This study explored the time asymptotic behavior of the Schrödinger equation with an inhomogeneous energy-critical nonlinearity. The approach follows the concentration-compactness method due to Kenig and Merle. To address the primary challenge posed by the singular inhomogeneous term, we utilized Caffarelli-Kohn-Nirenberg weighted inequalities. This work notably expanded the existing literature by applying these techniques to higher spatial dimensions without requiring any spherically symmetric assumption.
Citation: Saleh Almuthaybiri, Radhia Ghanmi, Tarek Saanouni. On the nonlinear Schrödinger equation with critical source term: global well-posedness, scattering and finite time blowup[J]. AIMS Mathematics, 2024, 9(11): 30230-30262. doi: 10.3934/math.20241460
This study explored the time asymptotic behavior of the Schrödinger equation with an inhomogeneous energy-critical nonlinearity. The approach follows the concentration-compactness method due to Kenig and Merle. To address the primary challenge posed by the singular inhomogeneous term, we utilized Caffarelli-Kohn-Nirenberg weighted inequalities. This work notably expanded the existing literature by applying these techniques to higher spatial dimensions without requiring any spherically symmetric assumption.
[1] | H. A. Alkhidhr, Closed-form solutions to the perturbed NLSE with Kerr law nonlinearity in optical fibers, Results Phys., 22 (2021), 103875. https://doi.org/10.1016/j.rinp.2021.103875 doi: 10.1016/j.rinp.2021.103875 |
[2] | T. S. Gill, Optical guiding of laser beam in nonuniform plasma, Pramana J. Phys., 55 (2000), 835–842. https://doi.org/10.1007/s12043-000-0051-z doi: 10.1007/s12043-000-0051-z |
[3] | C. S. Liu, V. K. Tripathi, Laser guiding in an axially nonuniform plasma channel, Phys. Plasmas, 1 (1994), 3100–3103. https://doi.org/10.1063/1.870501 doi: 10.1063/1.870501 |
[4] | S. Shen, Z. J. Yang, Z. G. Pang, Y. R. Ge, The complex-valued astigmatic cosine-Gaussian soliton solution of the nonlocal nonlinear Schrödinger equation and its transmission characteristics, Appl. Math. Lett., 125 (2022), 107755. https://doi.org/10.1016/j.aml.2021.107755 doi: 10.1016/j.aml.2021.107755 |
[5] | S. Shen, Z. J. Yang, X. L. Li, S. M. Zhang, Periodic propagation of complex-valued hyperbolic-cosine-Gaussian solitons and breathers with complicated light field structure in strongly nonlocal nonlinear media, Commun. Nonlinear Sci., 103 (2021), 106005. https://doi.org/10.1016/j.cnsns.2021.106005 doi: 10.1016/j.cnsns.2021.106005 |
[6] | L. Tang, Dynamical behavior and multiple optical solitons for the fractional Ginzburg-Landau equation with derivative in optical fibers, Opt. Quant. Electron., 56 (2024), 175. https://doi.org/10.1007/s11082-023-05761-1 doi: 10.1007/s11082-023-05761-1 |
[7] | L. Tang, Optical solitons perturbation and traveling wave solutions in magneto-optic waveguides with the generalized stochastic Schrödinger-Hirota equation, Opt. Quant. Electron., 56 (2024), 773. https://doi.org/10.1007/s11082-024-06669-0 doi: 10.1007/s11082-024-06669-0 |
[8] | L. Tang, A. Biswas, Y. Yıldırım, A. A. Alghamdi, Bifurcation analysis and optical solitons for the concatenation model, Phys. Lett. A, 480 (2023), 128943. https://doi.org/10.1016/j.physleta.2023.128943 doi: 10.1016/j.physleta.2023.128943 |
[9] | F. Genoud, C. A. Stuart, Schrödinger equations with a spatially decaying nonlinearity: existence and stability of standing waves, Discrete Cont. Dyn., 21 (2008), 137–186. https://doi.org/10.3934/dcds.2008.21.137 doi: 10.3934/dcds.2008.21.137 |
[10] | C. M. Guzmán, On well posedness for the inhomogeneous non-linear Schrödinger equation, Nonlinear Anal.-Real, 37 (2017), 249–286. https://doi.org/10.1016/j.nonrwa.2017.02.018 doi: 10.1016/j.nonrwa.2017.02.018 |
[11] | L. G. Farah, Global well-posedness an blowup on the energy space for the inhomogeneous non-linear Schrödinger equation, J. Evol. Equ., 16 (2016), 193–208. https://doi.org/10.1007/s00028-015-0298-y doi: 10.1007/s00028-015-0298-y |
[12] | L. G. Farah, C. M. Guzmán, Scattering for the radial 3D cubic focusing inhomogeneous nonlinear Schrödinger equation, J. Differ. Equations, 262 (2017), 4175–4231. https://doi.org/10.1016/j.jde.2017.01.013 doi: 10.1016/j.jde.2017.01.013 |
[13] | L. G. Farah, C. M. Guzmán, Scattering for the radial focusing inhomogeneous NLS equation in higher dimensions, Bull. Braz. Math. Soc., New Series, 51 (2020), 449–512. https://doi.org/10.1007/s00574-019-00160-1 doi: 10.1007/s00574-019-00160-1 |
[14] | C. E. Kenig, F. Merle, Global wellposedness, scattering and blow up for the energy critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645–675. https://doi.org/10.1007/s00222-006-0011-4 doi: 10.1007/s00222-006-0011-4 |
[15] | L. Campos, Scattering of radial solutions to the inhomogeneous nonlinear Schrödinger equation, Nonlinear Analysis, 202 (2021), 112118. https://doi.org/10.1016/j.na.2020.112118 doi: 10.1016/j.na.2020.112118 |
[16] | B. Dodson, J. Murphy, A new proof of scattering below the ground state for the 3D radial focusing cubic NLS, Proc. Amer. Math. Soc., 145 (2017), 4859–4867. https://doi.org/10.1090/proc/13678 doi: 10.1090/proc/13678 |
[17] | M. Cardoso, L. G. Farah, C. M. Guzmán, J. Murphy, Scattering below the ground state for the intercritical non-radial inhomogeneous NLS, Nonlinear Anal.-Real, 68 (2022), 103687. https://doi.org/10.1016/j.nonrwa.2022.103687 doi: 10.1016/j.nonrwa.2022.103687 |
[18] | L. Aloui, S. Tayachi, Global existence and scattering for the inhomogeneous nonlinear Schrödinger equation, J. Evol. Equ., 24 (2024), 61. https://doi.org/10.1007/s00028-024-00965-8 doi: 10.1007/s00028-024-00965-8 |
[19] | V. D. Dinh, M. Majdoub, T. Saanouni, Long time dynamics and blowup for the focusing inhomogeneous nonlinear Schrödinger equation with spatially growing nonlinearity, J. Math. Phys., 64 (2023), 081509. https://doi.org/10.1063/5.0143716 doi: 10.1063/5.0143716 |
[20] | R. B. Bai, B. Li, Finite time/Infinite time blowup behaviors for the inhomogeneous nonlinear Schrödinger equation, Nonlinear Analysis, 232 (2023), 113266. https://doi.org/10.1016/j.na.2023.113266 doi: 10.1016/j.na.2023.113266 |
[21] | M. Cardoso, L. G. Fara, blowup solutions of the intercritical inhomogeneous NLS equation: The non-radial case, Math. Z., 303 (2023), 63. https://doi.org/10.1007/s00209-023-03212-x doi: 10.1007/s00209-023-03212-x |
[22] | L. Aloui, S. Tayachi, Local well-posedness for the inhomogeneous nonlinear Schrödinger equation, Discrete Cont. Dyn.-A, 41 (2021), 5409–5437. https://doi.org/10.3934/dcds.2021082 doi: 10.3934/dcds.2021082 |
[23] | J. An, J. Kim, The Cauchy problem for the critical inhomogeneous nonlinear Schrödinger equation in $H^s(\mathbb{R}^n)$, Evol. Equ. Control The., 12 (2023), 1039–1055. https://doi.org/10.3934/eect.2022059 doi: 10.3934/eect.2022059 |
[24] | J. Kim, Y. Lee, I. Seo, On well-posedness for the inhomogeneous nonlinear Schrödinger equation in the critical case, J. Differ. Equations, 280 (2021), 179–202. https://doi.org/10.1016/j.jde.2021.01.023 doi: 10.1016/j.jde.2021.01.023 |
[25] | Y. Lee, I. Seo, The Cauchy problem for the energy-critical inhomogeneous nonlinear Schrödinger equation, Arch. Math., 117 (2021), 441–453. https://doi.org/10.1007/s00013-021-01632-x doi: 10.1007/s00013-021-01632-x |
[26] | Y. Cho, S. Hong, K. Lee, On the global well-posedness of focusing energy-critical inhomogeneous NLS, J. Evol. Equ., 20 (2020), 1349–1380. https://doi.org/10.1007/s00028-020-00558-1 doi: 10.1007/s00028-020-00558-1 |
[27] | Y. Cho, K. Lee, On the focusing energy-critical inhomogeneous NLS: Weighted space approach, Nonlinear Analysis, 205 (2021), 112261. https://doi.org/10.1016/j.na.2021.112261 doi: 10.1016/j.na.2021.112261 |
[28] | C. M. Guzmán, J. Murphy, Scattering for the non-radial energy-critical inhomogeneous NLS, J. Differ. Equations, 295 (2021), 187–210. https://doi.org/10.1016/j.jde.2021.05.055 doi: 10.1016/j.jde.2021.05.055 |
[29] | Z. S. Feng, Y. Su, Traveling wave phenomena of inhomogeneous half-wave equation, J. Differ. Equations, 400 (2024), 248–277. https://doi.org/10.1016/j.jde.2024.04.029 doi: 10.1016/j.jde.2024.04.029 |
[30] | M. Cardoso, L. G. Farah, blowup of non-radial solutions for the $L^2$ critical inhomogeneous NLS equation, Nonlinearity, 35 (2022), 4426. 10.1088/1361-6544/ac7b60 doi: 10.1088/1361-6544/ac7b60 |
[31] | L. W. Zeng, M. R. Belić, D. Mihalache, J. W. Li, D. Xiang, X. K. Zeng, et al., Solitons in a coupled system of fractional nonlinear Schrödinger equations, Physica D, 456 (2023), 133924. https://doi.org/10.1016/j.physd.2023.133924 doi: 10.1016/j.physd.2023.133924 |
[32] | H. F. Wang, Y. F. Zhang, Application of Riemann-Hilbert method to an extended coupled nonlinear Schrödinger equations, J. Comput. Appl. Math., 420 (2023), 114812. https://doi.org/10.1016/j.cam.2022.114812 doi: 10.1016/j.cam.2022.114812 |
[33] | J. Holmer, R. Platte, S. Roudenko, blowup criteria for the 3D cubic nonlinear Schrödinger equation, Nonlinearity, 23 (2010), 977. https://doi.org/10.1088/0951-7715/23/4/011 doi: 10.1088/0951-7715/23/4/011 |
[34] | E. Yanagida, Uniqueness of positive radial solutions of $\Delta u + g(r)u + h(r)u^p = 0$ in $ \mathbb{R}^n$, Arch. Rational Mech. Anal., 115 (1991), 257–274. https://doi.org/10.1007/BF00380770 doi: 10.1007/BF00380770 |
[35] | E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math., 118 (1983), 529–554. |
[36] | R. Killip, M. Visan, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, Am. J. Math., 132 (2010), 361–424. https://doi.org/10.1353/ajm.0.0107 doi: 10.1353/ajm.0.0107 |
[37] | H. Bahouri, J.-Y. Chemin, R. Danchin, Fourier analysis and nonlinear partial differential equations, Grundlehren der Mathematischen Wissenschaften, 343 (2011), 523. |
[38] | C. S. Lin, Interpolation inequalities with weights, Commun. Part. Diff. Eq., 11 (1986), 1515–1538. https://doi.org/10.1080/03605308608820473 doi: 10.1080/03605308608820473 |
[39] | E. M. Stein, G. Weiss, Fractional integrals on n-dimensional Euclidean space, Indiana U. Math. Mech., 7 (1958), 503–514. |
[40] | M. Visan, Nonlinear Schrödinger equations at critical regularity, In: Evolution equations, Providence: American Mathematical Society, 2013,325–437. |
[41] | H. Koch, D. Tataru, M. Visan, Dispersive equations, In: Dispersive equations and nonlinear waves, Basel: Birkhäuser, 2014,223–224. https://doi.org/10.1007/978-3-0348-0736-4 |
[42] | S. Keraani, On the defect of compactness for the strichartz estimates of the Schrödinger equations, J. Differ. Equations, 175 (2001), 353–392. https://doi.org/10.1006/jdeq.2000.3951 doi: 10.1006/jdeq.2000.3951 |
[43] | T. Cazenave, Semilinear Schrödinger equations, Providence: American Mathematical Society, 2003. |
[44] | Y. Cho, T. Ozawa, S. X. Xia, Remarks on some dispersive estimates, Commun. Pure Appl. Anal., 10 (2011), 1121–1128. https://doi.org/10.3934/cpaa.2011.10.1121 doi: 10.3934/cpaa.2011.10.1121 |
[45] | L. Campos, M. Cardoso, A Virial-Morawetz approach to scattering for the non-radial inhomogeneous NLS, Proc. Amer. Math. Soc., 150 (2022), 2007–2021. https://doi.org/10.1090/proc/15680 doi: 10.1090/proc/15680 |
[46] | V. D. Dinh, Blowup of $H^1$ solutions for a class of the focusing inhomogeneous nonlinear Schrödinger equation, Nonlinear Analysis, 174 (2018), 169–188. https://doi.org/10.1016/j.na.2018.04.024 doi: 10.1016/j.na.2018.04.024 |