Research article

Bifurcation analysis for the coexistence in a Gause-type four-species food web model with general functional responses

  • Received: 13 August 2024 Revised: 19 September 2024 Accepted: 10 October 2024 Published: 24 October 2024
  • MSC : 37G15, 34C60, 92D25

  • The dynamics of an ordinary differential equations (ODEs) system modelling the interaction of four species (one prey or resource population, two mesopredator populations, and one super-predator population) was analyzed. It was assumed that the functional responses for each interaction were general. We showed parameter conditions that ensured that the differential system underwent a supercritical Hopf bifurcation or a Bogdanov-Takens bifurcation, from which the coexistence of the four species was guaranteed. In addition, the results were illustrated by several applications, where the prey had a logistic growth rate. For the interaction of the mesopredators and prey, we considered classical Holling-type functional responses, and for the rest of the interactions, we proposed certain generalized functional responses similar to the well-known "Beddington-DeAngelis" or "Crowley-Martin" functional responses. At the end, some numerical simulations were given.

    Citation: Jorge Luis Ramos-Castellano, Miguel Angel Dela-Rosa, Iván Loreto-Hernández. Bifurcation analysis for the coexistence in a Gause-type four-species food web model with general functional responses[J]. AIMS Mathematics, 2024, 9(11): 30263-30297. doi: 10.3934/math.20241461

    Related Papers:

  • The dynamics of an ordinary differential equations (ODEs) system modelling the interaction of four species (one prey or resource population, two mesopredator populations, and one super-predator population) was analyzed. It was assumed that the functional responses for each interaction were general. We showed parameter conditions that ensured that the differential system underwent a supercritical Hopf bifurcation or a Bogdanov-Takens bifurcation, from which the coexistence of the four species was guaranteed. In addition, the results were illustrated by several applications, where the prey had a logistic growth rate. For the interaction of the mesopredators and prey, we considered classical Holling-type functional responses, and for the rest of the interactions, we proposed certain generalized functional responses similar to the well-known "Beddington-DeAngelis" or "Crowley-Martin" functional responses. At the end, some numerical simulations were given.



    加载中


    [1] J. D. Murray, Mathematical biology I. An Introduction, Interdisciplinary Applied Mathematics, New York: Springer-Verlag, 2002. https://doi.org/10.1007/b98868
    [2] M. Kot, Elements of mathematical ecology, Cambridge: Cambridge University Press, 2001. https://doi.org/10.1017/CBO9780511608520
    [3] F. Brauer, C. Castillo-Chávez, Mathematical models in population biology and epidemiology, New York: Springer-Verlag, 2001. https://doi.org/10.1007/978-1-4614-1686-9
    [4] G. T. Skalski, J. F. Gilliam, Functional responses with predator interference viable alternatives to the Holling type Ⅱ model, Ecology, 82 (2001), 3083–3092. https://doi.org/10.2307/2679836 doi: 10.2307/2679836
    [5] G. Blé, I. Loreto-Hernández, Limit cycles in a tritrophic food chain model with general functional responses, Int. J. Nonlinear Sci. Num., 23 (2022), 449–460. https://doi.org/10.1515/ijnsns-2019-0175 doi: 10.1515/ijnsns-2019-0175
    [6] G. Blé, V. Castellanos, M. A. Dela-Rosa, Bifurcation analysis of a Kolmogorov type tritrophic model, Acta Appl. Math., 181 (2022). https://doi.org/10.1007/s10440-022-00520-y doi: 10.1007/s10440-022-00520-y
    [7] F. E. Castillo-Santos, M. A. Dela-Rosa, I. Loreto-Hernández, Existence of a limit cycle in an intraguild food web model with Holling type Ⅱ and logistic growth for the common prey, Appl. Math., 8 (2017), 358–376. https://doi.org/10.4236/am.2017.83030 doi: 10.4236/am.2017.83030
    [8] G. Blé, V. Castellanos, I. Loreto-Hernández, Stable limit cycles in an intraguild predation model with general functional responses, Math. Method Appl. Sci., 45 (2022), 2219–2233. https://doi.org/10.1002/mma.7921 doi: 10.1002/mma.7921
    [9] G. Blé, M. A. Dela-Rosa, I. Loreto-Hernández, Stability analysis of a tritrophic model with stage structure in the prey population, J. Nonlinear Sci. Appl., 12 (2019), 765–790. http://dx.doi.org/10.22436/jnsa.012.12.01 doi: 10.22436/jnsa.012.12.01
    [10] G. Blé, I. Loreto-Hernández, Two-dimensional attracting torus in an intraguild predation model with general functional responses and logistic growth rate for the prey, J. Appl. Anal. Comput., 11 (2021), 1557–1576. https://doi.org/10.11948/20200282 doi: 10.11948/20200282
    [11] G. Blé, C. Guzmán-Arellano, I. Loreto-Hernández, Coexistence in a four-species food web model with general functional responses, Chaos Soliton. Fract., 153 (2021), 111555. https://doi.org/10.1016/j.chaos.2021.111555 doi: 10.1016/j.chaos.2021.111555
    [12] A. Mondal, A. K. Pal, G. P. Samanta, Stability analysis of a complex four species food-web model, Filomat, 36 (2022), 99–123. https://doi.org/10.2298/FIL2201099M doi: 10.2298/FIL2201099M
    [13] S. Gakkhar, A. Priyadarshi, S. Banerjee, Complex behaviour in four species food-web model, J. Biol. Dynam., 6 (2012), 440–456. https://doi.org/10.1080/17513758.2011.618547 doi: 10.1080/17513758.2011.618547
    [14] Y. A. Kuznetsov, Elements of applied bifurcation theory, New York: Springer, 1998.
    [15] Y. A. Kuznetsov, Andronov-Hopf bifurcation, Scholarpedia, 1 (2006), 1858. https://doi.org/10.4249/scholarpedia.1858 doi: 10.4249/scholarpedia.1858
    [16] G. Blé, M. A. Dela-Rosa, Bogdanov-Takens bifurcation in a Leslie type tritrophic model with general functional responses, Acta Appl. Math., 169 (2020), 361–382. https://doi.org/10.1007/s10440-019-00302-z doi: 10.1007/s10440-019-00302-z
    [17] J. Guckenheimer, Y. A. Kuznetsov, Bogdanov-Takens bifurcation, Scholarpedia, 2 (2007), 1854. https://doi.org/10.4249/scholarpedia.1854 doi: 10.4249/scholarpedia.1854
    [18] M. Falconi, Y. Vera-Damián, C. Vidal, Predator interference in a Leslie-Gower intraguild predation model, Nonlinear Anal. Real., 51 (2020), 102974. https://doi.org/10.1016/j.nonrwa.2019.102974 doi: 10.1016/j.nonrwa.2019.102974
    [19] F. H. Maghool, R. K. Naji, The dynamics of a tritrophic Leslie-Gower food-web system with the effect of fear, J. Appl. Math., 2021 (2021), 2112814. https://doi.org/10.1155/2021/2112814 doi: 10.1155/2021/2112814
    [20] H. Smith, An introduction to delay differential equations with applications to the life sciences, New York: Springer, 2011. https://doi.org/10.1007/978-1-4419-7646-8
    [21] J. Z. Cai, Q. B. Gao, Y. F. Liu, A. G. Wu, Generalized Dixon resultant for strong delay-independent stability of linear systems with multiple delays, IEEE T. Automat. Contr., 69 (2024), 2697–2704. https://doi.org/10.1109/TAC.2023.3337691 doi: 10.1109/TAC.2023.3337691
    [22] Q. B. Gao, R. Cepeda-Gomez, N. Olgac, A test platform for cognitive delays: Target tracking problem with multiple time-delayed feedback control, Int. J. Dynam. Control, 2 (2014), 77–85. https://doi.org/10.1007/s40435-014-0077-6 doi: 10.1007/s40435-014-0077-6
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(192) PDF downloads(51) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog