In this paper, we study two types of nonisotropic symplectic graphs over finite commutative rings defined by nonisotropic free submodules of rank $ 2 $ and McCoy rank of matrices. We prove that the graphs are quasi-strongly regular or Deza graphs and we find their parameters. The diameter and vertex transitivity are also analyzed. Moreover, we study subconstituents of these nonisotropic symplectic graphs.
Citation: Songpon Sriwongsa, Siripong Sirisuk. Nonisotropic symplectic graphs over finite commutative rings[J]. AIMS Mathematics, 2022, 7(1): 821-839. doi: 10.3934/math.2022049
In this paper, we study two types of nonisotropic symplectic graphs over finite commutative rings defined by nonisotropic free submodules of rank $ 2 $ and McCoy rank of matrices. We prove that the graphs are quasi-strongly regular or Deza graphs and we find their parameters. The diameter and vertex transitivity are also analyzed. Moreover, we study subconstituents of these nonisotropic symplectic graphs.
[1] | X. L. Hubaut, Strongly regular graphs, Discrete Math., 13 (1975), 357–381. |
[2] | A. E. Brouwer, J. H. van Lint, Strongly regular graphs and partial geometries, in Enumeration and design (eds. D. H. Jackson and S. A. Vanstone), Academic Press, (1984), 85–122. |
[3] | Z. Tang, Z. Wan, Symplectic graphs and their automorphisms, European J. Combin., 27 (2006), 38–50. doi: 10.1016/j.ejc.2004.08.002. doi: 10.1016/j.ejc.2004.08.002 |
[4] | C. Godsil, G. Royle, Chromatic number and the 2-rank of a graph, J. Combin. Theory Ser. B, 81 (2001), 142–149. doi: 10.1006/jctb.2000.2003. doi: 10.1006/jctb.2000.2003 |
[5] | C. Godsil, G. Royle, Algebraic Graph Theory, Graduate Texts in Mathematics, vol. 207, Springer-Verlag, 2001. |
[6] | J. J. Rotman, Projective planes, graphs, and simple algebras, J. Algebra, 155 (1993), 267–289. doi: 10.1006/jabr.1993.1044. doi: 10.1006/jabr.1993.1044 |
[7] | J. J. Rotman, P. M. Weichsel, Simple Lie algebras and graphs, J. Algebra, 169 (1994), 775–790. doi: 10.1006/jabr.1994.1307. doi: 10.1006/jabr.1994.1307 |
[8] | Y. Meemark, T. Prinyasart, On symplectic graphs modulo $p^n$, Discrete Math., 311 (2011), 1874–1878. doi: 10.1016/j.disc.2011.05.005. doi: 10.1016/j.disc.2011.05.005 |
[9] | Y. Meemark, T. Puirod, Symplectic graphs over finite local rings, European J. Combin., 34, (2013), 1114–1124. doi: 10.1016/j.ejc.2013.03.003. doi: 10.1016/j.ejc.2013.03.003 |
[10] | Y. Meemark, T. Puirod, Symplectic graphs over finite commutative rings, European J. Combin., 41 (2014), 298–307. doi: 10.1016/j.ejc.2014.05.004. doi: 10.1016/j.ejc.2014.05.004 |
[11] | S. Sirisuk, Y. Meemark, Generalized symplectic graphs and generalized orthogonal graphs over finite commutative rings, Linear Multilinear Algebra, 67 (2019), 2427–2450. doi: 10.1080/03081087.2018.1494124. doi: 10.1080/03081087.2018.1494124 |
[12] | L. Zeng, Z. Chai, R. Feng, C. Ma, Full automorphism group of the generalized symplectic graph, Sci. China Math., 56 (2013), 1509–1520. doi: 10.1007/s11425-013-4651-8. doi: 10.1007/s11425-013-4651-8 |
[13] | F. Li, K. Wang, J. Guo, Symplectic graphs modulo $pq$, Discrete Math., 313 (2013), 650–655. doi: 10.1016/j.disc.2012.12.002. doi: 10.1016/j.disc.2012.12.002 |
[14] | L. Su, J. Nan, Y. Wei, Construction of symplectic graphs by using $2$-dimensional symplectic nonisotropic subspaces over finite fields, Discrete Math., 343 (2020), 111689. doi: 10.1016/j.disc.2019.111689. doi: 10.1016/j.disc.2019.111689 |
[15] | N. H. McCoy, Rings and ideals, Carus Math. Monogr. No. 8, Math. Assoc. of Am., 1948. |
[16] | J. V. Brawley, L. Carlitz, Enumeration of matrices with prescribed row and column sums, Linear Algebra Appl., 6 (1973), 165–174. doi: 10.1016/0024-3795(73)90016-5. doi: 10.1016/0024-3795(73)90016-5 |
[17] | D. Bollman, H. Ramirez, On the enumeration of matrices over finite commutative rings, Amer. Math. Monthly, 76 (1969), 1019–1023. doi: 10.2307/2317127. doi: 10.2307/2317127 |