, 2 (2013), 19–27. https://doi.org/10.12785/msl/020103 doi: 10.12785/msl/020103
    [20] S. Esmaeili, M. Shamsi, Y. Luchko, Numerical solution of fractional differential equations with a collocation method based on Müntz polynomials, Comput. Math. Appl., 62 (2011), 918–929. https://doi.org/10.1016/j.camwa.2011.04.023 doi: 10.1016/j.camwa.2011.04.023
    [21] S. Ezz-Eldien, New quadrature approach based on operational matrix for solving a class of fractional variational problems, J. Comput. Phys., 317 (2016), 362–381. https://doi.org/10.1016/j.jcp.2016.04.045 doi: 10.1016/j.jcp.2016.04.045
    [22] S. Ezz-Eldien, E. Doha, Fast and precise spectral method for solving pantograph type Volterra integro-differential equations, Numer. Algor., 81 (2019), 57–77. https://doi.org/10.1007/s11075-018-0535-x doi: 10.1007/s11075-018-0535-x
    [23] S. Ezz-Eldien, Y. Wang, M. Abdelkawy, M. Zaky, A. Aldraiweesh, J. Machado, Chebyshev spectral methods for multi-order fractional neutral pantograph equations, Nonlinear Dyn., 100 (2020), 3785–3797. https://doi.org/10.1007/s11071-020-05728-x doi: 10.1007/s11071-020-05728-x
    [24] M. Fariborzi Araghi, S. Noeiaghdam, A novel technique based on the homotopy analysis method to solve the first kind Cauchy integral equations arising in the theory of airfoils, Journal of Interpolation and Approximation in Scientific Computing, 2016 (2016), 1–13. https://doi.org/10.5899/2016/jiasc-00092 doi: 10.5899/2016/jiasc-00092
    [25] F. Ghomanjani, S. Noeiaghdam, S. Micula, Application of transcedental Bernstein polynomials for solving two-dimensional fractional optimal control problems, Complexity, 2022 (2022), 4303775. https://doi.org/10.1155/2022/4303775 doi: 10.1155/2022/4303775
    [26] Z. Gu, Y. Chen, Piecewise Legendre spectral-collocation method for Volterra integro-differential equations, LMS J. Comput. Math., 18 (2015), 231–249. https://doi.org/10.1112/S1461157014000485 doi: 10.1112/S1461157014000485
    [27] M. Heydari, A computational method for a class of systems of nonlinear variable-order fractional quadratic integral equations, Appl. Numer. Math., 153 (2020), 164–178. https://doi.org/10.1016/j.apnum.2020.02.011 doi: 10.1016/j.apnum.2020.02.011
    [28] S. Hu, M. Khavani, W. Zhuang, Integral equations arrising in the kinetic theory of gases, Appl. Anal., 34 (1989), 261–266. https://doi.org/10.1080/00036818908839899 doi: 10.1080/00036818908839899
    [29] S. Kazem, S. Abbasbandy, S. Kumar, Fractional-order Legendre functions for solving fractional-order differential equations, Appl. Math. Model., 37 (2013), 5498–5510. https://doi.org/10.1016/j.apm.2012.10.026 doi: 10.1016/j.apm.2012.10.026
    [30] C. Kelly, Approximation of solutions of some quadratic integral equations in transport theory, Journal of Integral Equations, 4 (1982), 221–237.
    [31] E. Kreyszig, Introductory functional analysis with applications, New York: Wiley, 1978.
    [32] N. Khalid, M. Abbas, M. Iqbal, J. Singh, A. Ismail, A computational approach for solving time-fractional differential equation via spline functions, Alex. Eng. J., 59 (2020), 3061–3078. https://doi.org/10.1016/j.aej.2020.06.007 doi: 10.1016/j.aej.2020.06.007
    [33] P. Kythe, P. Puri, Computational methods for linear integral equations, Boston: Birkhäuser, 2002. https://doi.org/10.1007/978-1-4612-0101-4
    [34] Z. Ma, A. Alikhanov, C. Huang, G. Zhang, A multi-domain spectral collocation method for Volterra integral equations with a weakly singular kernel, Appl. Numer. Math., 167 (2021), 218–236. https://doi.org/10.1016/j.apnum.2021.05.006 doi: 10.1016/j.apnum.2021.05.006
    [35] F. Mohammadi, S. Mohyud-Din, A fractional-order Legendre collocation method for solving the Bagley-Torvik equations, Adv. Differ. Equ., 2016 (2016), 269. https://doi.org/10.1186/s13662-016-0989-x doi: 10.1186/s13662-016-0989-x
    [36] F. Mohammadi, Numerical solution of systems of fractional delay differential equations using a new kind of wavelet basis, Comput. Appl. Math., 37 (2018), 4122–4144. https://doi.org/10.1007/s40314-017-0550-x doi: 10.1007/s40314-017-0550-x
    [37] F. Mirzaee, E. Hadadian, Application of modified hat functions for solving nonlinear quadratic integral equations, Iranian Journal of Numerical Analysis and Optimization, 6 (2016), 65–84. https://doi.org/10.22067/ijnao.v6i2.46565 doi: 10.22067/ijnao.v6i2.46565
    [38] F. Mirzaee, S. Alipour, Approximate solution of nonlinear quadratic integral equations of fractional order via piecewise linear functions, J. Comput. Appl. Math., 331 (2018), 217–227. https://doi.org/10.1016/j.cam.2017.09.038 doi: 10.1016/j.cam.2017.09.038
    [39] S. Noeiaghdam, M. Fariborzi Araghi, D. Sidorov, Dynamical strategy on homotopy perturbation method for solving second kind integral equations using the CESTAC method, J. Comput. Appl. Math., 411 (2022), 114226. https://doi.org/10.1016/j.cam.2022.114226 doi: 10.1016/j.cam.2022.114226
    [40] S. Noeiaghdam, S. Micula, A novel method for solving second kind Volterra integral equations with discontinuous kernel, Mathematics, 9 (2021), 2172. https://doi.org/10.3390/math9172172 doi: 10.3390/math9172172
    [41] S. Noeiaghdam, D. Sidorov, A. Wazwaz, N. Sidorov, V. Sizikov, The numerical validation of the Adomian decomposition method for solving Volterra integral equation with discontinuous kernel using the CESTAC method, Mathematics, 9 (2021), 260. https://doi.org/10.3390/math9030260 doi: 10.3390/math9030260
    [42] Z. Odibat, N. Shawagfeh, Generalized Taylor's formula, Appl. Math. Comput., 186 (2007), 286–293. https://doi.org/10.1016/j.amc.2006.07.102
    [43] C. Oguza, M. Sezer, Chelyshkov collocation method for a class of mixed functional integro-differential equations, Appl. Math. Comput., 259 (2015), 943–954. https://doi.org/10.1016/j.amc.2015.03.024 doi: 10.1016/j.amc.2015.03.024
    [44] Y. Pan, J. Huang, Y. Ma, Bernstein series solutions of multi-dimensional linear and nonlinear Volterra integral equations with fractional order weakly singular kernels, Appl. Math. Comput., 347 (2019), 149–161. https://doi.org/10.1016/j.amc.2018.10.022 doi: 10.1016/j.amc.2018.10.022
    [45] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, San Diego: Academic Press, 1999.
    [46] M. Rasty, M. Hadizadeh, A Product integration approach on new orthogonal polynomials for nonlinear weakly singular integral equations, Acta Appl. Math., 109 (2010), 861–873. https://doi.org/10.1007/s10440-008-9351-y doi: 10.1007/s10440-008-9351-y
    [47] P. Rahimkhani, Y. Ordokhani, Numerical solution of Volterra-Hammerstein delay integral equations, Iran. J. Sci. Technol. Trans. Sci., 44 (2020), 445–457. https://doi.org/10.1007/s40995-020-00846-y doi: 10.1007/s40995-020-00846-y
    [48] C. Ravichandran, D. Baleanu, Existence results for fractional neutral functional integro-differential evolution equations with infinite delay in Banach spaces, Adv. Differ. Equ., 2013 (2013), 215. https://doi.org/10.1186/1687-1847-2013-215 doi: 10.1186/1687-1847-2013-215
    [49] J. Saffar Ardabili, Y. Talaei, Chelyshkov collocation method for solving the two-dimensional Fredholm-Volterra integral equations, Int. J. Appl. Comput. Math., 4 (2018), 25. https://doi.org/10.1007/s40819-017-0433-2 doi: 10.1007/s40819-017-0433-2
    [50] M. Shafiq, M. Abbas, F. Abdullah, A. Majeed, T. Abdeljawad, M. Alqudah, Numerical solutions of time fractional Burgers equation involving Atangana-Baleanu derivative via cubic B-spline functions, Results Phys., 34 (2022), 105244. https://doi.org/10.1016/j.rinp.2022.105244 doi: 10.1016/j.rinp.2022.105244
    [51] Y. Talaei, M. Asgari, An operational matrix based on Chelyshkov polynomials for solving multi-order fractional differential equations, Neural. Comput. Applic., 30 (2018), 1369–1376. https://doi.org/10.1007/s00521-017-3118-1 doi: 10.1007/s00521-017-3118-1
    [52] Y. Talaei, Chelyshkov collocation approach for solving linear weakly singular Volterra integral equations, J. Appl. Math. Comput., 60 (2019), 201–222. https://doi.org/10.1007/s12190-018-1209-5 doi: 10.1007/s12190-018-1209-5
    [53] F. Usta, Numerical analysis of fractional Volterra integral equations via Bernstein approximation method, J. Comput. Appl. Math., 384 (2021), 113198. https://doi.org/10.1016/j.cam.2020.113198 doi: 10.1016/j.cam.2020.113198
    [54] K. Wang, Q. Wang, Taylor collocation method and convergence analysis for the Volterra-Fredholm integral equations, J. Comput. Appl. Math., 260 (2014), 294–300. https://doi.org/10.1016/j.cam.2013.09.050 doi: 10.1016/j.cam.2013.09.050
    [55] Ş. Yüzbaşi, M. Sezer, A numerical method to solve a class of linear integro-differential equations with weakly singular kernel, Math. Meth. Appl. Sci., 35 (2012), 621–632. https://doi.org/10.1002/mma.1559 doi: 10.1002/mma.1559
    [56] Ş. Yüzbaşi, Numerical solutions of fractional Riccati type differential equations by means of the Bernstein polynomials, Appl. Comput. Math., 219 (2013), 6328–6343. https://doi.org/10.1016/j.amc.2012.12.006 doi: 10.1016/j.amc.2012.12.006
    [57] Ş. Yüzbaşi, A numerical approximation for Volterra's population growth model with fractional order, Appl. Math. Model., 37 (2013), 3216–3227. https://doi.org/10.1016/j.apm.2012.07.041 doi: 10.1016/j.apm.2012.07.041
    [58] Ş. Yüzbaşi, A shifted Legendre method for solving a population model and delay linear Volterra integro-differential equations, Int. J. Biomath., 10 (2017), 1750091. http://dx.doi.org/10.1142/S1793524517500917 doi: 10.1142/S1793524517500917
    [59] Ş. Yüzbaşi, A new Bell function approach to solve linear fractional differential equations, Appl. Numer. Math., 174 (2022), 221–235. https://doi.org/10.1016/j.apnum.2022.01.014 doi: 10.1016/j.apnum.2022.01.014
    [60] E. Ziada, Numerical solution for nonlinear quadratic integral equations, Journal of Fractional Calculus and Applications, 7 (2013), 1–11.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1686) PDF downloads(116) Cited by(3)

Article outline

Figures and Tables

Figures(3)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog