Let GRS$ _k(\boldsymbol{\alpha}, \boldsymbol{\upsilon}) $ be a $ k $-dimensional generalized Reed-Solomon (GRS) code over $ \mathbb{F}_q $ associated with $ \boldsymbol{\alpha} = (\alpha_1, \ldots, \alpha_n) $ and $ \boldsymbol{\upsilon} = (\upsilon_1, \ldots, \upsilon_n) $. In this paper, we determined the dimension of the Euclidean hull GRS$ _k(\boldsymbol{\alpha}, \boldsymbol{\upsilon})\; \cap $ GRS$ _k(\boldsymbol{\alpha}, \boldsymbol{\upsilon})^\bot $, which addresses an open problem posed in [Chen et al., IEEE-TIT, 2023]. We also presentd a new approach to generating all self-dual RS codes.
Citation: Jing Huang, Jingge Liu, Dong Yu. Dimensions of the hull of generalized Reed-Solomon codes[J]. AIMS Mathematics, 2024, 9(6): 13553-13569. doi: 10.3934/math.2024661
Let GRS$ _k(\boldsymbol{\alpha}, \boldsymbol{\upsilon}) $ be a $ k $-dimensional generalized Reed-Solomon (GRS) code over $ \mathbb{F}_q $ associated with $ \boldsymbol{\alpha} = (\alpha_1, \ldots, \alpha_n) $ and $ \boldsymbol{\upsilon} = (\upsilon_1, \ldots, \upsilon_n) $. In this paper, we determined the dimension of the Euclidean hull GRS$ _k(\boldsymbol{\alpha}, \boldsymbol{\upsilon})\; \cap $ GRS$ _k(\boldsymbol{\alpha}, \boldsymbol{\upsilon})^\bot $, which addresses an open problem posed in [Chen et al., IEEE-TIT, 2023]. We also presentd a new approach to generating all self-dual RS codes.
[1] | G. Luo, X. Cao, X. Chen, MDS codes with hulls of arbitrary dimensions and their quantum error correction, IEEE Trans. Inf. Theory, 65 (2019), 2944–2952. https://doi.org/10.1109/TIT.2018.2874953 doi: 10.1109/TIT.2018.2874953 |
[2] | W. Fang, F. Fu, L. Li, S. Zhu, Euclidean and Hermitian hulls of MDS codes and their applications to EAQECCs, IEEE Trans. Inf. Theory, 66 (2020), 3527–3537. https://doi.org/10.1109/TIT.2019.2950245 doi: 10.1109/TIT.2019.2950245 |
[3] | X. Fang, M. Liu, J. Luo, On Euclidean hulls of MDS codes, Cryptogr. Commun., 13 (2021), 1–14. https://doi.org/10.1007/s12095-020-00428-0 doi: 10.1007/s12095-020-00428-0 |
[4] | M. Cao, MDS codes with Galois hulls of arbitrary dimensions and the related entanglement-assisted quantum error correction, IEEE Trans. Inf. Theory, 67 (2021), 7964–7984. https://doi.org/10.1109/TIT.2021.3117562 doi: 10.1109/TIT.2021.3117562 |
[5] | S. Li, M. Shi, Characterization and classification of binary linear codes with various hull dimensions from an improved mass formula, IEEE Trans. Inf. Theory, 2023. https://doi.org/10.1109/TIT.2023.3298379 doi: 10.1109/TIT.2023.3298379 |
[6] | S. Li, M. Shi, J. Wang, An improved method for constructing formally self-dual codes with small hulls, Designs Codes Cryptogr., 91 (2023), 2563–2583. https://doi.org/10.1007/s10623-023-01210-y doi: 10.1007/s10623-023-01210-y |
[7] | M. Shi, N. Liu, J. Kim, P. Solé, Additive complementary dual codes over $\mathbb{F}_4$, Designs Codes Cryptogr., 91 (2023), 273–284. https://doi.org/10.1007/s10623-022-01106-3 doi: 10.1007/s10623-022-01106-3 |
[8] | B. Chen, S. Ling, H. Liu, Hulls of Reed-Solomon codes via algebraic geometry codes, IEEE Trans. Inf. Theory, 69 (2023), 1005–1014. https://doi.org/10.1109/TIT.2022.3211887 doi: 10.1109/TIT.2022.3211887 |
[9] | H. Stichtenoth, Algebraic function fields and codes, 2 Eds., Springer, 2009. https://doi.org/10.1007/978-3-540-76878-4 |
[10] | C. Munuera, R. Pellikaan, Equality of geometric Goppa codes and equivalence of divisors, J. Pure Appl. Algebra, 90 (1993), 229–252. https://doi.org/10.1016/0022-4049(93)90043-S doi: 10.1016/0022-4049(93)90043-S |
[11] | Groups, algorithms and programming (GAP), The GAP groups, algorithms and programming, Version 4.7.7. Available from: http://www.gap-system.org, 2015. |