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Abstract: The dynamics of an ordinary differential equations (ODEs) system modelling the
interaction of four species (one prey or resource population, two mesopredator populations, and
one super-predator population) was analyzed. It was assumed that the functional responses for
each interaction were general. We showed parameter conditions that ensured that the differential
system underwent a supercritical Hopf bifurcation or a Bogdanov-Takens bifurcation, from which
the coexistence of the four species was guaranteed. In addition, the results were illustrated by several
applications, where the prey had a logistic growth rate. For the interaction of the mesopredators and
prey, we considered classical Holling-type functional responses, and for the rest of the interactions, we
proposed certain generalized functional responses similar to the well-known “Beddington-DeAngelis”
or “Crowley-Martin” functional responses. At the end, some numerical simulations were given.
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1. Introduction

There are wide interactions between populations forming an ecosystem in nature, which depend
on the ecological and biological aspects or processes, whose study incorporates several parameters.
For instance, the depredation between the species has been of interest in both the ecological and
mathematical points of view, see [1]. Besides, the dynamical analysis of ordinary differential equations
(ODEs) mathematical models with population interactions is a current research topic that contributes
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to the literature on deterministic ecology models [1, 2].
The depredation interactions could be of several types: Predator-prey, tritrophic, intraguild, and

food webs that involve more than three species. Roughly speaking, in the deterministic modeling of
population dynamics by means of ODE systems the coexistence of the involved populations is of great
relevance, which can be guaranteed by showing the existence of different kinds of stable limit sets.

In the two-dimensional case, there is a perspective due to Lotka and Volterra that assumes that a
population prey with density x with a Malthusian growth rate is the source of a predator population
with density y whose interaction is the result of a direct attack measured by a linear functional response
f1(x) [1–3]. This model has inspired a kind of generalized Gause-type models, where a positive smooth
function h1(x) captures the prey growth rate, and the functional response is not necessarily a linear
function; in this sense, other ecological factors could be considered, like the predator satiety and the
defense group of prey, etc. [4]. The mathematical expression for the corresponding model is:

dx
dt

= h1(x) − b f1(x)y,

dy
dt

= c f1(x)y − dy,
(1.1)

where c and d are the efficiency conversion coefficient and the mortality predator rate, respectively.
On the other hand, there are recent works in which the three dimensional case takes place,

which focus on three-dimensional ODE systems for modeling tritrophic (Figure 1 shows the energy
transference) or intraguild interactions* (Figure 2 shows the energy transference). In this respect, let
us recall some works. The model in this occasion is of the form:

dx
dt

= h1(x) − f1(x)y − g1(x)z,

dy
dt

= (c1 f1(x) − d1)y − g2(y)z,

dz
dt

= (e1g1(x) + e2g2(y) − d2)z.

(1.2)

This model collects the intraguild interactions, where MP and SP are specialists. Here, we have the
smooth functions f1(x), g1(x), and g2(y) as functional responses for the interactions P-MP, MP-SP, and
P-SP, respectively. Moreover, when the term g1(x)z does not appear in the first equation, one recovers
the tritrophic case. Here, c1, e1 and e2 measure the efficiency conversion coefficients; d1 and d2 are the
mortality predators rates.

P-population
f1 // MP-population

f2 // SP-population

Figure 1. A tritrophic flow energy transference.

*Here, the interactions are between one prey P with population density x, one predator MP, and a super-predator SP, with population
densities y and z, respectively.
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P-population

		 ��

MP-population // SP-population

Figure 2. An intraguild predation flow energy transference.

In order to be more precise in the motivation for the main results in the present paper, let us recall
some works in this direction. In [5], the authors studied a tritrophic model and showed the coexistence
of the species by the existence of a stable limit cycle that emerges from a Hopf bifurcation. In [6]
the authors made an analysis of a tritrophic model, showing parameter conditions for guaranteeing
that the differential system exhibits a Bogdanov-Takens bifurcation; moreover, in the case of Holling
functional responses, the coexistence of the three species was shown by means of the existence of stable
limit cycles. On the other hand, several tritrophic models were studied in [7–10] by assuming that a
superpredator feeds from the prey. In all these research works, the authors showed the coexistence of
the involved species guaranteeing the existence of invariant stable limit sets via a Hopf, a Bautin, or a
zero-Hopf bifurcation.

On the other hand, there is a vast diversity of food web interactions in nature, due to which, for
population dynamics studies, it is necessary to incorporate models with more than three species. There
are not enough of such models, because it is difficult to carry out an exhaustive mathematical analysis
by means of the usual methods. In this regard, there are few works focusing on this subject. For
instance, in [11] an intraguild type model was studied, in which four species interact, namely, a prey,
two middle predators, and a superpredator. The authors proved the coexistence of all the species by
showing the existence of stable limit sets through a Hopf or a Hopf-Hopf bifurcation.

Thus, the aim of the present manuscript is to deal with the dynamical analysis of a Gause-type
four-dimensional food web model modelling the interaction of four species: One prey (P), two middle
predators (MP1 and MP2), and one superpredator (SP1); besides, it is considered that such interactions
are governed by general functional responses and by the general growth rate for the prey (see Figure 3).

P-population

f1

		

f2

��
g3

��

MP1-population

g1

%%

MP2-population

g2
yy

SP-population

Figure 3. A four-species food web energy transference.

AIMS Mathematics Volume 9, Issue 11, 30263–30297.



30266

2. Food web model formulation and novelty of the main results

In this manuscript, based on the work in [12] (cf. [13]) we revisit a Gause-type model that considers
the presence of one prey (P) or resource population, two predator populations (MP1 and MP2), and
one superpredator population (SP), and the functional responses for each interaction are quite general.

For clarity in the model of interest, we will fix the following notation: w represents the prey
population density that is consumed by two predators with population densities x and y, respectively;
these predators are predated by other superpredator species with population density z which also feed
from the prey. Now one has the following ecological premises:

• The intrinsic prey growth rate without predation populations is measured by the term R1wh(w),
where h(w) is a positive smooth function (R1 is as in Table 1).
• The population interactions MP1-P and MP2-P are given by smooth positive functions depending

only on the density w: f1(w), f2(w).
• The population interactions SP-P, SP-MP1, and SP-MP2 are given by smooth positive functions

depending on the densities w, x and y :

g1(w, x, y), g2(w, x, y), and g3(w, x, y).

• The interaction model is Gause-type, where each predator-prey interaction as above is carried out
by direct attack, which means that each mesopredator and the superpredator are specialists.

Derived from the above premises, we have that the model interaction will consider nine
dimensionless parameters whose ecological meaning is given in Table 1.

Table 1. Parameter meanings for the food web model (2.1).

Parameter Ecological Meaning

R1 Intrinsic growth rate of prey P
c1 and c2 Efficiency conversion of predators MP1

and MP2
e1 Efficiency conversion of interaction SP-P

e2 and e3 Efficiency conversions of interactions
SP-MP1 and SP-MP2

d1, d2, and d3 Mortality rates of predators and
super-predator

Specifically, the mathematical model is given for the following ODEs:

dw
dt

= R1wh(w) − f1(w)x − f2(w)y − g1(w, x, y)z,

dx
dt

= x(c1 f1(w) − d1) − g2(w, x, y)z,

dy
dt

= y(c2 f2(w) − d2) − g3(w, x, y)z,

dz
dt

= z(e1g1(w, x, y) + e2g2(w, x, y) + e3g3(w, x, y) − d3).

(2.1)
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For ecological consistency, the set of interest for the analysis of differential system (2.1) is Ω :=
{(w, x, y, z) ∈ R4 : w > 0, x > 0, y > 0, z > 0}.

On the other hand, in order to distinguish our main contribution to the present paper, it is important
to note the results by [12, 13], in which the authors obtained dynamical analysis for special cases of
model (2.1).

In fact, in [13] , the authors proposed and analyzed model (2.1). It is worth mentioning that they
assumed that the prey growth rate is logistic, the functional responses f1 and f2 are Holling of type II,
the smooth positive functions g1, g2, and g3 depend on w, x, and y and are a kind of modified “Holling
II” functional response, that is, they are of the form:

gi(w, x, y) =
ai+1w

1 + b2w + b3x + b4y
.

Moreover, they showed the existence of an equilibrium point which could be stable. Finally, by
numerical simulations, a stable limit cycle was exhibited.

On the other hand, in [12], the authors made an analysis of model (2.1) by the weak hypothesis that
the prey growth rate Rwh(w) is logistic, the interaction functional responses f1 and f2 are Holling of
type II, g1(w, x, y) depends only on the prey w, and it is of Holling type II, the functional responses
g2(w, x, y) and g3(w, x, y) depend only on w and are Holling type I (that is, they are of the Lotka-Volterra
type). They showed the existence of several equilibrium points, and determined their stability. They
also proved that a Hopf bifurcation takes place.

2.1. Novelty and main contribution of our results

The novelty of our present work lies in the fact that we obtained analytical results instead of only
numerical ones. For this, we used the approach in Kuznetsov et al. In the following, we will summarize
the content of our main contribution to the present manuscript:

• Our main results provide a more general dynamical analysis for model (2.1) that extends those
obtained in the aforementioned works.
• The principal part of our contribution is that we consider that the functional responses are general

and depend on the population densities (w, x, y) and some other conditions at the equilibria, which
allow us to prove our main results in the present manuscript (see Theorems 5 and 9): Independent
of the functional responses, here are parameter conditions to ensure that the differential system
undergoes a supercritical Hopf bifurcation or a non-degenerate (codimension two) Bogdanov-
Takens bifurcation.
• As a consequence of our main theorems, the coexistence of the four species is guaranteed. This

is the relevant ecological aspect that we are looking for in this manuscript.
• Besides, the major novelty of our manuscript is that the theoretical results are stated for quite

general functional responses†:

(i) Here, we have a tool for making numerical simulations that illustrates the phases of the
dynamical behaviors that the differential system could have.

(ii) For the numerical results, we make the explicit assumption of having a logistic growth rate
for prey, which allows us to explore a wide variety of examples.

†They could be explicit and are considered as certain generalized functional responses similar to the well-known functional responses
of “Beddington-DeAngelis” or “Crowley-Martin”.
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(iii) Our examples involve some aspects of ecological relevance (for instance, satiety in predators,
predator interference, a defense group in the prey, and competence between predators), see
Section 5.

3. Dynamical analysis via a Hopf bifurcation

3.1. Equilibrium points and a criterion for stability

The following proposition provides a criterion to show the existence of equilibria whose entries
are all positive, and hence one has the existence of at least one equilibrium point for differential
system (2.1) inside Ω.

Proposition 1. Let p = (w0, x0, y0, z0) be a point in Ω. If the parameters of system (2.1) satisfy

R1 =
x0 f1 (w0) + y0 f2 (w0) + z0g1 (w0, x0, y0)

w0h (w0)
, c1 =

d1x0 + z0g2(w0, x0, y0)
x0 f1 (w0)

, (3.1)

c2 =
d2y0 + z0g3(w0, x0, y0)

y0 f2 (w0)
, and d3 = e1g1 (w0, x0, y0) + e2g2 (w0, x0, y0) + e3g3 (w0, x0, y0) ,

then p is an equilibrium point.

Proof. First, we note that all the parameters in system (2.1) are positive; therefore, in order to determine
the equilibria in Ω for differential system (2.1), we solve the following algebraic system:

R1wh (w) − f1 (w) x − f2 (w) y − g1 (w, x, y) z = 0,
x (c1 f1 (w) − d1) − g2 (w, x, y) z = 0, (3.2)
y (c2 f2 (w) − d2) − g3 (w, x, y) z = 0,
z (e1g1 (w, x, y) + e2g2 (w, x, y) + e3g3 (w, x, y) − d3) = 0.

In fact, in the above system, we solve the first equation in terms of R1, the second one in terms of c1,
the third one in terms of c2, and the fourth one in terms of d3. Hence, the result is obtained. �

3.2. Conditions for simplifying the dynamical analysis

In order to make the dynamical analysis simpler and with the aim to simplify the massive
computations that we need to carry out, it will be assumed that the functional responses and their
derivatives take special values when they are evaluated at the entries of the equilibrium point p in
Proposition 1. That is, from now on, we will assume that the system of equations given in Appendix A.1
is satisfied by p.

3.3. Stability result for the equilibrium points

The proof of the following stability result for the equilibrium points is contained in Appendix A.2.

Proposition 2. Suppose that the hypotheses on Proposition 1 hold, and that the following additional
parameter conditions are satisfied

f ′2 (10y0) > 0, ∂wg1 (10y0, 6y0, y0) > 0,
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d2 =
33
10

y0 f ′2(10y0), e1 = e3 =
f ′2(10y0)

10∂wg1(10y0, 6y0, y0)
, (3.3)

e2 =
121 f ′2(10y0)

120∂wg1(10y0, 6y0, y0)
and z0 =

y0 f ′2(10y0)
∂wg1(10y0, 6y0, y0)

,

and d1 > d10 := 386660234y0 f2′(10y0)
122003525 . Then, p is a locally asymptotically stable equilibrium point for

system (2.1).

3.4. H-bifurcation conditions

At first, assuming that the parameter conditions given in Proposition 1 and Eq (3.3) are valid, we
will consider differential system (2.1) as a 1-parameter continuous dynamical system with respect to d1.

In the following lemmas, we will show the necessary conditions under which differential system (2.1)
undergoes a Hopf bifurcation.

Lemma 3. If the hypotheses in Proposition 1 and Eq (3.3) are satisfied, then by making d1 = d10, the
linear approximation of system (2.1) at p, M (p) , has eigenvalues:

λ1,2 = ±iω, λ3,4 =

−7
2
±

1
4

i

√
588151373

3485815

 y0 f2′(10y0),

where ω =

√
99

5600y0 f2
′(10y0) > 0.

Proof. Let Σ (d1) be as in the proof of Proposition 2. From the proof of this proposition, we have
that the characteristic polynomial for M(p, d1) is pol (λ). Hence, the desired factorization for pol (λ)
is obtained by solving Σ (d1) = 0, which is obtained if d1 = d10. Finally, the proof follows from [9,
Lemma 2.1(ii)]. �

Lemma 4. If the hypotheses of Lemma 3 hold, the Hopf transversal condition is verified:
∂Re(λ1,2)

∂d1
(d10) , 0.

Proof. Under the hypotheses, the linear approximation Mp (d1) is given in the proof of Proposition 2.

Now, in Appendix A.3, we compute a pair of eigenvectors for Mp (d10) and its transpose
(
Mp (d10)

)T
,

corresponding to the eigenvalues iw0 and −iw0, respectively. Therefore, on using a formula in [14,
pag. 189], one computes the derivative of the real part of λ1,2 which provides the transversal condition

given by ∂Re(λ1,2)
∂d1

(d10) as:

−
5418985509878858378378248102892093750 f2′(10y0)2

7921207462928967691929
(
340000048128437104∂wg1(10y0, 6y0, y0)2 + 6527530581280625 f2′(10y0)2) .

�

3.5. H-Main result

We are ready to state one of the main results in the present manuscript.

Theorem 5 (H-Main theorem). If the hypotheses of Lemma 3 hold and l (p, d10) , 0, then system (2.1)
undergoes an H-bifurcation at p with respect to d1 and bifurcation value d10.
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Proof. The proof is obtained by the following procedure:

• First, from Lemmas 3 and 4, the necessary Hopf (H) bifurcation conditions are valid. In fact,
the existence of a simple pair of purely imaginary eigenvalues and the transversal condition
are verified.
• Now, from the hypotheses of Lemma 3, the first Lyapunov coefficient l (p, d10) for system (2.1) is

computed by using the Kuznetsov formulae [14,15] but its mathematical expression is very huge,
so we omit it here‡.
• Finally, from the well-known Andronov-Hopf theorem [14, 15], it follows that:

i) If l (p, d10) is not zero, then then differential system (2.1) undergoes an H-bifurcation.
ii) The H-bifurcation is supercritical whenever l (p, d10) < 0, and it is subcritical if l (p, d10) > 0.

• As a consequence of the above, one has the desired result.

�

4. Dynamical analysis via a Bogdanov-Takens bifurcation

In this section, the dynamics of differential system (2.1) will be analyzed by means of a Bogdanov-
Takens (BT) bifurcation.

Now, from Section 3.1, one obtains parameter conditions for the existence of an equilibrium point
p ∈ Ω of differential system (2.1), which will be the main starting hypothesis of Theorem 9. Besides,
in the case of a Hopf bifurcation, Proposition 2 proved the local stability of p.

In the following subsections, we will show the work that contains both the hypothesis and
preliminary results necessary to state the second main result of this manuscript.

4.1. Conditions for simplifying the BT-dynamical analysis

In order to simplify the BT-bifurcation analysis, from now on, we will suppose that:

• BTBC1: This means that the conditions in Appendix A.1 are valid;
• BTBC2: This means that the hypotheses in Proposition 1 hold;
• BTBC3: Here we suppose that the following additional conditions are valid:

f ′2(w0) =
z0∂wg1(w0, x0, y0)

y0
, e2 =

121 f ′2(10y0)
120∂wg1(10y0, 6y0, y0)

, e1 = e3 =
f ′2(10y0)

12∂wg1(10y0, 6y0, y0)
.

Under the above conditions, differential system (2.1) has as linear approximationJ(w, x, y, z) at any
point (w, x, y, z) given by

−x f ′1(w) − y f ′2(w) − T0 − f1(w) − z∂xg1(w, x, y) − f2(w) − z∂yg1(w, x, y) −g1(w, x, y)
x f ′1(w)T1 − z∂wg2(w, x, y) −d1 − z∂xg2(w, x, y) + f1(w)T1 −z∂yg2(w, x, y) −g2(w, x, y)
y f ′2(w)T2 − z∂wg3(w, x, y) −z∂xg3(w, x, y) −d2 − z∂yg3(w, x, y) + f2(w)T2 −g3(w, x, y)

zT3 zT4 zT5 T6 −
39
5

T7


,

T0 = z∂wg1(w, x, y) +
8 (h(w) + wh′(w)) T7

5y0h′(10y0)
, T1 =

6d1y0 + 6T7y0

120y0T7
, T2 =

d2y0 + T7y0

20y0T7
,

‡The explicit mathematical expression for the Lyapunov coefficient will be given in the applications contained in Section 5.
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T3 =
z0∂wg1(w, x, y)

12y0
+

121z0∂wg2(w, x, y)
120y0

+
z0∂wg3(w, x, y)

12y0
,

T4 =
z0∂xg1(w, x, y)

12y0
+

121z0∂xg2(w, x, y)
120y0

+
z0∂xg3(w, x, y)

12y0
,

T5 =
z0∂yg1(w, x, y)

12y0
+

121z0∂yg2(w, x, y)
120y0

+
z0∂yg3(w, x, y)

12y0
,

T6 =
z0g1(w, x, y)

12y0
+

121z0g2(w, x, y)
120y0

+
z0g3(w, x, y)

12y0
,

T7 = z0∂wg1(10y0, 6y0, y0).

As a particular case, one obtains that the linear approximation at the equilibrium point p becomes

J(p) =



−8T7
−235T7

12
−15T7

−20y0T7

z0

6y0T7 + 6d1y0

20y0
+

3T7

40
1
2

T7
3
2

T7 −
6y0T7

z0

y0T7 + d2y0

20y0
+

T7

80
1

24
T7

1
2

T7 −
y0T7

z0

z0T7

150y0

671z0T7

1440y0
−

151z0T7

80y0
0



. (4.1)

4.2. Predators’ mortality rates as BT-bifurcation parameters

In order to prove the presence of a BT-bifurcation, we will consider that differential system (2.1)
is a two-parameter family with respect to the predators mortality rates d1 and d2; hence, the linear
approximation at the equilibrium point p = (w0, x0, y0, z0) given in (4.1) will be denoted byJ(p, d1, d2).
These assumptions allow us to have the following necessary BT-condition, and its proof is contained
in Appendix C.1.

Lemma 6. If the hypotheses in Proposition 1 are valid,

d10 =
70940543z0∂wg1(10y0, 6y0, y0)

8309764
> 0 and d20 =

73066255z0∂wg1(10y0, 6y0, y0)
8309764

> 0,

then the eigenvalues of J(p, d10, d20) are

λ1,2 = 0, λ3,4 =

−7
2
± i

11
4

√
37917221
6232323

 z0∂wg1(10y0, 6y0, y0). (4.2)

4.3. BT-Main results for the food web model

In this subsection, following the ideas in [16] (cf. [6]), we will show the non-degeneracy conditions
under which system (2.1) undergoes a Bogdanov-Takens bifurcation at p with respect to the predators’
mortality rates d1 and d2.
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4.3.1. Simplification of the food web model

Let d10 and d20 be as in Lemma 6. The existence of a positive equilibrium point p is guaranteed
by the parameter conditions given in (3.1) of Proposition 1, and in particular the parameters c1 and c2

depend on the predator mortality rates according to the following formulas:

c1(d1) =
d1x0 + z0g2(w0, x0, y0)

x0 f1 (w0)
and c2(d2) =

d2y0 + z0g3(w0, x0, y0)
y0 f2 (w0)

.

Now, by considering the values c1(d10) and c2(d20), we have that model (2.1) becomes:

dw
dt

= R1wh(w) − f1(w)x − f2(w)y − g1(w, x, y)z,

dx
dt

= x(c1(d10) f1(w) − d1) − g2(w, x, y)z,

dy
dt

= y(c2(d20) f2(w) − d2) − g3(w, x, y)z,

dz
dt

= z(e1g1(w, x, y) + e2g2(w, x, y) + e3g3(w, x, y) − d3).

(4.3)

Hence, p is an equilibrium point of system (4.3) if and only if (d1, d2) = (d10, d20).
Convention: From now on,

G(w, x, y, z, d1, d2)

will denote the coordinates of the vector field associated to system (4.3), and

τ(w, x, y, z, d1, d2) and δ(w, x, y, z, d1, d2)

will be the trace and the determinant of the Jacobian matrix

J(w, x, y, z, d1, d2)

of G, respectively.
It is worth mentioning that the non-degeneracy conditions and the so-called quadratic

coefficients were computed by means of the formulae of Guckenheimer-Kuznetsov (see [17]
and cf. [16, Theorem A.1] and [6]). These formulas were implemented in routines inside the
software Mathematica.

4.3.2. Regularity BT-condition for the food web model

The regularity condition is obtained by computing the determinant Reg0 of the Jacobian for the map

F : (w, x, y, z, d1, d2) 7→ (G(w, x, y, z, d1, d2), τ(w, x, y, z, d1, d2), δ(w, x, y, z, d1, d2)) (4.4)

at (p, d10, d20). The mathematical expression of Reg0 is huge, so we will omit it here, but it will be
given explicitly in the applications as we will see later. In this sense, we can state the following result.

Proposition 7. If the hypotheses in Proposition 1 are verified for system (4.3), then the map (4.4) is
regular at (p, d10, d20) if and only if Reg0 is a non-zero real number.
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4.3.3. Computation of the BT-quadratic coefficients

The following result provides us with explicit mathematical expressions for the BT-quadratic
coefficients, which are computed by using the normalized BT-eigenvectors given in Appendix C.2.
Here, the formulaes of Guckenheimer-Kuznetsov were used (see [17] and cf. [16, Theorem A.1]
and [6]).

Proposition 8. If the hypotheses in Proposition 1 are valid, then the quadratic coefficints at
(p, d10, d20) are:

a0 = −
(59z0∂wg1(10y0,6y0,y0))2((−2z0a00+a01)h′(10y0)+a02)

27000409264555091520800h′(10y0) ,

b0 =
59∂wg1(10y0,6y0,y0)((−2z0b00+b01)h′(10y0)+b02)
19607423994153610587503247464900h′(10y0) ;

(4.5)

where a00, a01, a02,b00,b01, and b02 are as in Appendix C.3.

In terms of Propositions 8 and 7, we now proceed to state the second main result in this manuscript.

Theorem 9 (BT-Main theorem). Suppose that the hypotheses in proposition 1 hold, and that Reg0 and
κ = a0b0 are non-zero real numbers. Then system (4.3) undergoes a Bogdanov-Takens bifurcation at p
with respect to the parameters d1 and d2, with bifurcation value (d10, d20).

Proof. From Lemma 6, the linear approximation of system (4.3) at p has the eigenvalues as in (4.2) if
(d1, d2) = (d10, d20). Besides, since Reg0 and κ are non-zero real numbers, the result is proved by the
BT-Theorem in [17] (cf. [16, Theorem A.1] and [6]). �

5. H-validation results and numerical simulations

In this section, we will show how the H-Main Theorem 5 and its proof are applied to concrete
examples for guaranteeing the coexistence of the four populations. On considering differential
system (2.1), let us begin by stating the following main hypotheses that allow us to provide
interesting examples:

• The prey has a specific logistic growth rate, that is, the intrinsic prey growth function is

R1wh (w) = R1w
(
1 −

w
k1

)
, where k1 is the carrying capacity of the prey.

• The functional responses f1 and f2 can be Holling of type II or IV, which measure the satiety or
the defense group of the prey population.
• Under the above premises, we propose the following cases according to the type of functional

responses that
g1(w, x, y), g2(w, x, y), and g3(w, x, y)

could be:

i) Case H1: Predators and the superpredator have satiety and interference through generalized
Holling II functional responses (see Falconi et al. [18] and cf. [13]).

ii) Case H2: The prey has a defense group, while predators and the superpredator have defense
and interference, all through generalized Holling II or IV functional responses§.

§These generalized functional responses are inspired by the similar ones that were used in Falconi et al. [18], Maghool et al.
and [19] (cf. [13]).
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iii) Case H3: The prey has a defense group and predators have defense, interference, or intrinsic
competence, all through generalized Holling IV functional responses (see Falconi et al. [18],
Maghool et al. [19]).

5.1. Case H1: Satiety and interference between predators

In this case, the specific functional responses are:

f1(x) =
a1x

b1 + x
, f2(x) =

a2x
b2 + x

, g1(w, x, y) =
α1w

β1 + γ1w + δ1x + η1y
,

g2(w, x, y) =
α2x

β2 + γ2w + δ2x + η2y
, g3(w, x, y) =

α3y
β3 + γ3w + δ3x + η3y

.

Substitution of the above explicit functions implies that system (2.1) will have many new parameters.
Therefore, in order for the conditions in Appendix A.1 to be satisfied, we make the following additional
parameter assignments:

w0 = 10y0, x0 = 6y0, k1 = 20y0, b1 = b2 = 10y0,

a2 = a1, α2 =
α1β2

2β1
, α3 =

α1β3

2β1
, γ1 =

2β1

5y0
,

γ2 =
β2

10y0
, γ3 =

β3

10y0
, δ1 =

β1

6y0
, δ2 =

2β2

3y0
,

δ3 =
β3

3y0
, η1 =

2β1

y0
, η2 =

2β2

y0
, η3 =

4β3

y0
.

From these assignments and the computations in Appendix B.1, we have that the corresponding
differential system undergoes a supercritical Hopf bifurcation and hence the existence of a stable limit
cycle takes place.

5.1.1. Numerical simulations for Case H1

For visualizing the coexistence of the four species by a stable limit cycle, we consider the following
parameter values for the free parameters in Case H1 in Subsection 5.1 that we have as a consequence
of the above formulae:

a1 = 40, β1 = β2 = β3 = 1, y0 = 10, α1 = 2.

Therefore, p = (100, 60, 10, 8) and d10 = 386660234
122003525 . According to the above explicit formulae, the

parameters for numerically validating the H-Main Theorem for differential system (2.1) are given in

Table 2, from which, numerically, the transversal condition holds since ∂Re(λ1,2)(d10)
∂d1

< 0. This means
that Re (λ) is a decreasing function¶ on d1. Moreover, there is a stable limit cycle coming from a
supercritical Hopf bifurcation, because the first Lyapunov coefficient becomes l1 (d10) = −0.0306563.

¶If d1 > d10, the equilibrium point p is locally asymptotically stable and if d1 < d10, it becomes unstable from which one ensures that
a stable limit cycle emerges.
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Table 2. Numerical validation for the H-Main Theorem: Case H1.
Specific parameter values for numerical simulation in Case H1

Equilibrium point entries w0 = 100, x0 = 60, y0 = 10, z0 = 8

Hypotheses of Proposition 1 R1 = 32, c1 =
405954979
1952056400

, c2 =
43
200

, d3 =
163
20

Conditions (3.3) in Proposition 2 d2 =
33
10
, e1 = e3 =

2
25
, e2 =

121
50

, d1 > d10

Carrying capacity of prey k1 = 200

MP1 and MP2 parameters of functional responses a1 = a2 = 40, b1 = b2 = 100

SP parameters of functional responses α1 = 2, α2 = α3 = 1, β1 = β2 = β3 = 1, γ1 =
1
25
, γ2 = γ3 =

1
100

,

δ1 =
1
60
, δ2 =

1
15
, δ3 =

1
30

, η1 = η2 =
1
5
, η3 =

2
5

H-Bifurcation value d10 =
386660234
122003525

= 3.16925

Transversal condition and Lyapunov coefficient ∂Re(λ1,2)(d10)
∂d1

= −0.00127211, l1 (p, d10) = −0.0306563

5.1.2. Coexistence by numerical detection of a stable limit cycle

From the above numerical parameter assignments, we make the small perturbation d1 = d10 −
1

102 ,

and we take the initial condition in the phase space q =
(
w0 + 1

102 , x0 + 1
102 , y0 + 1

102 , z0 + 1
102

)
whose

trajectory tends to a stable limit cycle with projection to the hyperspace given by R3
(x,y,z) ' {(0, x, y, z)}.

In Figure 4, we show the time series for the four populations and the limit cycle projection.
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(a) Population density w (b) Population density x

(c) Population density y (d) Population density z

(e) Projection of the stable limit cycle

Figure 4. Population densities and the projection of the stable limit cycle in Case H1.

5.2. Case H2: Group defenses and predators’ interference

In this case, the specific functional responses are:

f1(x) =
a1x

b1 + x2 , f2(x) =
a2x

b2 + x2 , g1(w, x, y) =
α1w

β1 + γ1w2 + δ1x + η1y
,

g2(w, x, y) =
α2x

β2 + γ2w + δ2x2 + η2y
, g3(w, x, y) =

α3y
β3 + γ3w + δ3x + η3y2 .
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Substitution of the above explicit functions implies that system (2.1) will have many new
parameters. Therefore, in order for the conditions in Appendix A.1 to be satisfied, we make the
following additional parameter assignments:

w0 = 10y0, x0 = 6y0, k1 = 20y0, b1 = b2 = 300y2
0,

a1 = a2, α2 =
5α1γ2

6δ1
, α3 =

5α1γ3

2δ1
, γ1 =

3δ1

25y0
,

β1 = 18y0δ1, β2 = 30y0γ2, β3 = 30y0γ3, δ2 =
5γ2
9y0
,

δ3 =
10γ3

3
, η1 = 12δ1, η2 = 20γ2, η3 =

20γ3

y0
.

From these assignments and the computations in Appendix B.2 along with the above results, the
corresponding differential system undergoes a supercritical Hopf bifurcation and hence there is a stable
limit cycle. Therefore, the coexistence of the four species takes place.

5.2.1. Numerical simulations for Case H2

For visualizing the coexistence of the four species by a stable limit cycle, we consider the following
parameter values for the free parameters in Case H2 in Subsection 5.1 that we have as a consequence
of the above formulae:

a2 = 7000, δ1 = γ2 = γ3 = 1, y0 = 10, α1 = 90.

Therefore, p =
(
100, 60, 10, 28

3

)
and d10 = 193330117

69716300 . According to the above explicit formulae, the
parameters for numerically validating the H-Main Theorem for differential system (2.1) are given in

Table 3, from which, numerically, the transversal condition holds since ∂Re(λ1,2)(d10)
∂d1

< 0. This means
that Re (λ) is a decreasing function‖ on d1. Moreover, there is a stable limit cycle coming from a
supercritical Hopf bifurcation, because the first Lyapunov coefficient becomes l1 (d10) = −0.0652417.

Table 3. Numerical validation for the H-Main Theorem: Case H2.
Specific parameter values for the numerical simulation in Case H2

Equilibrium point entries w0 = 100, x0 = 60, y0 = 10, z0 = 9.3333

Hypotheses of Proposition 1 R1 = 28, c1 = 0.208463, c2 = 0.215, d3 = 7.13125

Conditions (3.3) in Proposition 2 d2 = 2.8875, e1 = e3 = 0.93333, e2 = 0.941111, d1 > d10

Carrying capacity of prey k1 = 200

MP1 and MP2 parameters of functional responses a1 = a2 = 7000, b1 = b2 = 30000

SP parameters of functional responses α1 = 90, α2 = 75, α3 = 75, β1 = 180, β2 = β3 = 300, γ1 = 0.012, γ2 = γ3 = 1,

δ1 = 1, δ2 = 0.0555556, δ3 = 3.33333, η1 = 12, η2 = 20, η3 = 2

H-Bifurcation value d10 = 2.7731

Transversal condition and Lyapunov coefficient ∂Re(λ1,2)(d10)
∂d1

= −0.00172392, l1 (p, d10) = −0.0652417

‖If d1 > d10, the equilibrium point p is locally asymptotically stable and if d1 < d10, it becomes unstable from which one ensures that
a stable limit cycle emerges.
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5.2.2. Coexistence by numerical detection of a stable limit cycle: Case H2

From the above numerical parameter assignments, we make the small perturbation d1 = d10 −
1

102 ,

and we take the initial condition in the phase space q =
(
w0 + 1

102 , x0 + 1
102 , y0 + 1

102 , z0 + 1
102

)
whose

trajectory tends to a stable limit cycle with projection to the hyperspace given by R3
(x,y,z) ' {(0, x, y, z)}.

Figure 5 shows the time series for the four populations and the limit cycle projection.

(a) Population density w (b) Population density x

(c) Population density y (d) Population density z

(e) Projection of the stable limit cycle

Figure 5. Population densities time series and the projection of the stable limit cycle in
Case H2.
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5.3. Case H3: Defense group, competence, and interference

In this case, the specific functional responses are:

f1(x) =
a1x

b1 + x2 , f2(x) =
a2x

b2 + x2 , g1(w, x, y) =
α1w

β1 + γ1w2 + δ1x2 + η1y
,

g2(w, x, y) =
α2x

β2 + γ2w + δ2x2 + η2y2 , g3(w, x, y) =
α3y

β3 + γ3w + δ3x + η3y2 .

Substitution of the above explicit functions implies that system (2.1) will have many new parameters.
Therefore, in order for the conditions in Appendix A.1 to be satisfied, we make the following additional
parameter assignments:

w0 = 10y0, x0 = 6y0, k1 = 20y0, b1 = b2 = 300y2
0, a1 = a2,

α2 =
7α1β2

16β1
, α3 =

7α1β3

12β1
, γ1 =

β1

175y2
0

, γ2 =
β2

40y0
, γ3 =

β3

30y0
,

δ1 =
β1

252y2
0

, δ2 =
β2

72y2
0

, δ3 =
β3

9y0
, η1 =

4β1

7y0
, η2 =

β2

4y2
0

, η3 =
2β3

3y2
0

.

From these assignments and the computations in Appendix B.3, we have that the differential system
undergoes a supercritical Hopf bifurcation and there is a stable limit cycle. Hence, the coexistence of
the four species takes place.

5.3.1. Numerical simulations for Case H3

For visualizing the coexistence of the four species by a stable limit cycle, we consider the following
parameter values for the free parameters in Case H3 in Subsection 5.1 that we have as a consequence
of the above formulae:

a1 = 6020, β1 = β2 = β3 = 1, y0 = 10, α1 = 1.

Therefore, p =
(
100, 60, 10, 86

25

)
and d10 = 8313195031

3485815000 . According to the above explicit formulae, the
parameters for numerically validating the H-Main Theorem for differential system (2.1) are given in

Table 4, from which, numerically, the transversal condition holds since ∂Re(λ1,2)(d10)
∂d1

< 0. This means
that Re (λ) is a decreasing function** on d1. Moreover, there is a stable limit cycle coming from a
supercritical Hopf bifurcation, because the first Lyapunov coefficient becomes l1 (p, d10) = −0.111732.

**If d1 > d10, the equilibrium point p is locally asymptotically stable and if d1 < d10, it becomes unstable from which one ensures that
a stable limit cycle emerges.
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Table 4. Numerical validation for the H-Main Theorem: Case H3.
Specific parameter values for the numerical simulation in Case H3

Equilibrium point entries w0 = 100, x0 = 60, y0 = 10, z0 = 3.44

Hypotheses of Proposition 1 R1 = 24.08, c1 = 0.207798, c2 = 0.215, d3 = 6.13288

Conditions (3.3) in Proposition 2 d2 = 2.48325, e1 = e3 = 0.0344, e2 = 0.346867, d1 < d10

Carrying capacity of prey k1 = 200

MP1 and MP2 parameters of functional responses a1 = a2 = 6020, b1 = b2 = 30000

SP parameters of functional responses α1 = 1, α2 = 0.4375, α3 = 0.583333, β1 = β2 = β3 = 1, γ1 = 0.0000571429,

γ2 = 0.0025, γ3 = 0.00333333, δ1 = 0.0000396825, δ2 = 0.000138889, δ3 = 0.0111111,

η1 = 0.0571429, η2 = 0.0025, η3 = 0.00666667

H-Bifurcation value d10 = 2.38486

Transversal condition and Lyapunov coefficient ∂Re(λ1,2)(d10)
∂d1

= −0.000237563, l1 (p, d10) = −0.111732

5.3.2. Coexistence by numerical detection of a stable limit cycle

From the above numerical parameter assignments, we make the small perturbation d1 = d10 −
1

102 ,

and we take the initial condition in the phase space q =
(
w0 + 1

102 , x0 + 1
102 , y0 + 1

102 , z0 + 1
102

)
whose

trajectory tends to a stable limit cycle with projection to the hyperspace given by R3
(x,y,z) ' {(0, x, y, z)}.

Figure 6 shows the time series for the four populations and the limit cycle projection.
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(a) Population density w (b) Population density x

(c) Population density y (d) Population density z

(e) Projection of the stable limit cycle

Figure 6. Population densities time series and the projection of the stable limit cycle in
Case H3.

6. BT-validations results and numerical simulations

In this subsection, we will give some applications that illustrate the results in Propositions 7 and 8,
and Theorem 9. In order to be more precise and in a self-contained way, in the applications we are
interested in, let us make the premises that provide interesting examples. In fact, on considering the
differential system (4.3), we assume that:
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• The prey has a specific growth rate given by a logistic one, that is, the intrinsic prey growth

function is R1wh (w) = R1w
(
1 −

w
k1

)
, where k1 is the carrying capacity of the prey.

• The functional responses f1 and f2 can be Holling types II or IV, measuring the satiety or the
defense group of the prey population;
• Under the above premises, we propose the following cases according to the type of functional

responses g1(w, x, y), g2(w, x, y), and g3(w, x, y):

a) Case BT1: Predators and the superpredator have satiety and interference through generalized
Holling II functional responses.

b) Case BT2: The prey has a defense group, while predators and the superpredator have defense
and interference, all through generalized Holling II or IV functional responses.

6.1. Case BT1: Satiety and interference between predators

In this case, according to the hypotheses, the functional responses are similar to the ones used in
Case H1 in Subsection 5.1.

Substitution of the above explicit functions implies that system (4.3) will have many new
parameters. Therefore, in order for the conditions in Subsection 4.1 to be satisfied, we make the
following additional parameter assignments:

e2 =
121z0

120y0
, w0 = 10y0, x0 = 6y0, α2 =

α1η2

2η1
, α3 =

3α1δ3

η1
,

β1 =
y0η1

2
, β2 =

y0η2

2
, β3 = 3y0δ3, γ1 =

η1

5
, γ2 =

η2

20
,

γ3 =
3δ3

10
, δ1 =

η1

12
, δ2 =

η2

3
, η3 = 12δ3, k1 = 20y0,

b1 = b2 = 10y0, a1 = a2 =
5z0α1

y0η1
, e1 = e3 =

z0

12y0
.

(6.1)

From these assignments and the computations in Appendix D.1, we have that µ := sign(κ) = −1.
Hence, we have the existence of a stable limit cycle which comes from a supercritical Hopf bifurcation
or a homoclinic bifurcation. This allows us to obtain the coexistence of the four species by a stable
limit cycle.

6.1.1. Numerical simulations for Case BT1

In the following, some numerical results are given to illustrate the results in Section 6. From the
conditions in (6.1), differential system (4.3) has the free parameters α1, η1, η2 and δ3 and the free
constants z0 and y0. In order to obtain the numerical simulations, we set:

z0 = 10, y0 = 11, α1 = η1 = η2 = δ3 = 1.

From these conditions and according to the main Theorem 9, the parameter values for the depending
parameters are shown in Table 5. Now, taking the vector perturbation (d10, d20) +

(
1

104 ,
1

105

)
=
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(0.970015, 0.999134), there is a saddle equilibrium point:

p1 = (166.327, 30.3503, 0, 16.0185),

at which the corresponding linear approximation has eigenvalues

λ1,2 = −0.397727 ± 0.770803i and λ3,4 = 0.0000267485 ± 0.00138117i.

Table 5. Numerical validation for the BT-Main Theorem: Case BT1.
Specific parameter values for the numerical simulation in Case BT1

Equilibrium point entries w0 = 110, x0 = 66, y0 = 11, z0 = 10

Hypotheses of Proposition 1 R1 = 3.63636, c1 = 0.476851, c2 = 0.489641, d3 = 0.886364

Carrying capacity of prey k1 = 220

MP1 and MP2 parameters of functional responses a1 = a2 = 4.54545, b1 = b2 = 110

SP parameters of functional responses e2 = 0.916667, α2 = 0.5, α3 = 3, β1 = β2 = 5.5, β3 = 33,

γ1 = 0.2, γ2 = 0.05, γ3 = 0.3, δ1 = 0.08333, δ2 = 0.3333,

η3 = 12, e1 = e3 = 0.0757576

BT-Bifurcation value d10 = 0.970115, d20 = 0.999184

Quadratic coefficients and κ a0 = −4.59307 × 10−6, b0 = 0.00015748, κ = −7.23315 × 10−10

Regularity condition Reg0 = 0.00122321

Moreover, taking as an initial condition

p0 = (10y0, 6y0, y0, z0) +

(
1

103 ,
1

103 ,
1

103 ,
1

103

)
,

we have an orbit inside a small neighborhood of p1, tending to a limit set in which the three populations
w, x, and z coexist by means of a stable limit cycle, and the population y extincts. Figure 7 shows the
corresponding time series for each population density.
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(a) Population density w (b) Population density x

(c) Population density y (d) Population density z

Figure 7. Population densities time series in the Case BT1.

6.2. Case BT2: Group defenses and predators’ interference

In this case, according to the hypotheses, the functional responses are similar to the ones used in
Case H2 in Subsection 5.2.

Substitution of the above explicit functions implies that system (4.3) will have many new
parameters. Therefore, in order for the conditions in Subsection 4.1 to be satisfied, we make the
following additional parameter assignments:

e2 =
121z0

120y0
, w0 = 10y0, x0 = 6y0, α2 =

α1η2

2η1
, α3 =

3α1δ3

η1
,

β1 =
3y0η1

2
, β2 =

3y0η2

2
, β3 = 9y0δ3, γ1 =

η1

100y0
, γ2 =

η2

20
,

γ3 =
3δ3

10
, δ1 =

η1

12
, δ2 =

η2

36y0
, η3 =

6δ3

y0
, k1 = 20y0,

b1 = b2 = 300y2
0, a1 = a2 =

100z0α1

η1
, e1 = e3 =

z0

12y0
.

(6.2)
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These assignments and the computations in Appendix D.2 have that µ := sign(κ) = −1. Hence,
we have the existence of a stable limit cycle which comes from a supercritical Hopf bifurcation or
a homoclinic bifurcation. This allows us to obtain the coexistence of the four species by a stable
limit cycle.

6.2.1. Numerical simulations for Case BT2

In the following, some numerical results are given for illustrating the results in Section 6. From the
conditions in (6.2), the differential system (4.3) has free parameters α1, η1, η2, and δ3, and free constants
z0 and y0. In this case, we consider the assignments:

z0 = 10, y0 = 11, α1 = η1 = η2 = δ3 = 1.

According to the main Theorem 9, Table 6 shows the parameter values for the depending parameters.

Table 6. Numerical validation for the BT-Main Theorem: Case BT2.
Specific parameter values for the numerical simulation in Case BT2

Equilibrium point entries w0 = 110, x0 = 66, y0 = 11, z0 = 10

Hypotheses of Proposition 1 R1 = 3.63636, c1 = 0.476851, c2 = 0.489641, d3 = 0.886364

Carrying capacity of prey k1 = 220

MP1 and MP2 parameters of functional responses a1 = a2 = 1000, b1 = b2 = 36300

SP parameters of functional responses e2 = 0.916667, α2 = 0.5, α3 = 3, β1 = β2 = 16.5, β3 = 99,

γ1 = 0.000909091, γ2 = 0.05, γ3 = 0.3, δ1 = 0.08333, δ2 = 0.00252525,

η3 = 0.545455, e1 = e3 = 0.0757576

BT-Bifurcation value d10 = 0.970115, d20 = 0.999184

Quadratic coefficients and κ a0 = −4.34412 × 10−6, b0 = 0.000325726, κ = −1.41499 × 10−9

Regularity condition Reg0 = 0.000743216

Taking the perturbation

(d10, d20) +

(
1

1028 ,
1

1026

)
= (0.970115, 0.999184),

there is a saddle equilibrium point

p2 = (142.88, 47.0907, 4.81109, 15.7472),

at which the corresponding linear approximation has eigenvalues

λ1,2 = −0.397727 ± 0.770803i, λ3,4 = −4.34379 × 10−27 ± 3.07689 × 10−14i.

Moreover, taking the initial condition

p0 = (10y0, 6y0, y0, z0) +

(
1

102 ,
1

102 ,
1

102 ,
1

102

)
,
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we obtain an orbit tending to p2. Figure 8 shows the corresponding time series for each
population density.

(a) Population density w (b) Population density x

(c) Population density y (d) Population density z

Figure 8. Population densities time series in Case BT2.

7. Discussion and concluding remarks

A four-species food web model consisting of a prey P, two mesopredators MP1 and MP2, and
a superpredator SP was modeled by a four-dimensional nonlinear autonomous ordinary differential
equation system given by (2.1). This model is Gause-type, and therefore MP1, MP2, and SP are
specialists, that is, the survival of the mesopredators only depends on the source, and the survival of
the SP only depends on the mesopredators. The dynamical analysis and the species coexistence for the
differential system has been studied by other authors using specific functional responses and a concrete
growth rate of the prey; therefore, the main goal in the present manuscript was to provide a study of
the coexistence of the species as far as possible independent of both the growth rate of prey P and the
functional responses involved in the populations interactions. This philosophic reasoning allowed us
to obtain the Theorems 5 and 9, which have general statements showing sufficient conditions on the
parameters to ensure that the system undergoes a Hopf or a Bogdanov-Takens bifurcation.

These analytical results could be validated by considering functional responses that incorporate
several ecological premises, which, for a Hopf bifurcation, we collect in the Cases H1–H3 (see
Subsection 5); and for a BT-bifurcation, we have the Cases BT1–BT2 (see Subsection 6).
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The ecological aspects that we have considered in the applications†† give us interesting results, both
theoretically and numerically, and hence, they serve as a contribution to the literature on ecological
modeling for population dynamics.

The numerical results allow us to show that the coexistence of the species is feasible, specifically,
we have‡‡:

• Numerical H-results: See Subsubsections 5.1.1, 5.2.1, and 5.3.1.
• Numerical BT-results: See Subsubsections 6.1.1 and 6.2.1.

We want to finalize this discussion by observing that our study could be more general by considering
the following aspects:

i) Using a similar approach as was made in the present paper, it is possible to show both analytically
and numerically that food web model (2.1) undergoes a zero-Hopf and a double Hopf bifurcation.
The results will be in a forthcoming paper from the authors.

ii) We will explore an improved biological adapted approach, which consists of introducing the
intrinsic notion of time delays, in some or all of the equations appearing in our differential
food web model. This allows us to have another system inside the ecological delay differential
equations (DDEs) theory, see [20]. Using this new approach, some specific ecological conditions
can be explored, which depends on periods of time for performing a biological process or for
efficiency of depredation. Besides, it is well known that in predator-prey models, delays are
central for studying “ad-hoc” population behaviors, for instance, in nature the predator could not
know the position or the velocity information of the prey population instantly. We will consider
this kind of generalization in our four-dimensional food web model (2.1) or in a linear system
associated with it. This work will be the content of a forthcoming paper, where specific aspects
of study are the strong delay-independent stability and the time-delayed feedback control. Some
references in this respect are [21, 22], and the references therein.
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Appendix

A. Mathematical conditions for the Hopf bifurcation analysis

A.1. Necessary mathematical conditions to make our dynamical analysis simpler

w0 = 10y0, x0 = 6y0,

h(w0) = −w0h′(w0), f1(w0) = 2w0 f ′1(w0),
f2(w0) = 2w0 f ′2(w0), g1(w0, x0, y0) = 2w0∂wg1(w0, x0, y0),

g2(w0, x0, y0) = 2x0∂xg2(w0, x0, y0), g3(w0, x0, y0) = 2y0∂yg3(w0, x0, y0),

∂wg2(w0, x0, y0) = −
3
40
∂wg1(w0, x0, y0), ∂xg2(w0, x0, y0) =

1
2
∂wg1(w0, x0, y0),

∂yg2(w0, x0, y0) = −
3
2
∂wg1(w0, x0, y0), ∂wg3(w0, x0, y0) = −

∂wg1(w0, x0, y0)
80

,

∂xg3(w0, x0, y0) = −
∂wg1(w0, x0, y0)

24
, ∂yg3(w0, x0, y0) =

1
2
∂wg1(w0, x0, y0),

∂xg1(w0, x0, y0) = −
5
12
∂wg1(w0, x0, y0), ∂yg1(w0, x0, y0) = −5∂wg1(w0, x0, y0),

f ′1 (w0) = f ′2(w0).
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A.2. Proof of Proposition 2

We have that the hypotheses of Proposition 2 and Section A.1 hold. The parameters d2, e1, e2, e3

and z0 satisfy the conditions (3.3). Therefore, the linear approximation, M (p), for system (2.1) at p is
given by

−8y0 f ′2(10y0)
−235

12
y0 f ′2(10y0) −15y0 f ′2(10y0) −20y0∂wg1 (10y0, 6y0, y0)

3
40

(
4d1 + 5y0 f ′2(10y0)

) 1
2

y0 f ′2(10y0)
3
2

y0 f ′2(10y0) −6y0∂wg1 (10y0, 6y0, y0)

91
400

y0 f ′2(10y0)
1
24

y0 f ′2(10y0)
1
2

y0 f ′2(10y0) −y0∂wg1 (10y0, 6y0, y0)

37y0 f ′2(10y0)2

1600∂wg1 (10y0, 6y0, y0)
11y0 f ′2(10y0)2

24∂wg1 (10y0, 6y0, y0)
−

157y0 f ′2(10y0)2

80∂wg1 (10y0, 6y0, y0)
0



.

From this, the corresponding characteristic polynomial is

pol (λ) = A01λ
4 + A11λ

3 + A21λ
2 + A31λ + A41, where

A11 = 7y0 f2′(10y0), A21 =
1

160
y0 f2′(10y0)

(
940d1 + 671y0 f2′(10y0)

)
,

A31 =
99

800
y0

3 f2′(10y0)3,

A41 =
y0

3 f2′(10y0)3 (
632227y0 f2′(10y0) − 197860d1

)
12800

.

Set

Σ (d1) := A11
2A41 − A11A21A31 + A31

2

=
y5

0 f ′2(10y0)5
(
386660234y0 f ′2(10y0) − 122003525d1

)
160000

.

Then we have that Σ (d1) < 0 and Ai1 > 0, i = 1, . . . , 4, whenever

d1 > d10 :=
386660234y0 f2

′(10y0)
122003525

.

By the Routh-Hurwitz test (cf. [9, Lemma 2.1(i)]), the proof is completed.

A.3. Eigenvectors for Mp (d10) in Lemma 4

q1 =
1
s0

(
s3

s1
∂wg1(10y0, 6y0, y0),

s4∂wg1(10y0, 6y0, y0)
5s2

,−
s5

s1
∂wg1(10y0, 6y0, y0), s6 f ′2(10y0)

)
,

q2 =

(
s1s9s0

160s7∂wg1(10y0, 6y0, y0)
,−

3485815is2s0

432s7∂wg1(10y0, 6y0, y0)
,

5s1s10s0

72s7∂wg1(10y0, 6y0, y0)
,

5s2s11s0

18s7 f2′(10y0)

)
,

s0 =

√
340000048128437104∂wg1(10y0, 6y0, y0)2 + 6527530581280625 f2′(10y0)2, s1 =

√
1492006990007,

s2 =
√

10444048930049, s3 = 27886520
√

7
(
8627174 + 33441i

√
154

)
,
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s4 = 72
(
−57161314102613 − 170600447467i

√
154

)
, s5 = 4i

√
7
(
33166645833

√
154 − 6156878697763i

)
,

s6 = 25
√

10444048930049, s7 = 128116047502161657
√

154 − 11490886977720227i,

s8 = 128116047502161657
√

154 − 11490886977720227i, s9 = 1787
√

22 + 4460i
√

7,

s10 = 2919
√

22 + 683096i
√

7, s11 = 915
√

154 + 20452i.

B. Application of the H-Main results

B.1. For Case H1

The validation of the H-main Theorem is obtained according to the following:

• The existence of a positive equilibrium point: The parameter conditions in Proposition 1 are
satisfied and given by:

R1 =
4a1

5
, c1 =

1
20

+
2d1

a1
, c2 =

43
200

, d3 =
163a1

800
.

• The stability test for the equilibrium point holds and the hypotheses in Proposition 2 become:

d2 =
33a1

400
, e1 =

a1β1

25y0α1
, e2 =

121a1β1

300y0α1
, e3 =

a1β1

25y0α1
, and d1 > d10 =

193330117a1

2440070500
.

• The bifurcation value and the equilibrium point: From Proposition 2,

p =

(
10y0, 6y0, y0,

2a1β1

5α1

)
and d10 =

193330117a1

2440070500
.

• The necessary condition for having an H-bifurcation: If d1 = d10, Lemma 3 implies that

λ1,2 = ±iω0, λ3,4 =

− 7
80
±

1
160

i

√
588151373
3485815

 a1, ω0 =
3

800

√
11
14

a1.

• Transversal H-condition: From Lemma 4,
∂Re

(
λ1,2

)
∂d1

(d10) is

−
216759420395154335135129924115683750a1

2β1
2

7921207462928967691929
(
261101223251225a1

2β1
2 + 85000012032109276α1

2y0
2
) .

• The first Lyapunov coefficient: In the proof of the H-Main Theorem, we emphasized that the
huge formulae for the first Lyapunov coefficient were omitted and hence we restrict ourselves to
provide them explicitly in the examples. Using the Kuznetsov formulae [14, 15], one has

l (p, d10) = −

σ1

√
7
22
α1

2

σ2

(
261101223251225a1

2β1
2 + 85000012032109276α1

2y0
2
) ;
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σ1 = 2462969600067176324817975122466824746
804100998932741257486031563409068557;

σ2 = 5266887417496056710057826260555524511920829633287830408.

B.2. For Case H2

The validation of the H-main Theorem is obtained according to the following:

• The existence of a positive equilibrium point: the parameter conditions in Proposition 1 are
satisfied and given by

R1 =
a2

25y0
, c1 =

1
20

+
40d1y0

a2
, c2 =

43
200

, d3 =
163a2

16000y0
.

• The stability test for the equilibrium point holds and the hypotheses in Proposition 2 become:

d2 =
33a2

8000y0
, e1 =

3a2δ1

250y0α1
, e2 =

121a2δ1

1000y0α1
, e3 =

3a2δ1

250y0α1
, d1 > d10.

• The bifurcation value and the equilibrium point: from Proposition 2,

p =

(
10y0, 6y0, y0,

3a2δ1

25α1

)
and d10 =

193330117a2

48801410000y0
.

• The necessary condition for having an H-bifurcation: If d1 = d10, Lemma 3 implies that

λ1,2 = iω0 λ3,4 =

(
−7

2 ±
1
4 i

√
588151373

3485815

)
a2

800y0
, ω0 =

3
16000

√
11
14

a2.

• Transversal H-condition: From Lemma 4, ∂Re(λ1,2)
∂d1

(d10) is

−
8670376815806173405405196964627350a2

2δ1
2

880134162547663076881(340000048128437104y0
2α1

2 + 93996440370441a2
2δ1

2)
.

• The first Lyapunov coefficient: Using the Kuznetsov formulae, one has

l (p0, d10) = −

σ1

√
7

22
α1

2

σ2

(
93996440370441a2

2δ1
2 + 340000048128437104α1

2y0
2
) ;

σ1 = 64994862735298475077909616056950614981537201187003542163844594020035717;

σ2 = 16255825362642150339684648952331865777533424794098242.

AIMS Mathematics Volume 9, Issue 11, 30263–30297.



30293

B.3. For Case H3

The validation of the H-main Theorem is according to the following:

• The existence of a positive equilibrium point: The parameter conditions in Proposition 1 are
satisfied and given by

R =
a1

25y0
, c1 =

1
20

+
40d1y0

a1
, c2 =

43
200

, d3 =
163a1

16000y0
.

• The stability test for the equilibrium point holds and the hypotheses in Proposition 2 become:

d2 =
33a1

8000y0
, e1 =

a1β1

1750y2
0α1

, e2 =
121a1β1

21000y2
0α1

, e3 =
a1β1

1750y2
0α1

, d1 > d10.

• The bifurcation value and the equilibrium point: From Proposition 2,

p =

(
10y0, 6y0, y0,

a1β1

175y0α1

)
and d10 =

193330117a1

48801410000y0
.

• The necessary condition for having H-bifurcation: If d1 = d10, Lemma 3 implies that

λ1,2 = iω0 and λ3,4 =

−7
2
±

1
4

i

√
588151373
3485815

 a1

800y0
, ω0 =

3
16000

√
11
14

a1

y0
.

• Transversal H-condition: From Lemma 4 ∂Re(λ1,2)
∂d1

(d10) is

−
1238625259400881915057885280661050a1

2β1
2

7921207462928967691929(2380000336899059728y0
2α1

2 + 1492006990007a2
2β1

2)
.

• The first Lyapunov coefficient: Once again, using the Kuznetsov formulae, one has

l (p, d10) = −

σ1

√
7

22
y2

0α1
2

σ2

(
1492006990007a1

2β1
2 + 2380000336899059728α1

2y0
4
) ;

σ1 = 5655950984333915946070106313708512
470022267338639122359619109215102383 861;

σ2 = 119701986761274016137677869558080102543655218938359782.

C. Necessary BT-conditions for the web model

In order to begin with the BT-analysis, in the following lemma, the necessary BT-conditions will be
stated. Before making the principal analysis, let us denote by Pλ the characteristic polynomial of the
linear approximation of system (2.1) at p. The characteristic polynomial is

Pλ = λ4 + A1λ
3 + A2λ

2 + A3λ + A4. (C.1)
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A necessary condition to have a BT-bifurcation is that there are λ3, λ4 ∈ C such that we have
the factorization

λ4 + A1λ
3 + A2λ

2 + A3λ + A4 = λ2(λ − λ3)(λ − λ4)
= (λ2 − (λ3 + λ4)λ + λ3λ4)λ2

= λ4 − (λ3 + λ4)λ3 + λ3λ4λ
2,

that is,
A3 = A4 = 0, A2 = λ3λ4, and A1 = −(λ3 + λ4). (C.2)

Then, by a direct computation, the next result follows.

Lemma 10. If the coefficients of Pλ satisfy the conditions in (C.2), A1 > 0 and A2 > 0, then its roots are

λ1,2 = 0, λ3 =
−A1 −

√
A2

1 − 4A2

2
, and λ4 =

−A1 +

√
A2

1 − 4A2

2
. (C.3)

Remark 11. From the hypotheses of Lemma 10:

• If A2
1 − 4A2 > 0, then −

√
A2

1 − 4A2 < 0 and −A1 < 0, hence λ3 is a negative real number.
Moreover,

A2
1 − 4A2 < A2

1 ⇐⇒

√
A2

1 − 4A2 < A1 ⇐⇒

√
A2

1 − 4A2 − A1 < 0.

Therefore, λ4 is a negative real number, too.

• If A2
1 − 4A2 < 0, then λ3, λ4 ∈ C with Re(λ3) = Re(λ4) = −

A1

2
< 0.

C.1. Proof of Lemma 6

The linear approximation of system (2.1) at p has characteristic polynomial

Pλ(d1, d2) = λ4 + A1λ
3 + A2λ

2 + A3λ + A4, where

A0 = 1, A1 = 7z0∂wg1(10y0, 6y0, y0),

A2 =
1

96
z0∂wg1(10y0, 6y0, y0) (145z0∂wg1(10y0, 6y0, y0) + 564d1 + 72d2) ,

A3 =
z2

0∂wg1(10y0, 6y0, y0)2 (12649z0∂wg1(10y0, 6y0, y0) + 88d1 − 1524d2)
1920

,

A4 = −
z3

0∂wg1(10y0, 6y0, y0)3 (3561z0∂wg1(10y0, 6y0, y0) + 28907d1 − 28471d2)
1920

.

(C.4)

From Lemma 10, it follows that Pλ(d1, d2) = λ2(λ − α1)(λ − α2) if and only if A3 = A4 = 0. On the
other hand, by making the assignments d1 = d10 and d2 = d20, the result follows, where α1 = λ3 and
α2 = λ4.
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C.2. Normalized BT-eigenvectors for proof of Proposition 8

Using the Guckenheimer-Kuznetsov formulae and the software Mathematica (see [17] and cf. [16,
Appendix A] and [6]), we compute the normalized eigenvectors for J(p, d10, d20) and JT (p, d10, d20):

q0 = (q01, q02, q03, q04), q1 = (q11, q12, q13, q14);

q01 = −
3677070570y0∂xg1(10y0, 6y0, y0)

5809519049
, q02 =

2507454216y0∂xg1(10y0, 6y0, y0)
5809519049

,

q03 =
606034548y0∂xg1(10y0, 6y0, y0)

5809519049
, q04 = −

2877826539z0∂xg1(10y0, 6y0, y0)
11619038098

,

q11 =
11516185029671887866060y0

3678805762295631219709z0
, q12 = −

7930731255421833848520y0

3678805762295631219709z0
,

q13 = −
1434464608597924651548y0

3678805762295631219709z0
, q14 =

4351305094969314954798
3678805762295631219709

,

p1 =

(
109z0

17700y0
,−

28907z0

21240y0
,

28471z0

3540y0
, 1

)
,

p0 =

(
0,−

1519549
231516y0∂wg1(10y0, 6y0, y0)

,
1480963

38586y0∂wg1(10y0, 6y0, y0)
,

4438
6431z0∂wg1(10y0, 6y0, y0)

)
.

C.3. Terms for the quadratic coefficients in Proposition 8

a00 = 96083802551532096y0∂
2
yg1(10y0, 6y0, y0) + 795089113623108864y0∂x∂yg1(10y0, 6y0, y0)

+ 1644831599641714944y0∂
2
xg1(10y0, 6y0, y0) − 8873565668350863105∂wg1(10y0, 6y0, y0)

− 1165962976143497280y0∂w∂yg1(10y0, 6y0, y0) − 4824145405372037760y0∂w∂xg1(10y0, 6y0, y0)

+ 3537197804511027600y0∂
2
wg1(10y0, 6y0, y0) + 2949805563447597120y0∂

2
yg2(10y0, 6y0, y0)

+ 24409507414573774080y0∂x∂yg2(10y0, 6y0, y0) + 50496892032924391680y0∂
2
xg2(10y0, 6y0, y0)

− 35795461695610881600y0∂w∂yg2(10y0, 6y0, y0) − 148102912018022467200y0∂w∂xg2(10y0, 6y0, y0)

+ 108593181011598922000y0∂
2
wg2(10y0, 6y0, y0) − 9909433457876897280y0∂

2
yg3(10y0, 6y0, y0)

− 82000112977469675520y0∂x∂yg3(10y0, 6y0, y0) − 169636805093356369920y0∂
2
xg3(10y0, 6y0, y0)

+ 120249534464931110400y0∂w∂yg3(10y0, 6y0, y0) + 497529725262673996800y0∂w∂xg3(10y0, 6y0, y0)

− 364802654977681968000y0∂
2
wg3(10y0, 6y0, y0);

b00 = 417634955252120214997055136y0∂
2
yg1(10y0, 6y0, y0) + 4181605554814705668293497152y0∂x∂yg1(10y0, 6y0, y0)

+ 10151922900977566424314375680y0∂
2
xg1(10y0, 6y0, y0) − 878228329501925362657179615∂wg1(10y0, 6y0, y0)

− 6090728136122323311124787160y0∂w∂yg1(10y0, 6y0, y0)

− 29603352702257865402807468240y0∂w∂xg1(10y0, 6y0, y0)

+ 21580373074016479704338355300y0∂
2
wg1(10y0, 6y0, y0)

+ 2887487251311478200082820640y0∂
2
yg2(10y0, 6y0, y0)
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+46172917332116025067581337920y0∂x∂yg2(10y0, 6y0, y0)

+ 141609317300649745173453127680y0∂
2
xg2(10y0, 6y0, y0)

− 66439199506043649506337659800y0∂w∂yg2(10y0, 6y0, y0)

− 410067449191752856089515826000y0∂w∂xg2(10y0, 6y0, y0)

+ 296815998858298941202973510500y0∂
2
wg2(10y0, 6y0, y0)

+ 15500682198414711104279800320y0∂
2
yg3(10y0, 6y0, y0)

+ 53424146993221012497259875840y0∂x∂yg3(10y0, 6y0, y0)

− 44310622013710573340404915200y0∂
2
xg3(10y0, 6y0, y0)

− 82615020512826474158497675200y0∂w∂yg3(10y0, 6y0, y0)

+ 112288482473485626189517795200y0∂w∂xg3(10y0, 6y0, y0)

− 69376432530706260133488324000y0∂
2
wg3(10y0, 6y0, y0);

b01 = 88195506331244395959855580050y2
0 f ′′1 (10y0) − 87002878567368244422273281625y2

0 f ′′2 (10y0);

b02 = 64879172730106024136557430400y0z0∂wg1(10y0, 6y0, y0)h′′(10y0).

D. Application of the BT-Main results

D.1. For Case BT1

The validation of the BT-Main Theorem is according to the following:

• The existence of a positive equilibrium point: The parameter conditions in Proposition 1 are
satisfied and given by:

R1 =
4z0α1

y0η1
, c1 =

79250307
166195280

, c2 =
81376019

166195280
, d3 =

39z0α1

40y0η1
.

• The bifurcation value and the equilibrium point: From Lemma 6,

p = (10y0, 6y0, y0, z0), d10 =
70940543z0α1

66478112y0η1
, and d20 =

73066255z0α1

66478112y0η1
.

• The necessary condition for having a BT-bifurcation: If d1 = d10 and d2 = d20, Lemma 6
implies that

λ1,2 = 0, λ3,4 =

− 7
16
±

11
32

i

√
37917221
6232323

α1z0

y0η1
.

• Regularity BT-condition: From Proposition 7 and using the software Mathematica,

Reg0 =
3062663712947293z7

0α
7
1

1284845926229213184y7
0η

7
1

.

• The quadratic coefficients: From Proposition 8, one has

a0 = −
338050197175353927327z2

0α
3
1

5529683817380882743459840y3
0η

3
1

and b0 =
3825869963080707411609013339563z0α

2
1

2007800217001329724160332540405760y2
0η

2
1

.
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D.2. For Case BT2

The validation of the BT-Main Theorem is according to the following:

• The existence of a positive equilibrium point: The parameter conditions in Proposition 1 are
satisfied and given by:

R1 =
4z0α1

y0η1
, c1 =

79250307
166195280

, c2 =
81376019

166195280
, d3 =

39z0α1

40y0η1
.

• The bifurcation value and the equilibrium point: From Lemma 6,

p = (10y0, 6y0, y0, z0), d10 =
70940543z0α1

66478112y0η1
, and d20 =

73066255z0α1

66478112y0η1
.

• The necessary condition for having a BT-bifurcation: If d1 = d10 and d2 = d20, Lemma 6
implies that

λ1,2 = 0, λ3,4 =

− 7
16
±

11
32

i

√
37917221
6232323

α1z0

y0η1
.

• Regularity BT-condition: From Proposition 7 and using the software Mathematica,

Reg0 =
9304331266348609α7

1z7
0

6424229631146065920η7
1y7

0

.

• The quadratic coefficients: From Proposition 8, one has

a0 = −
319727305666717874403α3

1z2
0

5529683817380882743459840η3
1y3

0

and b0 =
1582659998470877146043697389907α2

1z0

401560043400265944832066508081152η2
1y2

0

,

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 11, 30263–30297.

https://creativecommons.org/licenses/by/4.0

	Introduction
	Food web model formulation and novelty of the main results
	Novelty and main contribution of our results

	Dynamical analysis via a Hopf bifurcation
	Equilibrium points and a criterion for stability
	Conditions for simplifying the dynamical analysis
	Stability result for the equilibrium points
	H-bifurcation conditions
	H-Main result

	Dynamical analysis via a Bogdanov-Takens bifurcation
	Conditions for simplifying the BT-dynamical analysis
	Predators' mortality rates as BT-bifurcation parameters
	BT-Main results for the food web model
	Simplification of the food web model
	Regularity BT-condition for the food web model
	Computation of the BT-quadratic coefficients


	H-validation results and numerical simulations
	Case H1: Satiety and interference between predators
	Numerical simulations for Case H1
	Coexistence by numerical detection of a stable limit cycle

	Case H2: Group defenses and predators' interference
	Numerical simulations for Case H2
	Coexistence by numerical detection of a stable limit cycle: Case H2

	Case H3: Defense group, competence, and interference
	Numerical simulations for Case H3
	Coexistence by numerical detection of a stable limit cycle


	BT-validations results and numerical simulations
	Case BT1: Satiety and interference between predators
	Numerical simulations for Case BT1

	Case BT2: Group defenses and predators' interference
	Numerical simulations for Case BT2


	Discussion and concluding remarks
	Mathematical conditions for the Hopf bifurcation analysis
	Necessary mathematical conditions to make our dynamical analysis simpler
	Proof of Proposition 2
	Eigenvectors for Mp(d10) in Lemma 4

	Application of the H-Main results
	For Case H1
	For Case H2
	For Case H3

	Necessary BT-conditions for the web model
	Proof of Lemma 6
	Normalized BT-eigenvectors for proof of Proposition 8
	Terms for the quadratic coefficients in Proposition 8

	Application of the BT-Main results
	For Case BT1
	For Case BT2


