Research article

A collocation methods based on the quadratic quadrature technique for fractional differential equations

  • Received: 17 August 2021 Accepted: 06 October 2021 Published: 18 October 2021
  • MSC : 34A08, 65L05, 65L20

  • In this paper, we introduce a mixed numerical technique for solving fractional differential equations (FDEs) by combining Chebyshev collocation methods and a piecewise quadratic quadrature rule. For getting solutions at each integration step, the fractional integration is calculated in two intervals-all previous time intervals and the current time integration step. The solution at the current integration step is calculated by using Chebyshev interpolating polynomials. To remove a singularity which belongs originally to the FDEs, Lagrangian interpolating technique is considered since the Chebyshev interpolating polynomial can be rewritten as a Lagrangian interpolating form. Moreover, for calculating the fractional integral on the whole previous time intervals, a piecewise quadratic quadrature technique is applied to get higher accuracy. Several numerical experiments demonstrate the efficiency of the proposed method and show numerically convergence orders for both linear and nonlinear cases.

    Citation: Sunyoung Bu. A collocation methods based on the quadratic quadrature technique for fractional differential equations[J]. AIMS Mathematics, 2022, 7(1): 804-820. doi: 10.3934/math.2022048

    Related Papers:

  • In this paper, we introduce a mixed numerical technique for solving fractional differential equations (FDEs) by combining Chebyshev collocation methods and a piecewise quadratic quadrature rule. For getting solutions at each integration step, the fractional integration is calculated in two intervals-all previous time intervals and the current time integration step. The solution at the current integration step is calculated by using Chebyshev interpolating polynomials. To remove a singularity which belongs originally to the FDEs, Lagrangian interpolating technique is considered since the Chebyshev interpolating polynomial can be rewritten as a Lagrangian interpolating form. Moreover, for calculating the fractional integral on the whole previous time intervals, a piecewise quadratic quadrature technique is applied to get higher accuracy. Several numerical experiments demonstrate the efficiency of the proposed method and show numerically convergence orders for both linear and nonlinear cases.



    加载中


    [1] K. E. Atkinson, An introduction to numerical analysis, John Wiley & Sons, 1989.
    [2] R. B. Albadarneh, M. Zerqat, I. M. Batiha, Numerical solutions for linear and non-linear fractional differential equations, Int. J. Pure App. Math., 106 (2016): 859–871. doi: 10.12732/ijpam.v106i3.12. doi: 10.12732/ijpam.v106i3.12
    [3] M. Barton, V. M. Calo, Optimal quadrature rules for odd-degree spline spaces and their application to tensor-product-based isogeometric analysis, Comput. Method. Appl. M., 305 (2016), 217–240. doi: 10.1016/j.cma.2016.02.034. doi: 10.1016/j.cma.2016.02.034
    [4] M. Barton, R. Ait-Haddou, V. M. Calo, Gaussian quadrature rules for C1 quintic splines with uniform knot vectors, J. Comput. Appl. Math., 322 (2017), 57–70. doi:10.1016/j.cam.2017.02.022. doi: 10.1016/j.cam.2017.02.022
    [5] M. Barton, V. M. Calo, Gauss-Galerkin quadrature rules for quadratic and cubic spline spaces and their application to isogeometric analysis, Comput. Aided Des., 82 (2017), 57–67. doi:10.1016/j.cad.2016.07.003. doi: 10.1016/j.cad.2016.07.003
    [6] S. Bu, W. Jung, P. Kim, An error embedded Runge-Kutta method for initial value problems, Kyungpook Math. J., 56 (2016), 311–327. doi:10.5666/KMJ.2016.56.2.311. doi: 10.5666/KMJ.2016.56.2.311
    [7] J. Y. Cao, C. J. Xu, A high order schema for the numerical solution of the fractional ordinary differential equation, J. Comput. Phys., 238 (2013), 154–168. doi:10.1016/j.jcp.2012.12.013. doi: 10.1016/j.jcp.2012.12.013
    [8] K. Diethelm, Efficient solution of multi-term fractional differential equations using P(EC)mE methods, Computing, 71 (2003), 305–-319. doi:10.1007/s00607-003-0033-3. doi: 10.1007/s00607-003-0033-3
    [9] K. Diethelm, An investigation of some nonclassical methods for the numerical approximation of Caputo-type fractional derivatives, Numer. Algor., 47 (2008), 361–390. doi:10.1007/s11075-008-9193-8. doi: 10.1007/s11075-008-9193-8
    [10] K. Diethelm, The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type, Springer Science & Business Media, 2010.
    [11] K. Diethelm, N. J. Ford, A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam., 29 (2002), 3–22. doi:10.1023/A:1016592219341. doi: 10.1023/A:1016592219341
    [12] K. Diethelm, N. J. Ford, A. D. Freed, Detailed error analysis for a fractional Adams method, Numer. Algor., 36 (2004), 31–52. doi:10.1023/B:NUMA.0000027736.85078.be. doi: 10.1023/B:NUMA.0000027736.85078.be
    [13] W. Deng, Smoothness and stability of the solutions for nonlinear fractional differential equations, Nonlinear Anal. Theor., 72 2010, 1768–1777. doi:10.1016/j.na.2009.09.018. doi: 10.1016/j.na.2009.09.018
    [14] W. Deng, S. Du, Y. Wu, High order finite difference WENO schemes for fractional differential equations, Appl. Math. Lett., 26 (2012), 362–366. doi:10.1016/j.aml.2012.10.005. doi: 10.1016/j.aml.2012.10.005
    [15] N. Ford, M. Morgado, M. Rebelo, Nonpolynomial collocation approximation of solutions to fractional differential equations, Frac. Calc. Appl. Anal., 16 (2013), 874–891. doi:10.2478/s13540-013-0054-3. doi: 10.2478/s13540-013-0054-3
    [16] C. W. Gear, Numerical initial value problems in ordinary differential equations, Prentice-Hall, 1971.
    [17] R. Hiemstra, F. Calabro, D. Schillinger, T. J. R. Hughes, Optimal and reduced quadrature rules for tensor product and hierarchically refined splines in isogeometric analysis, Comput. Method. Appl. M., 316 (2017), 966–1004. doi:10.1016/j.cma.2016.10.049. doi: 10.1016/j.cma.2016.10.049
    [18] E. Hairer, S. P. Norsett, G. Wanner, Solving ordinary differential equations. I nonstiff, Springer, 1993.
    [19] T. J. R. Hughes, A. Reali, G. Sangalli, Efficient quadrature for NURBS-based isogeometric analysis, Comput. Method. Appl. M., 199 (2010), 301–313. doi:10.1016/j.cma.2008.12.004. doi: 10.1016/j.cma.2008.12.004
    [20] Y. Jeon, S. Bak, S. Bu, Reinterpretation of multi-Stage methods for stiff systems: A comprehensive review on current perspectives and recommendations, Mathematics, 7 (2019), 1158. doi:10.3390/math7121158. doi: 10.3390/math7121158
    [21] P. Kumar, O. P. Agrawal, An approximate method for numerical solution of fractional differential equations, Signal Process., 86 (2006), 2602–2610. doi:10.1016/j.sigpro.2006.02.007. doi: 10.1016/j.sigpro.2006.02.007
    [22] S. Khatoon, I. Uddin, D. Baleanu, Approximation of fixed point and its application to fractional differential equation, J. Appl. Math. Comput., 66 (2021), 507–525. doi:10.1007/s12190-020-01445-1. doi: 10.1007/s12190-020-01445-1
    [23] C. Lv, M. Azaiez, C. Xu, Spectral deferred correction methods for fractional differential equations, Numer. Math. Theor. Meth. Appl., 11 (2018), 729–751. doi: 10.4208/nmtma.2018.s03. doi: 10.4208/nmtma.2018.s03
    [24] G. Nikolov, Gaussian quadrature formulae for splines, In: ISNM International Series of Numerical Mathematics, Basel: Birkhäuser, 1993.
    [25] I. Podlubny, Numerical solution of ordinary fractional differential equations by the fractional difference method, In: Proceedings of the Second International Conference on Difference Equations, 1997.
    [26] I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999.
    [27] M. Rehman, A. Idrees, U. Saeed, A quadrature method for numerical solutions of fractional differential equations, Appl. Math. Comput., 307 (2017), 38–49. doi:10.1016/j.amc.2017.02.053. doi: 10.1016/j.amc.2017.02.053
    [28] M. F. Simões Patrício, H. Ramos, M. Patrício, Solving initial and boundary value problems of fractional ordinary differential equations by using collocation and fractional powers, J. Comput. Appl. Math., 354 (2019), 348–359. doi:10.1016/j.cam.2018.07.034. doi: 10.1016/j.cam.2018.07.034
    [29] J. Xin, J. Huang, W. Zhao, J. Zhu, A spectral deferred correction method for fractional differential equations, Abstr. Appl. Anal., 2013 (2013), 139530. doi:10.1155/2013/139530. doi: 10.1155/2013/139530
    [30] Y. Yan, K. Pal, N. Ford, Higher order numerical methods for solving fractional differential equations, Bit Numer. Mathe., 54 (2014), 555–584. doi:10.1007/s10543-013-0443-3. doi: 10.1007/s10543-013-0443-3
    [31] J. Zhao, Y. Li, Y. Xu, A kind of product integration scheme for solving fractional ordinary differential equations, Appl. Numer. Math., 136 (2019), 279–292. doi:10.1016/j.apnum.2018.10.014. doi: 10.1016/j.apnum.2018.10.014
    [32] Y. Zhong, X. B. Bao, L. B. Liu, Z. F. Liang, Analysis of a finite difference scheme for a nonlinear Caputo fractional differential equation on an adaptive grid, AIMS Mathematics, 6 (2021), 8611–8624. doi:10.3934/math.2021500. doi: 10.3934/math.2021500
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2742) PDF downloads(145) Cited by(2)

Article outline

Figures and Tables

Figures(5)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog