Research article

Nonisotropic symplectic graphs over finite commutative rings

  • Received: 04 June 2021 Accepted: 13 October 2021 Published: 18 October 2021
  • MSC : 05C25, 13H05

  • In this paper, we study two types of nonisotropic symplectic graphs over finite commutative rings defined by nonisotropic free submodules of rank $ 2 $ and McCoy rank of matrices. We prove that the graphs are quasi-strongly regular or Deza graphs and we find their parameters. The diameter and vertex transitivity are also analyzed. Moreover, we study subconstituents of these nonisotropic symplectic graphs.

    Citation: Songpon Sriwongsa, Siripong Sirisuk. Nonisotropic symplectic graphs over finite commutative rings[J]. AIMS Mathematics, 2022, 7(1): 821-839. doi: 10.3934/math.2022049

    Related Papers:

  • In this paper, we study two types of nonisotropic symplectic graphs over finite commutative rings defined by nonisotropic free submodules of rank $ 2 $ and McCoy rank of matrices. We prove that the graphs are quasi-strongly regular or Deza graphs and we find their parameters. The diameter and vertex transitivity are also analyzed. Moreover, we study subconstituents of these nonisotropic symplectic graphs.



    加载中


    [1] X. L. Hubaut, Strongly regular graphs, Discrete Math., 13 (1975), 357–381.
    [2] A. E. Brouwer, J. H. van Lint, Strongly regular graphs and partial geometries, in Enumeration and design (eds. D. H. Jackson and S. A. Vanstone), Academic Press, (1984), 85–122.
    [3] Z. Tang, Z. Wan, Symplectic graphs and their automorphisms, European J. Combin., 27 (2006), 38–50. doi: 10.1016/j.ejc.2004.08.002. doi: 10.1016/j.ejc.2004.08.002
    [4] C. Godsil, G. Royle, Chromatic number and the 2-rank of a graph, J. Combin. Theory Ser. B, 81 (2001), 142–149. doi: 10.1006/jctb.2000.2003. doi: 10.1006/jctb.2000.2003
    [5] C. Godsil, G. Royle, Algebraic Graph Theory, Graduate Texts in Mathematics, vol. 207, Springer-Verlag, 2001.
    [6] J. J. Rotman, Projective planes, graphs, and simple algebras, J. Algebra, 155 (1993), 267–289. doi: 10.1006/jabr.1993.1044. doi: 10.1006/jabr.1993.1044
    [7] J. J. Rotman, P. M. Weichsel, Simple Lie algebras and graphs, J. Algebra, 169 (1994), 775–790. doi: 10.1006/jabr.1994.1307. doi: 10.1006/jabr.1994.1307
    [8] Y. Meemark, T. Prinyasart, On symplectic graphs modulo $p^n$, Discrete Math., 311 (2011), 1874–1878. doi: 10.1016/j.disc.2011.05.005. doi: 10.1016/j.disc.2011.05.005
    [9] Y. Meemark, T. Puirod, Symplectic graphs over finite local rings, European J. Combin., 34, (2013), 1114–1124. doi: 10.1016/j.ejc.2013.03.003. doi: 10.1016/j.ejc.2013.03.003
    [10] Y. Meemark, T. Puirod, Symplectic graphs over finite commutative rings, European J. Combin., 41 (2014), 298–307. doi: 10.1016/j.ejc.2014.05.004. doi: 10.1016/j.ejc.2014.05.004
    [11] S. Sirisuk, Y. Meemark, Generalized symplectic graphs and generalized orthogonal graphs over finite commutative rings, Linear Multilinear Algebra, 67 (2019), 2427–2450. doi: 10.1080/03081087.2018.1494124. doi: 10.1080/03081087.2018.1494124
    [12] L. Zeng, Z. Chai, R. Feng, C. Ma, Full automorphism group of the generalized symplectic graph, Sci. China Math., 56 (2013), 1509–1520. doi: 10.1007/s11425-013-4651-8. doi: 10.1007/s11425-013-4651-8
    [13] F. Li, K. Wang, J. Guo, Symplectic graphs modulo $pq$, Discrete Math., 313 (2013), 650–655. doi: 10.1016/j.disc.2012.12.002. doi: 10.1016/j.disc.2012.12.002
    [14] L. Su, J. Nan, Y. Wei, Construction of symplectic graphs by using $2$-dimensional symplectic nonisotropic subspaces over finite fields, Discrete Math., 343 (2020), 111689. doi: 10.1016/j.disc.2019.111689. doi: 10.1016/j.disc.2019.111689
    [15] N. H. McCoy, Rings and ideals, Carus Math. Monogr. No. 8, Math. Assoc. of Am., 1948.
    [16] J. V. Brawley, L. Carlitz, Enumeration of matrices with prescribed row and column sums, Linear Algebra Appl., 6 (1973), 165–174. doi: 10.1016/0024-3795(73)90016-5. doi: 10.1016/0024-3795(73)90016-5
    [17] D. Bollman, H. Ramirez, On the enumeration of matrices over finite commutative rings, Amer. Math. Monthly, 76 (1969), 1019–1023. doi: 10.2307/2317127. doi: 10.2307/2317127
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2049) PDF downloads(70) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog