In this paper, we introduce orthogonal generalized $ {\bf{O}} $-$ {\boldsymbol{\alpha}} $-$ {\boldsymbol{\psi}} $-Geraghty contractive type mappings and prove some fixed point theorems in $ {\bf{O}} $-complete $ {\bf{O}} $-$ \mathfrak{b} $-metric spaces. We also provide an illustrative example to support our theorem. The results proved here will be utilized to show the existence of a solution to an integral equation as an application.
Citation: Senthil Kumar Prakasam, Arul Joseph Gnanaprakasam, Gunaseelan Mani, Fahd Jarad. Solving an integral equation via orthogonal generalized $ {\boldsymbol{\alpha}} $-$ {\boldsymbol{\psi}} $-Geraghty contractions[J]. AIMS Mathematics, 2023, 8(3): 5899-5917. doi: 10.3934/math.2023297
In this paper, we introduce orthogonal generalized $ {\bf{O}} $-$ {\boldsymbol{\alpha}} $-$ {\boldsymbol{\psi}} $-Geraghty contractive type mappings and prove some fixed point theorems in $ {\bf{O}} $-complete $ {\bf{O}} $-$ \mathfrak{b} $-metric spaces. We also provide an illustrative example to support our theorem. The results proved here will be utilized to show the existence of a solution to an integral equation as an application.
[1] | S. Banach, Sur les opérations dans ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 51–57. |
[2] | S. Czerwik, Contraction mappings in $b$-metric spaces, Acta. Math. Inform. Univ. Ostrav., 1 (1993), 5–11. |
[3] | H. Aydi, M. Bota, E. Karapinar, S. Moradi, A common fixed points for weak $\psi$-contractions on $b$-metric spaces, Fixed Point Theory, 13 (2012), 337–346. |
[4] | M. Pacurar, A fixed point result for $\psi$-contractions and fixed points on $b$-metric spaces without the boundness assumption, Fasc. Math., 43 (2010), 127–136. |
[5] | M. B. Zada, M. Sarwar, P. Kumam, Fixed point results for rational type contraction in $b$-metric spaces, Int. J. Anal. Appl., 16 (2018), 904–920. |
[6] | M. A. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40 (1973), 604–608. https://doi.org/10.1090/S0002-9939-1973-0334176-5 doi: 10.1090/S0002-9939-1973-0334176-5 |
[7] | B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha$-$\psi$-contractive type mappings, Nonlinear Anal.: Theory Methods Appl., 75 (2012), 2154–2165. https://doi.org/10.1016/j.na.2011.10.014 doi: 10.1016/j.na.2011.10.014 |
[8] | S. H. Cho, J. S. Bae, E. Karapinar, Fixed point theorems for $\alpha$-Geraghty contraction type maps in metric spaces, Fixed Point Theory Appl., 2013 (2013), 329. https://doi.org/10.1186/1687-1812-2013-329 doi: 10.1186/1687-1812-2013-329 |
[9] | O. Popescu, Some new fixed point theorems for $\alpha$-Geraghty contraction type mappings in metric spaces, Fixed Point Theory Appl., 2014 (2014), 190. https://doi.org/10.1186/1687-1812-2014-190 doi: 10.1186/1687-1812-2014-190 |
[10] | E. Karapınar, P. Kumam, P. Salimi, On $\alpha$-$\psi$-Meir-Keeler contractive mappings, Fixed Point Theory Appl., 2013 (2013), 94. https://doi.org/10.1186/1687-1812-2013-94 doi: 10.1186/1687-1812-2013-94 |
[11] | E. Karapınar, A discussion on $({\boldsymbol{\alpha}}$-${\boldsymbol{\psi}})$-Geraghty contraction type maps, Filomat, 28 (2014), 761–766. |
[12] | E. Karapınar, $({\boldsymbol{\alpha}}$-${\boldsymbol{\psi}})$-Geraghty contraction type mappings and some related fixed point results, Filomat, 28 (2014), 37–48. https://doi.org/10.2298/FIL1401037K doi: 10.2298/FIL1401037K |
[13] | M. Mehmood, H. Aydi, M. U. Ali, Fahimuddin, A. Shoaib, M. De La Sen, Solutions of integral equations via fixed-point results on orthogonal gauge structure, Math. Probl. Eng., 2021 (2021), 8387262. https://doi.org/10.1155/2021/8387262 doi: 10.1155/2021/8387262 |
[14] | H. Guan, J. Li, Y. Hao, Common fixed point theorems for weakly contractions in rectangular $b$-metric spaces with supportive applications, J. Funct. Spaces, 2022 (2022), 8476040. https://doi.org/10.1155/2022/8476040 doi: 10.1155/2022/8476040 |
[15] | L. Chen H. Guan, Common fixed point and coincidence point results for generalized $\alpha$-$\varphi_{E}$-Geraghty contraction mappings in $b$-metric spaces, AIMS Math., 7 (2022), 14513–14531. https://doi.org/10.3934/math.2022800 doi: 10.3934/math.2022800 |
[16] | H. Guan, J. Li, Common fixed-point theorems of generalized $(\psi, \varphi)$ weakly contractive mappings in $b$-metric-like spaces and application, J. Math., 2021 (2021), 6680381. https://doi.org/10.1155/2021/6680381 doi: 10.1155/2021/6680381 |
[17] | Y. Hao, H. Guan, On some common fixed point results for weakly contraction mappings with application, J. Funct. Spaces, 2021 (2021), 5573983. https://doi.org/10.1155/2021/5573983 doi: 10.1155/2021/5573983 |
[18] | J. Li, H. Guan, Common fixed point results for generalized $(g-{\alpha_{s^p}}, \psi, \phi)$ contractive mappings with applications, J. Funct. Spaces, 2021 (2021), 5020027. https://doi.org/10.1155/2021/5020027 doi: 10.1155/2021/5020027 |
[19] | F. Zhang, X. Zhang, Y. Hao, Common fixed point theorems for contractive mappings of integral type in G-metric spaces and applications, J. Funct. Spaces, 2021 (2021), 6619964. https://doi.org/10.1155/2021/6619964 doi: 10.1155/2021/6619964 |
[20] | M. E. Gordji, M. Ramezani, M. De La Sen, Y. J. Cho, On orthogonal sets and Banach fixed point theorem, Fixed Point Theory, 18 (2017), 569–578. https://doi.org/10.24193/fpt-ro.2017.2.45 doi: 10.24193/fpt-ro.2017.2.45 |
[21] | M. E. Gordji, H. Habibi, Fixed point theory in generalized orthogonal metric space, J. Linear Topol. Algebra, 6 (2017), 251–260. |
[22] | A. J. Gnanaprakasam, G. Mani, J. R. Lee, C. Park, Solving a nonlinear integral equation via orthogonal metric space, AIMS Math., 7 (2022), 1198–1210. https://doi.org/10.3934/math.2022070 doi: 10.3934/math.2022070 |
[23] | G. Mani, A. J. Gnanaprakasam, N. Kausar, M. Munir, Salahuddin, Orthogonal $F$-contraction mapping on $O$-complete metric space with applications, Int. J. Fuzzy Log. Intell. Syst., 21 (2021), 243–250. https://doi.org/10.5391/IJFIS.2021.21.3.243 doi: 10.5391/IJFIS.2021.21.3.243 |
[24] | G. Mani, A. J. Gnanaprakasam, C. Park, S. Yun, Orthogonal $F$-contractions on $O$-complete $b$-metric space, AIMS Math., 6 (2021), 8315–8330. https://doi.org/10.3934/math.2021481 doi: 10.3934/math.2021481 |
[25] | A. J. Gnanaprakasam, G. Mani, V. Parvaneh, H. Aydi, Solving a nonlinear Fredholm integral equation via an orthogonal metric, Adv. Math. Phys., 2021 (2021), 1202527. https://doi.org/10.1155/2021/1202527 doi: 10.1155/2021/1202527 |
[26] | M. Ramezani, Orthogonal metric space and convex contractions, Int. J. Nonlinear Anal. Appl., 6 (2015), 127–132. http://dx.doi.org/10.22075/ijnaa.2015.261 doi: 10.22075/ijnaa.2015.261 |
[27] | S. K. Prakasam, A. J. Gnanaprakasam, N. Kausar, G. Mani, M. Munir, Salahuddin, Solution of integral equation via orthogonally modified $F$-contraction mappings on $O$-complete metric-like space, Int. J. Fuzzy Logic Intell. Syst., 22 (2022), 287–295. http://doi.org/10.5391/IJFIS.2022.22.3.287 doi: 10.5391/IJFIS.2022.22.3.287 |
[28] | H. Afshari, H. Aydi, E. Karapınar, On generalized $\alpha$-$\psi$-Geraghty contractions on $b$-metric spaces, Georgian Math. J., 27 (2018), 9–21. http://doi.org/10.1515/gmj-2017-0063 doi: 10.1515/gmj-2017-0063 |
[29] | S. K. Prakasam, A. J. Gnanaprakasam, O. Ege, G. Mani, S. Haque, N. Mlaiki, Fixed point for an $\mathbb{O}g\mathfrak{F}$-c in ${O}$-complete $b$-metric-like spaces, AIMS Math., 8 (2022), 1022–1039, http://doi.org/10.3934/math.2023050 doi: 10.3934/math.2023050 |
[30] | S. Khalehoghli, H. Rahimi, M. E. Gordji, Fixed point theorems in $R$-metric spaces with applications, AIMS Math., 5 (2020), 3125–3137. https://doi.org/10.3934/math.2020201 doi: 10.3934/math.2020201 |
[31] | S. Khalehoghli, H. Rahimi, M. E. Gordji, $R$-topological spaces and $SR$-topological spaces with their applications, Math. Sci., 14 (2020), 249–255. https://doi.org/10.1007/s40096-020-00338-5 doi: 10.1007/s40096-020-00338-5 |