The novel corona virus (COVID-19) has badly affected many countries (more than 180 countries including China) in the world. More than 90% of the global COVID-19 cases are currently outside China. The large, unanticipated number of COVID-19 cases has interrupted the healthcare system in many countries and created shortages for bed space in hospitals. Consequently, better estimation of COVID-19 infected people in Sri Lanka is vital for government to take suitable action. This paper investigates predictions on both the number of the first and the second waves of COVID-19 cases in Sri Lanka. First, to estimate the number of first wave of future COVID-19 cases, we develop a stochastic forecasting model and present a solution technique for the model. Then, another solution method is proposed to the two existing models (SIR model and Logistic growth model) for the prediction on the second wave of COVID-19 cases. Finally, the proposed model and solution approaches are validated by secondary data obtained from the Epidemiology Unit, Ministry of Health, Sri Lanka. A comparative assessment on actual values of COVID-19 cases shows promising performance of our developed stochastic model and proposed solution techniques. So, our new finding would definitely be benefited to practitioners, academics and decision makers, especially the government of Sri Lanka that deals with such type of decision making.
Citation: I. H. K. Premarathna, H. M. Srivastava, Z. A. M. S. Juman, Ali AlArjani, Md Sharif Uddin, Shib Sankar Sana. Mathematical modeling approach to predict COVID-19 infected people in Sri Lanka[J]. AIMS Mathematics, 2022, 7(3): 4672-4699. doi: 10.3934/math.2022260
The novel corona virus (COVID-19) has badly affected many countries (more than 180 countries including China) in the world. More than 90% of the global COVID-19 cases are currently outside China. The large, unanticipated number of COVID-19 cases has interrupted the healthcare system in many countries and created shortages for bed space in hospitals. Consequently, better estimation of COVID-19 infected people in Sri Lanka is vital for government to take suitable action. This paper investigates predictions on both the number of the first and the second waves of COVID-19 cases in Sri Lanka. First, to estimate the number of first wave of future COVID-19 cases, we develop a stochastic forecasting model and present a solution technique for the model. Then, another solution method is proposed to the two existing models (SIR model and Logistic growth model) for the prediction on the second wave of COVID-19 cases. Finally, the proposed model and solution approaches are validated by secondary data obtained from the Epidemiology Unit, Ministry of Health, Sri Lanka. A comparative assessment on actual values of COVID-19 cases shows promising performance of our developed stochastic model and proposed solution techniques. So, our new finding would definitely be benefited to practitioners, academics and decision makers, especially the government of Sri Lanka that deals with such type of decision making.
[1] | E. Allen, Modeling with Itô stochastic differential equations, Springer Science & Business Media, 2007. https://doi.org/10.1007/978-1-4020-5953-7 |
[2] | F. A. Rihan, Q. M. Al-Mdallal, H. J. Al-Sakaji, A. Hashish, A fractional-order epidemic model with time-delay and nonlinear incidence rate, Chaos Soliton. Fract., 126 (2019), 97–105. https://doi.org/10.1016/j.chaos.2019.05.039 doi: 10.1016/j.chaos.2019.05.039 |
[3] | N. Sharma, A. K. Verma, A. K. Gupta, Spatial network based model forecasting transmission and control of COVID-19, Physica A, 581 (2021), 126223. https://doi.org/10.1016/j.physa.2021.126223 doi: 10.1016/j.physa.2021.126223 |
[4] | J. Guan, Y. Wei, Y. Zhao, F. Chen, Modeling the transmission dynamics of COVID-19 epidemic: a systematic review, The Journal of Biomedical Research, 34 (2020), 422–430. https://doi.org/10.7555/JBR.34.20200119 doi: 10.7555/JBR.34.20200119 |
[5] | R. U. Din, A. R. Seadawy, K. Shah, A. Ullah, D. Baleanu, Study of global dynamics of COVID-19 via a new mathematical model, Results Phys., 19 (2020), 103468. https://doi.org/10.1016/j.rinp.2020.103468 doi: 10.1016/j.rinp.2020.103468 |
[6] | I. F. Mello, L. Squillante, G. O. Gomes, A. C.Seridonio, M. de Souza, Epidemics, the Ising-model and percolation theory: a comprehensive review focused on Covid-19, Physica A, 573 (2021) 125963. https://doi.org/10.1016/j.physa.2021.125963 doi: 10.1016/j.physa.2021.125963 |
[7] | H. A. Adekola, I. A. Adekunle, H. O. Egberongbe, S. A. Onitilo, I. N. Abdullahi, Mathematical modeling for infectious viral disease: The COVID‐19 perspective, J. Public Aff., 20 (2020), 2306. https://doi.org/10.1002/pa.2306 doi: 10.1002/pa.2306 |
[8] | A. M. Hajji, Q. Al-Mdallal, Numerical simulations of a delay model for immune system-tumor interaction, Sultan Qaboos University Journal for Science, 23 (2018), 19–31. https://doi.org/10.24200/squjs.vol23iss1pp19-31 doi: 10.24200/squjs.vol23iss1pp19-31 |
[9] | A. J. Kucharski, T. W. Russell, C. Diamond, Y. Liu, J. Edmunds, S. Funk, et al., Early dynamics of transmission and control of COVID-19: a mathematical modeling study, The Lancet Infectious Diseases, 20 (2020), 553–558. https://doi.org/10.1016/S1473-3099(20)30144-4 doi: 10.1016/S1473-3099(20)30144-4 |
[10] | E. Allen, Stochastic differential equation models for the wear of coins in circulation, Tribol. Lett., 64 (2016), 45. https://doi.org/10.1007/s11249-016-0780-x doi: 10.1007/s11249-016-0780-x |
[11] | L. J. S. Allen, A primer on stochastic epidemic models: formulation, numerical simulation, and analysis, Infectious Disease Modelling, 2 (2017), 128–142. https://doi.org/10.1016/j.idm.2017.03.001 doi: 10.1016/j.idm.2017.03.001 |
[12] | E. Allen, Environmental variability and mean reverting processes, Discrete Cont. Dyn. Syst. B, 21 (2016), 2073–2089. https://doi.org/10.3934/dcdsb.2016037 doi: 10.3934/dcdsb.2016037 |
[13] | Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, et al., Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia, N. Engl. J. Med., 382 (2020), 1199–1207. https://doi.org/10.1056/NEJMoa2001316 doi: 10.1056/NEJMoa2001316 |
[14] | C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, The Lancet, 395 (2020), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5 doi: 10.1016/S0140-6736(20)30183-5 |
[15] | S. Ahmad, A. Ullah, Q. M. Al-Mdallal, H. Khan, K. Shah, A. Khan, Fractional order mathematical modeling of COVID-19 transmission, Chaos Soliton. Fract., 139 (2020), 110256. https://doi.org/10.1016/j.chaos.2020.110256 doi: 10.1016/j.chaos.2020.110256 |
[16] | B. Bukiet, M. Ovens, A mathematical modeling approach to one-day cricket batting orders, J. Sports Sci. Med., 5 (2006), 495–502. |
[17] | F. B. Agusto, S. Bewick, W, F. Fagan, Mathematical model of Zika virus with vertical transmission, Infectious Disease Modelling, 2 (2017), 244–267. https://doi.org/10.1016/j.idm.2017.05.003 doi: 10.1016/j.idm.2017.05.003 |
[18] | A. E. E. Eltoukhy, I. A. Shaban, F. T. S. Chan, M. A. M. Abdel-Aal, Data analytics for predicting COVID-19 cases in top affected countries: observations and recommendations, Int. J. Environ. Res. Public Health, 17 (2020), 7080. https://doi.org/10.3390/ijerph17197080 doi: 10.3390/ijerph17197080 |
[19] | D. Xu, Modeling of network based digital contact tracing and testing strategies, including the pre-exposure notification system, for the COVID-19 pandemic, Math. Biosci., 338 (2021), 108645. https://doi.org/10.1016/j.mbs.2021.108645 doi: 10.1016/j.mbs.2021.108645 |
[20] | I. J. Rao, M. L. Brandeau, Optimal allocation of limited vaccine to control an infectious disease: simple analytical conditions, Math. Biosci., 337 (2021), 108621. https://doi.org/10.1016/j.mbs.2021.108621 doi: 10.1016/j.mbs.2021.108621 |
[21] | S. M. Ciupe, J. M. Heffernan, In-host modeling, Infectious Disease Modelling, 2 (2017), 188–202. https://doi.org/10.1016/j.idm.2017.04.002 doi: 10.1016/j.idm.2017.04.002 |
[22] | A. Antonietta, J. P. Whiteley, Model reduction for initial value ODEs, Math. Biosci., 337 (2021), 108618. https://doi.org/10.1016/j.mbs.2021.108618 doi: 10.1016/j.mbs.2021.108618 |
[23] | A. Khan, H. M. Alshehri, T. Abdeljawad, Q. M. Al-Mdallal, H. Khan, Stability analysis of fractional nabla difference covid-19 model, Results Phys., 22 (2021), 103888. https://doi.org/10.1016/j.rinp.2021.103888 doi: 10.1016/j.rinp.2021.103888 |
[24] | T. N. Sindhu, A. Shafiq, Q. M. Al-Mdallal, On the analysis of number of deaths due to Covid-19 outbreak data using a new class of distributions, Results Phys., 21 (2021), 103747. https://doi.org/10.1016/j.rinp.2020.103747 doi: 10.1016/j.rinp.2020.103747 |
[25] | L. Vassallo, I. A. Perez, L. G. A. Zuzek, J. Amaya, M. F. Torres, L. D. Valdez, et al., An epidemic model for COVID-19 transmission in Argentina: Exploration of the alternating quarantine and massive testing strategies, Math. Biosci., 2021, 108664. https://doi.org/10.1016/j.mbs.2021.108664 doi: 10.1016/j.mbs.2021.108664 |
[26] | S. Winkelmanna, J. Zonkerab, C. Schütteab, N. D. Conrada, Mathematical modeling of spatio-temporal population dynamics and application to epidemic spreading, Math. Biosci., 336 (2021), 108619. https://doi.org/10.1016/j.mbs.2021.108619 doi: 10.1016/j.mbs.2021.108619 |
[27] | T. Y. Lin, A. Yen, S. Chen, Likelihood function for estimating parameters in multistate disease process with Laplace-transformation-based transition probabilities, Math. Biosci., 335 (2021), 108586. https://doi.org/10.1016/j.mbs.2021.108586 doi: 10.1016/j.mbs.2021.108586 |
[28] | H. Singh, H. M. Srivastava, Z. Hammouch, K. S. Nisar, Numerical simulation and stability analysis for the fractional-order dynamics of COVID-19, Results Phys., 20 (2021), 103722. https://doi.org/10.1016/j.rinp.2020.103722 doi: 10.1016/j.rinp.2020.103722 |
[29] | H. M. Srivastava, R. Jan, A. Jan, W. Deebani, M. Shutaywi, Fractional-calculus analysis of the transmission dynamics of the dengue infection, Chaos, 31 (2021), 53130. https://doi.org/10.1063/5.0050452 doi: 10.1063/5.0050452 |
[30] | H. M. Srivastava, I. Area, J. J. Nieto, Power-series solution of compartmental epidemiological models, Math. Biosci. Eng., 18 (2021), 3274–3290. https://doi.org/10.3934/mbe.2021163 doi: 10.3934/mbe.2021163 |
[31] | B. M. Henry, M. H. S. De Oliveira, S. Benoit, M. Plebani, G. Lippi, Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis, Clin. Chem. Lab. Med., 58 (2020), 1021–1028. https://doi.org/10.1515/cclm-2020-0369 doi: 10.1515/cclm-2020-0369 |
[32] | S. Bhattacharjee, A. Banerjee, A. Rakshit, S. Bhattacharyya, S. Chowdhuri, B. Sarkar, et al., Dynamics of cardiovascular muscle using a non-linear symmetric oscillator, Symmetry, 13 (2021), 151. https://doi.org/10.3390/sym13010151 doi: 10.3390/sym13010151 |
[33] | Martingale Probability Theory, Wikipedia, The Free Encyclopedia. Available From: https://en.wikipedia.org/wiki/Martingale_(probability_theory). |
[34] | Markov Chains, Chapter-8, The University of Auckland, New Zealand. Available From: https://www.stat.auckland.ac.nz/~fewster/325/notes/ch8.pdf. |
[35] | T. Sauer, Numerical solution of stochastic differential equations in finance, In: Handbook of computational finance, Berlin, Heidelberg: Springer, 2012,529–550. https://doi.org/10.1007/978-3-642-17254-0_19 |
[36] | I. I. Gikhman, A. V. Skorokhod, Stochastic differential equations, In: The theory of stochastic processes III, Berlin, Heidelberg: Springer, 2007,113–219. https://doi.org/10.1007/978-3-540-49941-1_2 |
[37] | A. M. Almeshal, A. I. Almazrouee, M. R. Aleniziand, S. N. Alhajeri, Forecasting the spread of COVID-19 in Kuwait using compartmental and logistic regression models, Appl. Sci., 10 (2020), 3402. https://doi.org/10.3390/app10103402 doi: 10.3390/app10103402 |
[38] | R. M. Anderson, Discussion: the Kermack-McKendrick epidemic threshold theorem, Bull. Math. Biol., 53 (1991), 3–32. https://doi.org/10.1016/S0092-8240(05)80039-4 doi: 10.1016/S0092-8240(05)80039-4 |
[39] | R. Singh, R. Adhikari, Age-structured impact of social distancing on the COVID-19 epidemic in India, 2020, arXiv: 2003.12055. |
[40] | L. Zhong, L. Mu, J. Li, J. Wang, Z. Yin, D. Liu, Early prediction of the 2019 novel coronavirus outbreak in the mainland china based on simple mathematical model, IEEE Access, 8 (2020), 51761–51769. https://doi.org/10.1109/ACCESS.2020.2979599 doi: 10.1109/ACCESS.2020.2979599 |
[41] | D. I. Vega, Lockdown, one, two, none, or smart. Modeling containing COVID-19 infection. A conceptual model, Sci. Total Environ., 730 (2020), 138917. https://doi.org/10.1016/j.scitotenv.2020.138917 doi: 10.1016/j.scitotenv.2020.138917 |
[42] | T. N. Sindhu, A. Shafiq, Q. M. Al-Mdallal, Exponentiated transformation of Gumbel Type-Ⅱ distribution for modeling COVID-19 data, Alex. Eng. J., 60 (2021), 671–689. https://doi.org/10.1016/j.aej.2020.09.060 doi: 10.1016/j.aej.2020.09.060 |
[43] | Ministry of health, National Epidemiology report—Sri Lanka, cited April 19, 2020. Available from: https://www.epid.gov.lk/web/. |
[44] | R. M. K. T. Rathnayaka, J. Wei, D. M. K. N. Seneviratna, Geometric Brownian motion with Ito's lemma approach to evaluate market fluctuations: A case study on Colombo Stock Exchange, In: 2014 International Conference on Behavioral, Economic, and Socio-Cultural Computing, 2014, 1–6. https://doi.org/10.1109/BESC.2014.7059517 |
[45] | I. Karatzas, S. E. Shreve, Brownian motion, In: Brownian motion and stochastic calculus, New York: Springer, 1998, 47–127. https://doi.org/10.1007/978-1-4612-0949-2_2 |
math-07-03-260-Appendix A.xlsx |