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1. Introduction

We consider the Cauchy problem for the Schrodinger equation with an inhomogeneous nonlinearity

0
igtu + Au+ |xT|ulP u = 0; (INLS)

Uji=0 = Uy. (11)

In this context, the wave function u is a complex-valued function defined on the variable (¢, x) €
R x R, Additionally, the singular inhomogeneous term is given by | - |, where 7 > 0.

The inhomogeneous nonlinear equation of Schrodinger type describes beam propagation in
nonlinear optics and plasma physics. In fact, stable high-power propagation can be realized in a
plasma by introducing a preliminary laser beam that forms a channel with reduced electron density,


https://www.aimspress.com/journal/Math
https://dx.doi.org/10.3934/math.20241460

30231

thereby decreasing the nonlinearity within that channel [1-3]. In the context of the optical nonlinear
Schrodinger equation, light energy can be confined, enabling the transmission of complex structured
beams and solitons [4,5]. Additional references include [6-8].

The well-posedness of the inhomogeneous nonlinear Schrodinger equation (INLS) has been
explored by numerous authors. The existence of energy subcritical solutions was first established
in [9]. This result was later revisited in [10], where solutions in Strichartz spaces were examined under
additional restrictions for N = 2,3. The dichotomy between global existence and scattering versus
finite time blowup below the ground state threshold was addressed in [11-13] using the concentration-
compactness argument by Kenig and Merle [14]. This work was further developed in [15] employing
the Dodson-Murphy method [16], and the spherically symmetric assumption was relaxed in [17].
Additional discussions on more general inhomogeneous terms can be found in [18,19]. The finite time
blowup of solutions without radial or finite time variance assumptions was investigated in [20, 21].
Recently, the Sobolev critical regime has also been considered, with local well-posedness studied
in [22-25]. Scattering for spherically symmetric initial data was demonstrated in [26,27] in the three-
dimensional case, while the radial assumption for this case was removed in [28]. A result indicating
non-scattering was presented in [29]. For a numerical perspective, a quantitative analysis of solutions
to the three-dimensional cubic nonlinear Schrodinger equation above the mass-energy threshold is
provided in [33], which introduces a new blowup criterion and predicts the asymptotic behavior
of solutions across various initial data classes, including modulated ground states, Gaussian, super-
Gaussian, off-centered Gaussian, and oscillatory Gaussian, along with several conjectures regarding
the scattering threshold.

The motivation of this note is to extend the findings of [26—28] to higher spatial dimensions and to
eliminate the radial assumption. Specifically, the scattering threshold was demonstrated in [26,27] for
three spatial dimensions. The novel contribution here is to establish the scattering threshold for N > 4
without assuming spherical symmetry. This indicates that every energy-critical solution to (INLS)
asymptotically approaches a solution of the linear Schrodinger equation as t — oo. The methodology
follows the roadmap laid out by Kenig and Merle in [14].

The remainder of the paper is organized as follows: Section 2 presents the main result along with
some useful estimates. Section 3 provides auxiliary results. Section 4 is dedicated to proving global
existence and scattering. Finally, Section 5 addresses the finite time blowup.

Here and henceforth, the Lebesgue and Sobolev spaces equipped with the standard norms are
denoted by

L':=L'R"), H:={feS'®R"),Vfel), Hy,:={feH, fO=f(Dh
Fe =1l =1l el =V - L

Finally, one denotes by (7, T*) the maximal existence interval of an eventual energy solution to
(INLS).

2. Background and main result

This section contains the main contribution of this note and some useful standard estimates.
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2.1. Preliminary
Let us denote the free Schrodinger kernel:
eu = F (e M), .1

where ¥ is the Fourrier transform. Thanks to the Duhamel formula, solutions to (INLS) are fixed
points of the integral function

t
Fu@®) = e™uy —i f N (Ix Tl ) ds. (2.2)
0
Solutions of the problem (INLS), formally satisfy the conservation of the energy
2
E(u(1)) := f Vu(t, ) dx — —— | |x"u(t, )" dx = E(up). (2.3)
RN 1+ P JrN

. . 21
If u resolves the equation (INLS), then so does the family u, := x»Tu(«*, k), « > 0. Moreover,
there is only one invariant Sobolev norm under the above dilatation, precisely

N 2-71
e Ollgse = NGOl gses e = 5" :
p—1
In the sequel, we will focus on the energy-critical regime
22-1)
c=lep=p =1+ , N=3. 2.4
s pP=p N> (2.4)
We will consider the next assumption on the inhomogeneous term
6-N 4 2+N
O<T<min{T’N} or <T<?2 (2.5)
Let us define the potential energy
Plu] := f ||~ el *7 dx. (2.6)
RN
Take the associated ground state
P\
=1+ —= . 2.7
o =1+ = =) @7
Thanks to [35, Theorem 4.3] and [34, Remark 2.1], one has
Ap + x| 7" = 0; (2.8)
1 \% \%
I 7 O 1.7 29

Co™ onueh! (P (Plgl)™
Finally, we denote for short the Sobolev embedding exponent

2N
2" = ——, N>3. 2.10
V) (2.10)

From now on, we hide the time variable for simplicity, spreading it out only when necessary.
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2.2. Main result

The main contribution of this note is the next dichotomy of global existence and scattering versus
finite time blowup of energy critical solutions under the ground state threshold.

Theorem 2.1. Let N > 3, 7 satisfy (2.5), and p = p°. Let uy € H', satisfying:

E(up) < E(p). (2.11)
Then,

1) The solution of (INLS) is global and scatters if

IVuoll < [IVeell. (2.12)
2) The solution of (INLS) blows up in finite or infinite time if u, € L* and

IVuoll > [IVepll. (2.13)

In view of the results stated in the above theorem, some comments are in order.

¢ denotes a ground state solution to (2.7);

e This work complements [26-28] to higher space dimensions N > 3;

e The local existence obtained here complements [22—-25], where the data was supposed to be in
H';

e Due to the use of fixed point argument in the small data theory, for 7 < 1, one needs the condition

p > 2. This gives the restriction 0 < 27 < 6 — N. So one assumes that N < 5. Moreover, the use

of the Sobolev embedding H' < L¥5 restricts the space dimension to N € {3,4,5};

e For 7 < 1, the condition 7 < 2 is because one needs the inequality p — 1 — 7 > 0 in the local

N
theory;
[}
2 9f N=3
6-N 4 A
min{T? N} = 1’ lf N = 49
3, if N=35;

e The condition 7 < 6‘TN doesn’t appear in [26] because only N = 3 is treated and so 0 < 7 <
min{®Y, 3} reads 0 < 7 < %;

e In the local theory, for 7 > 1, we use some weighted Strichartz spaces in the spirit of [27]. The
choice of y = (‘ZT”V)_ done in [27] is not possible for N > 4 because of the necessary condition
v < 1. So, the proof is different and we get the extra restriction 7 > %;

e The blowup in finite or infinite time means that supyg 7+, [|[Vu(?)|| = oo;

e The radial assumption is not needed for the blowup;

e If one assumes that xu € L? or u radial, the finite time blowup holds;

e This work complements [14] to the inhomogeneous case.
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2.3. Sketch of the proof of the first part of Theorem 2.1

By contradiction, if the first part of Theorem 2.1 fails, then there is a minimal non-scattering solution
under the ground state threshold which possesses certain compactness properties as follows.

Proposition 2.1. If the first part of Theorem 2.1 fails, there exists a maximal solution to (INLS),
denoted by u € C([0,T*),H") and a frequency scale function A : [0,T*) +— R,, such that
il’lfte[(),]w) /l(t) > 1, and

sup [[Vu@)| < [[Vell; (2.14)
1€[0,T+)
llulls0,7+) = o0; (2.15)
—u(t,—), telo, T, is pre-compactin H'. (2.16)
{/l(t)NzZ A1) }

To complete the proof of the first part of Theorem 2.1, one proves that the type of solution appearing
in the statement of Proposition 2.1 cannot exist. This is achieved in Subsection 4.2.

Remark 2.1. In Proposition 2.1, there is no moving spatial center x(t) in the parametrization of
the minimal non-scattering solution. Indeed, thanks to Proposition 4.1, the profiles with % —
correspond to scattering solutions. By arguments in [36], we can arrange the frequency scale function
to be bounded below.

Remark 2.2. Proposition 2.1 is an adaptation of [28, Theorem 1.2], and the idea of the proof is
somehow similar. Indeed, we aim to generalize [28, Theorem 1.2] for higher space dimensions and for
more general inhomogeneous term, namely N > 3 and b satisfying (2.5) rather than N = 3 and T = 1.

2.4. Useful tools

For the reader’s convenience, we recall some known and useful tools which play an important role
in the proof of the main result. To start, we recall the homogeneous Sobolev embedding [37, Theorem
1.38], for N > 3,

lulls < CylIVull, forall ue H'. (2.17)

The following Caffarelli-Kohn-Nirenberg weighted interpolation inequalities [38, 39], will be
useful.

Lemma 2.1. Let N > 1,1 < p < g < oo, and—% <b<acx g. Assume thata — b — 1 = N(é - %).
Then,
- 17 flly < CllL - 1V £l

Recall the associated Bernstein estimates to the standard Littlewood—Paley projections Py, see [40,
Subsection 11.2],

WVEPufIlr = MPNIPufll,, forall 1<r<oo; (2.18)
1Py fll, = MYE )Py fll,,, forall 1<r<r < co. (2.19)

The next refined Fatou argument [41, Lemma 11.3] will be useful.
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Lemma 2.2. Let a functional sequence satisfy:

limsup||f,ll, <co and f, » f almosteverywhere on RY.

n—oo

Then,
umf (Il =1 = S7 = 1fT)dx = . (2.20)
n RN

The next linear profile decomposition for bounded radial sequences in H' is a key tool for the
scattering proof [41,42].

Proposition 2.2. Take (u,) as a bounded sequence in H'. Then, for any M € N, there exist a
subsequence denoted also by (u,) and

1) Forany 1 < j < M, aprofile y/ € H';
2) Forany 1 < j < M, asequence (., 2., x)) e R x R, x R satisfying

tj; =0 or tj; — oo and x,ﬁ =0 or |x{;| — 00, 2.21)

andforl <i# j<Mandn — oo,

A A~ (k)? |xi;—x’:,|
lo (—+ )—)

/lﬁ /lj/lk /l{;/lk 00; (2.22)
3) A sequence of remainders W" € H', such that
M »
= ) fle gy + W
=
=R Z[el” v ) W (2.23)
Moreover,
lim | lim sup ||V W) |ls )| = 0. (2.24)

n—oo

For fixed M, one has the next Pythagorean expansions
M
Vil = DIV + VWP + 0,(1);
j=1

M
() = Y E(e"y) + EW) + 0,(1).

j=1

AIMS Mathematics Volume 9, Issue 11, 30230-30262.
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Now, let us collect some standard estimates related to the Schrodinger problem.

Definition 2.1.
A pair (q,r) is said admissible if q,r > 2, (q,r,N) # (2,00,2) and N(% - %) = %. One says for short
(g,r) € A. Let I C R be an interval, and one denotes the Strichartz space by

Q) = ﬂ L1, L.

(g.EN

Let us now state some Strichartz estimates [43].

Proposition 2.3. Let N > 2 and uy € L*. Then,

1) lle"uollaay < lluoll;

‘ 0
2) |lu — eugllogy < inf |[i=—u + Aull,z 7.
) D= Gren" ot LraLTy

Let us give some Strichartz estimates adapted to the weighted Lebesgue spaces [24].

Definition 2.2. Take N > 3 and 0 <y < 1. A pair of real numbers (q, r) is y-admissible if

11 _2
b
Y1l o1
r<lol

Take the set A, := {(g, r), y-admissible } and the weighted Strichartz norm

I| - ||S7(1) ;= sup |-l =y ) *
(g.1)EAy Lq(l’L (b 7))

The next Strichartz estimate was proved in [24, Proposition 1.5].

Proposition 2.4. Let N > 3 and 0 < v,y < 1, and a time slab I C R. Take (q,r) € A, and (g, 7) € A;.
Then,

. i(-—7)A . ~/
Hfo " h(T, ) dr (1L () S Wl g upry)> - TOr 4> 4 (2.26)
Define the variance potential
Vy = fN Y(Olu(-, ) dx, (2.27)
R

where ¢ : RY — R is a smooth function. Let also the Morawetz action be
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M, =23 f @V - Vi) dx := 23 f iy ju ) dx, (2.28)
RN RN

where here and in the sequel, the repeated index are summed. Let us give a Morawetz type estimate [45,
Lemma 4.5].

Proposition 2.5. Take u € C([0,T], H") as the local solution to (INLS). Let ¢ : RY — R be a smooth
function. Then, the following equality holds on [0, T],

Vi lu] = My, [u] 010y R (Brudyit) dx — f Aylul® dx
RN

RN

)
r p Atplxl Tl dx + — f Vi - V() dox.

3. Auxiliary results
This section proves the profile decomposition, a local theory and a variational analysis.

3.1. Profile decomposition

In this subsection, one proves Proposition 2.2. Taking account of [41,42], it is sufficient to prove
that

M
Plu, = " Ple"yi| + PIWM] + 0,(1).
j=1

For this, denoting the sequence (¢, ), := ¢y, one needs to establish that

im |l (fal"? =l = @Dl = I Dal"P) dx = lim L, = 0.

n RN

One of the two next scenarios happens. The first one is z. — co. The second one is 7} = 0. Take the
first case. Recall two useful inequalities. The first one [35] reads, for any m > 2,

et = L = 31" = [yl < m2 (1 =yl + e = iy ™). (3.1)
The second one follows from Lemma 2.1,
lIxI~' Il S WV Afll,, forall 1<r<AN. (3.2)

Now, by (3.2) and (3.1), via Sobolev embeddings and Holder estimate, one writes
usa+m?owm%—WMWEMHM4%w@mmm
RN

gf(WWM—@mwm—@MWW%M+mW@mmW—MMWMWﬂM
RN
S 1™ e = @Dt = Gl N Dl + ™ @Dl ot = Gl NGl

AIMS Mathematics Volume 9, Issue 11, 30230-30262.
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< Moty = @D Nt = @D NG Dl + UG it = Gl HEDNET (3.3)

Using the free Schrodinger operator dispersive estimate [44], ||e® - ||, < ﬁ” “|l,-, for all r > 2,
2
one gets lim, 7, = 0. In the second case, the claim follows by (3.3) via (2.24) and (2.20). This finishes
the proof.

3.2. Local Theory

One discusses two cases depending on the inhomogeneous index.

3.2.1. First case:

0 <7< min {% %} Here and hereafter, one takes, for an interval I C R, the spaces

() := L (I xRY); 3.4)
W) = LF (L, L) (3.5)
VW) :={u: Ve W) (3.6)
This choice implies in particular that
VW) — S); 3.7
e ey a5
Take also the spaces
W) := [ ( I, L”szgﬂ(:f)) (3.9)
VWD) = {u: Ve WD). (3.10)
This choice implies in particular that
Wo(l) = W(D); (3.11)
22+ N)(1+71) 2NQR+N)(1 +1)
(Nio=2 " 2w ) 12)

This subsection contains two parts.
¢ Global solution for small data. The problem (INLS) has a local solution in the energy space which is
global for small data.

Proposition 3.1. Let 0 € I a real interval and uy € H'. Then, there exists 5 > 0 such that if ||e"*uol|s ) <
S, then, there is a unique solution to INLS) in C(I, H"). Moreover, lulls iy < 26 and ||Vullw,ynway < 0.

Proof. We proceed with a fixed point argument. Take the Duhamel integral function (2.2). Let also,
for a, b > 0, the space

7l
Xop = (€ CUHY,  llmgumy < 24, Nullsay < a. [Vullw,aowa < b},

AIMS Mathematics Volume 9, Issue 11, 30230-30262.
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endowed with the complete distance d(u,v) := |lu — V||s. By the Strichartz estimate, one writes for

u,veX,pandw :=u—v,

d(f(w), f(v))

7\

N

Thus, by (3.2), one gets

)

NN N

A

9t = i)
—r—1 -1 -1
(1™ (luel”™" + P~ w

- -2 -2
™" (el + WP~ Vow||

) +UD+ ).

2N
L2(I,L2+N)

2+ Xl VW
L*(I,L2+N) L*(I,L2+N)

2N
L2(I,L3+N )

=1_~N7y,,|IP-1-7T
I a2
p-l-t

-1
Il o el 9 Wl

—1-
Vel o el 2 I Wl

b'a’ " d(u, v). (3.13)

Here, one used the Holder estimate via the identities

2+N p-1l-71

1+71

2(2+N)(14+71) 5
N(1+71)-2

1+71

I p-1-71
2T 20+N)
N-2

(3.14)

(3.15)

2N

2(2+N)
N-2

INCAN)(147) °
4+N2(1+7)

Moreover, in order to estimate (/), it is sufficient to consider the following term, by use of (3.2) and

the Holder estimate via (3.14)—(3.15),

(1

N I

N\

A

-7=1y,|p—1
el ™ e w2
1 Nty p=1-7 (] 1
I aal”™ AW, 2%

-1 —l=t -1

Ml ey, o e~ el
—1-

IV ally, o el o IV Wl

b a” " d(u, v). (3.16)

Furthermore, in order to estimate (/I1), it is sufficient to consider the following term, by use of
(3.2), Sobolev embeddings, and the Holder estimate via (3.14)—(3.15),

(I11),

A Il

AN

N

AIMS Mathematics

—T,,1P—2
™ lee™=Nowll 2
=1, NT[,,1P—2 1-T
I w) Tl 2
-1 -2 1-
™ Wil o ledll IV Vw1l

-2
||M||§(,)||VV||W,(1)||W||W,(1)

ba’d(u, v). (3.17)
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Here, one takes the case 7 < 1 and used the assumption p¢ > 2, which reads

6-N
T —. (3.18)
2
Now, if 7 > 1, one has p > 2 and p > 1 + 7, so, one writes
. -7 -2
(1D = |l Jul? VVWIILZ(LLzzTNN)
aal”~" =7 (™ )™ V(I w)ll

= LZ(I,L%)

< |||x|‘1ullzv‘,i,)|Iullg’(‘})‘TlIVvIIWTu)lllxl‘lwllw,u)

< |IVuII;V‘,‘(,)|Iul|§’(‘,1)‘T||Vvllw,u)llvwlIw,u)

< ba" " du,v). (3.19)

Now, regrouping the identities (3.13) to (3.19), it follows that
d(f ), V) < c(b"a"™" " + ba’)d(u, v). (3.20)

So, f is a contraction for small 0 < a,b < 1. Next, one proves the stability f(X,,) C X,,. Taking
v = 01in (3.20) via Strichartz estimates, one gets for the choice b :=2cA and 0 < a < 1,

IV llw,pnway < ellVuoll + d(f (), £(0))

< cA+c(ba”™ " + ba" )b (3.21)
< [% + o((2cA)Y "™ + 2cAa"?)|b (3.22)
<b. (3.23)

Now, by (3.2) via the Holder estimate and Sobolev embedding via an absorption argument, one gets
for § := % < 1,

i-A -1 -1-
lle*uolls iy + 11C1x]™" 20) ual”™ "]

IA

||f(u)||S(1)

2N
L2(I,L2+N)

-1 -1-
& + clllxd™ ully, o leellg ) Meellw

IA

—1-
& + cllVullyy, o lull " llullw,

8+ bl

20 =a. (3.24)

IAN A

IA

Finally, with Sobolev embeddings and arguing as in (3.23), for 0 < a < 1, one gets

If @l < A+ c(b7a”™' T + ba" )b
< 2A. (3.25)

The stability f(X,;) C X, follows by (3.23)—(3.25). The proof is closed via a classical Picard
argument. O

AIMS Mathematics Volume 9, Issue 11, 30230-30262.



30241

e Long-time perturbation. The second part of this section deals with the next result.

Proposition 3.2. Let T > 0 and I := [0,T). Take u € C(I,H") as a solution to (INLS) and ii €
L>(I,HY, satisfying for some €,A > 0,

||ﬁ||L‘}°(H1)ﬂS(1) <A; (3.26)
il + Adi + || 7 |il i = e
max {|[Vello: . lle"™ [0 = folllw, | < €. (3.27)
Then, there exists € := €(A), satisfying for any 0 < € < ¢,

lullsry < C(A).

Proof. Taking w := u — ii and N[u] := |x|™"|u|’~'u, one gets

0 - .
i(?tu + Au — (ifl; + Ail)
Nlit] — Nw + it] —e.

iw; + Aw

Taking account of the Duhamel integral formula (2.2), one writes

w(t) = TNt + i f ei(’_T)A(N [i2] = Nw + ﬁ]) dt

Tk

t
+ ifei(’_T)Ae(T)dT. (3.28)

Tk

Here, one picks a partition

=0, = | lnw =]k (329)
0<k<K k
IVitllw, g0y <7< 1, forall 0<k<K. (3.30)

Indeed, arguing as in the local theory with a Bootstrap argument and Sobolev embeddings via (3.13),
(3.26) and (3.27), one has

A\

IVitllw. oo < @@l + IVNTEN,, )+ Vel

~nl ~np—1—
A+ IVl Il )" + € S A

A

With a Picard fixed point argument and arguing as in the the local theory, one solves the previous
integral equation in /y. So, with Proposition 3.1,

Wllszy) < 2€ and  |[Vwllw, i) < C(€, A).

AIMS Mathematics Volume 9, Issue 11, 30230-30262.
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Letting ¢ = ¢, in the previous integral equality (3.28) and applying e=")4

5l )
ei(l—tl)Aw(tl) — ei(I—ZO)AW(to) + lf el(t_T)A(N[ﬁ] — N[W + I:i]) dr

To

1]
+ i f e "Re(1) dr.

4]
Taking account of the proof of Proposition 3.1 via (3.27), one gets

i(t—t)A i(1—19)A

lle w(t)llsay < lle w(to)llsry + 2ce < ce + 2ce.

Iterating this process, it follows that

(—t)A i(t=t)A k 1+k
|1 w(t)lls g < || w(to)llsy + €2"€ < 2 €.

Now, applying Proposition 3.1 to the above Duhamel integral formula (3.28), we get

2+k.

Wlls gy < €27
K

Wlls @) < CEZ 22 < 4e(~1 + 21K)e.
k=0

Finally, one ends the proof by the triangle inequality in (3.31) via (3.26),

leells iy < (Wlls iy + lills iy < C(A).

3.2.2. Second case

2+N

T<T<2'

, one gets

(3.31)

¢ Global solution for small data. The problem (INLS) has a local solution in the energy space which is

global for small data. We start with some notations.
Let0 < e < 1,y :=1 — g, and the real numbers

2N ~( 2N )

NE N2 T W2/
1 1 1 2N
—=—t === ;
rn rg N N-—-¢
4

,M)EN, &= qy = ;
(qo, 1) y q0 7

(q2,12) € A, to be picked later.
Here and hereafter, if / is a real interval, one takes the weighted Lebesgue spaces
S(D) = L1, L (Ix"));
W) := LO(1, L7 (1x7™));

(3.32)

(3.33)

(3.34)
(3.35)

(3.36)
(3.37)
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M(I) := L2(1, L™ (1x] ™). (3.38)
Since N > 4 gives % > v, by Lemma 2.1, one gets
- llsey SNV - lway- (3.39)

Let us state the small data global existence result.

Proposition 3.3. Let N > 4, Z%N <1 <2, 0¢€lbeareal interval and uy € H'. Then, there exists § > 0
such that if |le"®uollsqy < 0, there is a unique solution to (INLS) in C(I, H'"). Moreover; |lullsq) < 26
and ||Vullynnwa) < 0.

Proof. Let f be the Duhamel integral function given in (2.2). Let also, for a, b > 0, the space

. Tl
Xop = {ue CUH)., Mullmgpm) <24, lullsay < a. IVullupowa < b},

endowed with the complete distance
d(u,v) = lu = vllsq. (3.40)

Take 0 < ¥ < 1 and (g, 7) € Ay to be picked later. Let u,v € X,;, and w := u — v. By the Strichartz
estimate in Proposition 2.4 via (3.39), one writes

d(f@), f0)) < V]I ™ = )]

7 (1,17 (7))
——1 -1 -1 - -1
s |||x| ’ (lulp + |V|p )W”L‘?/([,L;’UXWV)) + |||.X| Tlulp VW||L‘7'(1,L7'(|X\’7;,))

- -2 -2
I Cal™™ + M VYW ) )

=)+ U1+ (II]). (3.41)
In order to estimate (), it is sufficient to consider the following term

o —1=1y,,1p-1
(I)l e ”lxl |l/l| W||L‘7(1,LF/(|X\W,))

—r—1+y,,;p-1
= [l " |

(3.42)

7 (107

Using the Holder estimate via Lemma 2.1 and (3.42), we write

(D = II(IXI_Hu)”_l_g(IXI_yu)GIXI_V_]WIIU-,/(,,L;-/)

—y—1 —1-6 - 0 -y-1
< |||X| 4 u”iqz(],er)”lxl yu”LqO(],L"O)Hlxl 4 W”L"Z(I,L’Z)
1. p-0 —y 116
S XY W gy o MIXT 2l 00
—1-60 [
S IVl lulls IV Wllaga,

< b7 000 d(u, v). (3.43)
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Here, one needs the identities

1 6 p-0
7',_1"0 ry ’
1 0 -0
Z=—+
q q0 q2

with the inequalities

0<y,y<1;
r L 1oy 1 1L
2 do 2 2 r 2
0<Z<£sl, Zsi<l.
2 g 2 27 2
Note that (3.44) with (3.46) gives (3.45). Now, one picks
2+N<T<2 and O<;3<—TN_N_2
N-2

The choice (3.50) implies that
y=1t—-p—€c€(0,1).

Moreover, one picks

0 =y+p(l+y)—-1-1t=p(1l-¢)—-1-c¢.

(3.44)

(3.45)
(3.46)

(3.47)
(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

With (3.51) and (3.52), the inequalities in (3.46) are satisfied for 0 < € < 1. Now, let us choose

%=;@—3€—ﬂp 0)
— -G - =N -y-0). (3.53)
By (3.32), (3.53) implies that
é %(2 0G +7)-(p-0)
=065 )
%(2 (=) =5(p(1-8)~1-2)
%@ p+ a+mu+s»
- 2’%. (3.54)
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Now, one checks the requested assumptions on the above choice. Compute

Moreover,
2 1 1 1
—=N=—-——-—)+
0 (2 N }"0) )/
&
=1-=¢€(y,1].
> (7, 1]

(3.55)

(3.56)

Furthermore, by (3.51) and (3.54), because 7 < 2 implies that 2 — p € (7 — p, 1], it follows that for

g — 0,
- 2 ,
&, 1]1>2=-=2-p+¢&.
q

Also, by taking &,& — 0, one gets 2

check that

~N

N

— (N-2)t<N-4+Np.
The last line is clearly satisfied because
T <2

Let us see the couple (¢, ;). By (3.54) and (3.34), for 0 < £ < 1, one writes

2 I /2 26
12T )
:],%9(2_(2_174_8/)_02;8)
:1—p_9(8'—9§)

= e <2 <ep-90).

(3.57)

=1-2Q2-17+¢€& +¢) < 1because 7 < 2. So, we need to

(3.58)

(3.59)

(3.60)

(3.61)

The identity (3.61) is possible because of (3.52) and taking € < 1. Moreover, the equality y + N (% —

) = 2 via (3.61) implies that

2

2 2 1,
[%1)972:1—N(1— (g—ef)_y)

AIMS Mathematics Volume 9, Issue 11, 30230-30262.



30246

:l—%<8— ! (¢ —62)). (3.62)

Now, the identity (3.62) is equivalent to

ep—-0)>¢ - %89; (3.63)
He— (e -65)) <o (3.64)

The condition (3.63) is satisfied by (3.61) and (3.64) is equivalent to
eRp—-60-N(p-0)) <2¢. (3.65)

This is clearly possible via (3.61) because 6 < p by (3.52),
Now, (3.55) and (3.56) imply that (g, ;) € A”. Also, (3.57) and (3.58) imply that (§,7) € A.
Finally, (3.60) and (3.61) imply that (g,, r,) € AY. Thus, (3.43) follows under the assumption

2+ N

<T<2. (3.66)

Now, using again the Holder estimate and Lemma 2.1 via (3.41), one has

(D) = ™ = (7 VWl )

—v—1 -1-6 _ -
S ™ all g o 6 2 g g XY VW21
~1-6, 1
S IVully, el o IV Wil
< b0 d(u, v). (3.67)
In order to estimate (/11), it is sufficient to consider the following term, where using again the
Holder estimate and Lemma 2.1 via (3.41), one obtains

(I, = [l |ulP>Vvw]|

7 (1,07)
= V)72 ) W
e 1B o[ Fomee [ ¥ [
< IVl IV Wil el liwlg o2
< b0 d(u, v). (3.68)

Indeed, (3.46) implies that p — 2 < 6 < p — 1. Now, regrouping the identities (3.41), (3.43), (3.67)
and (3.68), it follows that

d(f(w), fv) < b dd(u, v). (3.69)

So, f is a contraction for small 0 < @ < 1. Next, one proves the stability f(X,,) € X,,. Taking
v = 01n (3.69) via Strichartz estimates, one gets for the choice b :=2cA and 0 < a < 1,

||Vf(u)||M(1)mW(1) < clVull + d(f(w), £(0))
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< cA+ch"d’
1 -1-6 6
< (5 + (2cAY a )b
<b. (3.70)
Arguing as previously, for 0 < a < 1, one gets
f @Ol poor iy < A+ ch”™%a’ < 2A. (3.71)

Now, for 6 := § < 1, one uses (2.2) via (3.39) and (3.70) to write

i-A
lle' uollsry + IV @y
< §+ca’b’?

< 20=a. (3.72)

”f(u)”S(I)

IA

The stability f(X,;) C X, follows by (3.70), (3.71) and (3.72). The proof is closed via a classical
Picard argument. O

¢ Long-time perturbation. The second part of this section deals with the next result.
Proposition 3.4. Let T > 0 and I := [0,T]. Take u € C(I,H") as a solution to (INLS) and ii €
L>(I, H"), satisfying for some €,A > 0,
il Lo zryns ) < As (3.73)
il + Al + x|l i = e
max {IVell ;. gy V€ 0 = Bolllucnwin | < €. (3.74)
Then, there exists € := €(A), satisfying for any 0 < € < €,

lullsry < C(A).

The proof is omitted because it follows like Proposition 3.2.

3.3. Variational analysis

In this section, one prepares some estimates related to the stability of the assumptions (2.11)—(2.13)
by the flow of (INLS). Take ¢ € H' to be the ground state of (2.8), which is a minimizer of (2.9). The
Eq (2.7) gives

IVell* = Plgl; (3.75)
IVl = C.7" = C. >, (3.76)
D1 _ower
E(p) = — L= (3.77)
N-1

Let us give the first result of this section.
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Lemma 3.1. For ¢ € (0, 1), there exists 6 := (6, N) € (0, 1) such that if u € H" satisfies

IVull < IVell; (3.78)
E(m) < (1 -0)E(p), (3.79)
then,
IVull® < (1 = 8)IIVell*; (3.80)
IVull® = Plu] > 8||Vull*; (3.81)
E() > 0. (3.82)

Proof. Take the real function f(x) := x — ﬁC}f” x¥. Then,

2
FUVull®) = IVull> = ——CL*(|Vul|"*?
1+p

2
< IVul? = ——Plu]

1+p
< E(u) (3.83)
< (1 -90)E(p). (3.84)
_23+p)
The equation f’(x) = 0 is equivalent to x = x* = C, "' = ||V¢|*>. Moreover, by (3.77), one has

f(x*) = E(p). Now, since f is positive and strictly increasing on [0, x*], one has (3.80) and (3.82) by
(3.83) and (3.84). Now, let the real function g(x) := x — ch X7 Then,

IVull* = P[u] > [[Vull* = (C.||Vul)'*”
= g(IVull®). (3.85)

Moreover, g(x) = 0 if, and only if, x = 0 or x = x*. Thus, g(x) = x on [0, (1 —d)x*]. So, (3.80) gives
(3.81). O

Corollary 3.1. Ifu € H' satisfies |Vul| < ||Vel|l. Then, E(u) > 0.

N-t
27

Proof. The case E(u) > E(¢) = %C* > () is clear. Otherwise, Lemma 3.1 gives the result. O

With Lemma 3.1 via a continuity argument and the conservation of the energy, one has the following
energy trapping.

Proposition 3.5. For § € (0, 1), there exists 6 € (0, 1) such that if uy € H' satisfies:

(IVuoll < [IVell; (3.86)
E(up) < (1 = 96)E(p), (3.87)
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then the maximal solution to (INLS) satisfies, for any ¢ € [0,7T7),

IVu@)I” < (1 = &IIVell’; (3.88)
IVu@)I> = Plu(n)] = 8lIVu()IP; (3.89)
E(u) > 0; (3.90)

E(u() = [IVu(@®I* = ||Vuol*. (3.91)

Proof. For the last point, since E(u(?)) < ||Vu(?)|[?, by (3.89), one has

\Y

2 2, 2 2_
Ew(®) = (1= VU@l + T (VI - Plu)

2 2
(1- m)IIVu(t)II :

v

The rest of the proof follows by Lemma 3.1 via the conservation of the energy and a continuity
argument. O

Now, one gives a result similar to Lemma 3.1, in the complementary of the assumption (3.78).

Lemma 3.2. For ¢ € (0, 1), there exists § := (6, N) € (0, 1) such that if u € H" satisfies (3.79) and

IVull > [[Vell, (3.92)

then
IVull* > (1 +6)IIVell; (3.93)
IVull* = Plu] < —8||Vell*. (3.94)

Proof. The proof of (3.93) is omitted because it is similar to Lemma 3.1. For (3.94), one writes

2(IIVull? - Plul) = (1 + p)E@) - (p = DIIVull?
(1+p)(1 - §)E) - (p - DIVl
(1-6)(p = DIVEI? = (p = DIVl

~5(p = DIVl
This closes the proof. O
4. Energy critical scattering
In this section, one proves the global existence and energy scattering, namely, the first part of
Theorem 2.1. The proof follows with contradiction. To begin, one proves that if the first part of
Theorem 2.1 fails, then Proposition 2.1 holds. Then, one shows that the scenarios in Proposition 2.1

don’t happen.
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4.1. Sketch of the proof of Proposition 2.1

We treat the case 0 < 7 < min{%, %} because the case Z%N < 1 < 2 follows similarly. For
0 < A, < o and x, € R, one defines the operator
1 - =X,
Jul¥r] := —z9( 1 )- 4.1)
/l n

n

The next result is essential in proving Proposition 2.1 was established in [28, Proposition 3.3] in
three space dimensions.

Proposition 4.1. Let the sequences 0 < A, < o, x, € RY, and t, € R, such that

1) o, and 1,20 or 1, — +oo. 4.2)

Take ¢ € H' and the sequence
Un 1= fule"ty] = ey, (4.3)
Then, for any n >> 1, there is a global solution to (INLS) denoted by v, € C(R, H') satisfying
vi(0) =¥, Villvw, ) < 1. 4.4)

Moreover, for all £ > 0, there is n, € N and y € C2(R x R") such that

N-2
2

1407 Va2t = 1), X + %) = Xllyw,e) < & Y > ng. (4.5)

Proof. Let a smooth function be

Lo+ 22 5130 X
n(X) 1= e 0%l s 1SR (4.6)
X 0. |x+ 2| <lj >0,
Take the sequence of slabs
L = lay . al7) = [0t + T), Lo(~t, + T)]; 4.7)
L= (ay,00), L :=(=00,a,r). (4.8)

Taking account of [40, Appendix A.2], let a Littlewood-Paley frequency cutoff be
P, = P|%|_9S-S|%|g’ 0e (0, 1) (49)
Let us denote the sequence of approximate solutions to (INLS),

Y AL R RSY

~ . i(t—at A~ .

Tur(0) = € aiﬂA[vn,T(a;T)], teli,; (4.10)
DN, (@, )], rEe T
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Using the long-time perturbation result in Proposition 3.2, one proves the existence of the solutions
Vn.
e Proof of the condition

lim sup lim sup ||V, 7|l L~ ® g1ynvw, @) S 1. (4.11)

T—o0 n—oo

One has directly from (4.6) via the Holder estimate,

inlleo + IVxnlly <1+ I—I_ IB(I—I)I*

< 1. 4.12)
Now, by the Holder estimate, it follows that on 7, 7,

~ (A2 1+1,)A
Vnrllg = IIfnLvn ||
< g (—=2)e AL £ (Pl

Vl

< Iallolle AL P + IVl Il AL £, (P )]s (4.13)

Take ¢p,, a bump function associated to the projector P,. By Strichartz and Bernstein estimates and
Sobolev embedding via (4.13), it follows that on 7, 7,

Wnrllen < | fn(Put)|l g
S 1Pl
Xn _g
< -_ *
< |/ln| llgp, NIl
<1. (4.14)

Also, by the Holder and Strichartz estimates via Sobolev embedding and (4.13), it follows that

~ (A2 t+1,)A
”Vn,T”VWT(I,LT) = ”.fn[/\/nP e 'ﬁ]”vwru,,r)

2t)A
||Xn Ye AL £ (P )] llew -t

I’l

< alloslle AL (Pt v w,a,) + IVl AL f (P s 1,
S fn(Pui)ll - (4.15)

Thus, by (4.14) and (4.15), one gets

V.l v Wty S 1- (4.16)

Thus, (4.11) follows by (4.10) and (4.16) via Strichartz estimates.
e Proof of the condition

lim sup lim sup ||V, 7(0) — ¥, ||zn = 0. 4.17)

T—oo n—oo
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Let us take two cases: the firstone is 7, = 0 € I, 1. So,

1Vn,r(0) = Yl = I(L = xu Pl — 0. (4.18)

In a second case, one assumes that 7, —» +oo and 0 € I;T. So, by (4.10), one writes

19,.7(0) = Wl = lle™“wr [, 7@t )] = Wall
ol R T ) BV A
”fn [elt,, —iTA PneiTAw] ﬁl[elt” ”Hl
= I(1 = xuP)e *Yllg — 0. (4.19)

e Proof of the condition
= lim sup lim sup [|(id, + A)v,. 7 + |x|” TlvnTlp lvn 7l

T—oo n—oo

-0. (4.20)

lim sup lim sup [|&,, 7|

L1 2N
Toeo  n—eo et L2RW"TN)

Let us split the error into two parts as follows &, := é,ﬁ o+ éZZT. First one writes on 1, ,

én,T = (1(9, + A)\N/’n’T
= (i6, + D) fulxuP ei“f”’")%])
= (id, + A)(Lvn( ) e )

n

= A (o)A O £ Py + 2V (i (o 1 ) - @GN £ Py, (4.21)

n

Moreover,

-1~
&l = |x DA

- A, A ‘—1 i /1;2 A
= X1 f L Pae NG Ly, P00y
—(D— _ (o -2 c_ =2
= /ln(z T)fn(Mnx + X, T)(ﬁ IPnel(/ln t+tn)Ad/|p 1Pnel(/l,, t+t,1)Aw). (4.22)

Now, by Holder and Bernstein estimates via (4.6) and (4.21), one writes for 0 < 6 <« 1,

xxn

k 2t +0)A 93—k
V2, pllev, <Z||a Den (1 AP f Pl 02y

— X=X _
< Wyl Z AN MNP f P i 12
k=1 /l”
3 X
ST Y A A0 P

<T |jT"|—k+(3—k>9 50 as n— oo (4.23)
k=1 ‘T
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Moreover, by (4.22),

3! ~- | P A 1 p A
Ve, rlloru,n S 4, V[ﬁ(|/lnx+ Xl Tp | Py AP P AT ) l//)]

2N
Lz(In,TaL 2+N )

S VT[Tt 1o + P g | *:29

Lol W)
Now, taking account of (4.6), one has

2 1A + Xl lleo S 12l (4.25)

¢ -7 X -
VD 140% + 2l Tlleo S a1 L (4.26)

So, by Holder and Bernstein estimates via (4.24) and (4.26), one writes
~nl - 1 (42 t+1)A f 1p¢
e R L L S

¢ - (A2 t+1)A 1 p°—1 (A2 t+1,)A
+ ALl |/lnx+xn| PRI (P R e

= (A) +(B). (427)
Using Holder and Bernstein estimates and Sobolev embedding, one gets

(A4) = 4, nl_Tl 2 1P Ay

l‘l

- - A t+t,)A
S Ay lxal TI/l 1P e A g

2N
L>® (In,TvL 2+N )

Loy, HY)

< |j—:|-f-“9||wnm —0 as n— oo, (4.28)

Also, by Holder and Bernstein estimates and Sobolev embedding, one gets, via the Strichartz
estimates,

(B) _ ﬂ;ll)(zcl/lnx + xn|_T|Pnei(/l;2t+tn)Aw|pc_lV(Pnei(/l’;Zﬁ—tn)Aw)'|Lm(1 L%

nT L2+ )

Xn\ ¢ (42 1+ 1Ay 1P i, 2+ 1,)A
S |/l_n| ”Pne n n l//”Loo([n,T,LN(PC_l))l|V(Pne n n l/’)”LW([n’T’LZ)

_ Q(N )( 7') /1—2 " A c_1 . 1_2 . A
<2 7 ST e BT L e IVPae R, 12
n
S [P SEE Iy 5 0 as - oo, (4.29)

Ay

Taking 6 < min{l + b, W} the proof is finished by (4.27)—(4.29). Now, one turns on I+ In
PRI

such a case, one has via (4. 10),

~ . ~ T~ 1~
enr = (10, + AYopr + X7 Vprl” ™ Vur

T~ 1~
= x| Wl T Vur

—1| i(t—a® DA 1 i(t—at )Arx
= x| I A, (g NP DA B, (@ )] (4.30)
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Arguing as in (3.13), one writes, via (4.11),

- i(t-a?t AT 1=ty i-al AT 1+b
8 rllora, S lle [Vn,T(a:f,T)]||§(1n’T)T||€l(t ) [Vn,T(a;,T)]”uj;(In,T)

(gt Ar~ C_1—
S ||el(t an’T) [vn,T(a:,—,T)]Hg(]n,T)T

< e L OcnPue ™ )G g ooy
< ||ﬁ;ei/l;2tA[XnPneiTAw]”pc_l_T (431)

5(0,00)

Moreover, with a change of variable via (4.31) and Sobolev embedding with Strichartz estimates,
one gets

> itA iTA ‘—1-
”en,T”Q’(I,,,T) < ”elt [/\/nPnel ’7[/]”?(0,00;

itA iTA ‘—1-
< [ e P ™10y 05

< IVDeaPn = 1129 )P 177 + [l yll2, 0T (4.32)

Wi (T ,00)

The proof is achieved by the dominated convergence theorem and (4.32).
Now, (4.4) follows with a direct application of Proposition 3.4 which gives also

lim sup lim sup ||V, 7 = Vallvw,®) = 0. (4.33)

T—oo n

In the rest, one proves (4.5), which is reduced via (4.33) to

lim sup lim sup ||y, Py = Xllvw,®) = 0. (4.34)

T—oo n
For large T >> 1 and -7 <t < T, by (4.10) and the dominated convergence theorem, one has for
n — oo,

N-2

4, vn,T(/l;%(t — 1), Anx + X)) = Xllvw,®) = ”XneimPn'/’ = Xllvw,®)
= xllvw, - (4.35)

- |le

So, (4.5) follows by (4.35) via a density argument. Moreover, for ¢ > T, one has via (4.10),

= : .
.7 P (2t = 1), X + %) = £ FEETA L o TAD
= ¢ (e Ty, TPy, .
So, (4.5) follows by (4.36) via a density argument. o

Now, one returns to the proof of Proposition 2.1. One says that the statement (S C)(u) holds if: For
uy € H' satisfying (2.11) and (2.12), the corresponding solution to (INLS) is global and satisfies:

ueS(R), (4.37)

where S (R) is the space defined in (3.4) and (3.36), respectively. Using Sobolev embeddings and the
Strichartz estimate, one writes forO < T < T™,

A A
lle"“uolls 0,7y < Ve uollw, 0,1y < IVuoll. (4.38)
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Thus, if ||[Vuy|| < 1, by the small data theory in Proposition 3.3, (S C)(x) holds. Now, for each
0 > 0, one defines the quantities

Ss:={up€ H', E(uy) <6 and |[Vugll < [IVell) (4.39)
E.:=sup{6>0 s.t uy€S;= (SC)(u) holds}. (4.40)

If the first part of Theorem 2.1 fails, it follows that
E. < E(p). 4.41)

Then, there is a sequence u,, of solutions to (INLS) such that the data u, o € H' satisfies

IVu,pll < [IVell; (4.42)
E(u,0) > E. as n— oo; (4.43)
l|lttnlls®y = 0o for any n. 4.44)

Now, using the profile decomposition in Proposition 2.2, one writes

M .
o= . fle" gy + W

Jj=1

= ﬂ, = Z[e” Y ) (4.45)

Using Proposition 3.4 and Proposition 4.1 and following lines in [28, Theorem 1.2], one has only

one profile, (#,, x,) = (0,0) and ||W |l — 0. Then, there exists 0 < 4, < oo such that ||/l uo () —
Yllgn — 0. Taking account of Propositions 3.4 and 3.5, the solution to (INLS) with datum ¢ is the
solution needed. See [28, Theorem 1.2] for more details.

4.2. Preclusion of compact solutions

Letu € C([0,T), H') and a frequency scale function A : [0, T*) — R., such that infeor+) A() > 1,
given in Proposition 2.1. One discusses two cases.

4.2.1. Finite-time blowup scenario

To preclude the finite-time blowup scenario, one needs the following reduced Duhamel formula [40,
Proposition 8.7], which is a consequence of the compactness properties.

Lemma 4.1. The following weak limit holds in H' for T — T+,

T
i f ei<’-S>A[|x|-f|u|P“-lu] ds — u(?). (4.46)
t

Now, assume that 7" < co. By (4.46) via Holder, Hardy, and Bernstein estimates, one writes for
M > 0,

_ c_1
Pyl < WPs Xl [udl” " ulllr o.74).02)
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< + =1, NTY,,|P°-T
S M = Ol )l W e, 2%,
Pt

L®((0,T+),L2")

T pe-7
=1 Ml o 7o) 127 (4.47)

< M(T* =Dl ull
S M(T™ = D)l

T
Loo((O’T+)’L2) ||u|

So, by the Bernstein inequality for the high frequencies via (4.47), one gets

Il < IPyu®ll + [I(1 = Pr)u@)|l
SMT -0+ M". (4.48)

Now, taking account of the mass conservation and letting ¢ be close to 77, it follows that u = 0
which contradicts 7% < oo and closes the proof.

4.2.2. Soliton-like scenario

In this subsection, one assumes that 7% = co. Let us give some notations in the spirit of [16]. Take,
for R >> 1, the radial function defined on R" by

a2 <R
' Rixl, if |x>R.

Moreover, one assumes that in the centered annulus C(R/2,R) := {x € RN, R/2 < |x| < R},
0,{>0, 9¢>0 and [07¢| < C,R|-|" Vla| > 1.

Here, 0, := q V¢ denotes the radial derivative. Note that on the centered ball of radius R/2, one has

(k=04 AL=N and AC=0.

Moreover, by the radial identity

Ok XiXk XXk
0,0 = (== = =57)0, + =579, (4.49)
one gets for |x| > R,
R X X
=—(6 —); 4.50
&= (0%~ 1) (30
N -1)R
ar= DR, 4.51)
|x|
R
A% S —. (4.52)
|3
Using Cauchy Schwarz and Hardy estimates via (3.89) and (3.91), one has
\M,| = 2'8 f (V¢ - Vu)dx| < R*E(u). (4.53)
RN
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Taking account of the identity (4.49), one has

5
R( f B0\ LOudiidx) = R (% - 2280, + £ 2¢|oudni dx
B¢(R/2) B°(R/2) r r T

-Vul*\ 0, - Vul?
= f (|Vu|2— X 2”' )_g dx + f x 2”' 0?¢ dx
BS(R/2) |x] |x] BS(R/2) |x]

o, Vup
- f | P2 dx+ f VUl g2 g (4.54)
B¢(R/2) B(R/2)

|x] |x[?

where the angular gradient is

-V
N:=V al X.

TP

Now, by (4.54) via Proposition 2.5, one writes

2 -T|,, P
M) = 4(|1Vull? iz ) — f x| " ul” dx)
B(R/2)

0, - Vul?
+ f | P 2L dx s f x 2”' 82 dx — f A2Zuf? dx
BS(R/2) |x] BS(R/2) |x] B¢(R/2)

4b V¢ - ) :
- f (XX o Al . (4.55)
B P 1A Pe

So, (4.55) via (3.89), (3.91) and Sobolev embeddings implies that
M [u] > 4(||Vull? —f |~ [ul”" dx) — Cf | 72l + [x 7wl ) dx
¢ ( LR ) - /2>( )
> 4(||Vul - f Il dx) - ¢ f (IVaeP =+ 12l + x|l ) dx
RN B(R/2)
> Eu) - c f (|Vu|2 + 2l + |x|—f|u|P")dx. (4.56)
BC(R/2)

So, (4.53) via (4.56) gives

2

R C
E@w) < — + f (IVal® + 12l + x|l ) dx. 4.57)
T B¢(R/2)

Finally, one picks T := R* — o0, 50 (2.16) via (4.57) gives E(u) = 0. This contradiction finishes
the proof.

5. Blowup

In this section, one proves the second part of Theorem 2.1. Let us denote ¢4 := A2¢(j), for A > 0,
where ¢ € C;°(RY) is radial and satisfies

1 2
sl x <1
—_ 2 ’7
P(x) = { 0. x>2. and ¢" < 1.
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A calculus gives

di <1, ¢(r)<r and Aps <N.
By the localized variance identity [46, Corollary 3.2], one has

M = - f A*palul dx + 4 f 310xp A R (Oudit) dx
RN RN
-1
7 s fN Véa - V(x| dx - Zi—p fRN Agalx|ul"*? dx
= 4(IVullsyy - bf‘ |xrﬂuP+de)—.jq A2 luf dx
[x|<A RV
4 -1
+ f Vou - VI Oll" P dx— 22— [ Agalxlul"*" dx
L+ p Jisa L+p Jypsa
+ 4 616k¢A%(6ku6,ﬁ) dx. (51)
|x|>A
Recall the next radial identities
(92 2 6jk XXk Xj Xk
=0, = ———ar+ (92’ 52
0x j0xy Jk ( r r3 ) r2 (5-2)
N-1
A =0+ 0, (5.3)
v=120, (5.4)
r
Since ¢ is radial, we have from the above identities
¢, . Oaylx - Vult
Fbaduu()d,a(r) = [VuP =2 + (¢ = ) =——: (5.5)
. _T¢
V- V(™) = —tlx 7= (5.6)

Thus, (5.1), (5.5), and (5.6) give

A(|IVul - Plu]) - f A aluf* dx — 4( f Vul® dx — f el "l dx)
RY lxl>A lx|>A

g &\ |x - Vul?
27A 77 A
+ 4L>A(|vu| 7+(¢A—7) > )dx
47 ¢y
L+pJsa 1

g |x - Vul?
4(IIVull? ~ P[u1) - fR Nluf dx + 4 f| 5 (=2- 1)(1Vul? - = r2” ) dx

7"
MA

"l P dx 2” _ f AGald " Ju]*P dx
|x|>A

IA

4 ' -1
. Ca ™ dx - 22~ [ Agu Il dx 4 4 f I~ Jud] P dx
L+p Jupsa 1 L+p Jupsa [x|>A
< Vull? = Plu] + A2 + A" ||ul| 2. (5.7)

1+p
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Now, if we assume that supy, 7 [[Vu(9)|| < oo, (5.7) implies that
MY < ||Vull* = Plul + A2 + A", (5.8)

Thus, (3.94) and (5.8) give M) < —c < 0, for large A >> 1. Integrating this inequality twice in
time, it follows that u is non-global. This ends the proof of the second part of Theorem 2.1.

6. Conclusions and discussions

The primary contribution of this note is Theorem 2.1, which complements the findings of [26-28]
to higher spatial dimensions and removes the radial assumption. While the scattering threshold was
established in [26-28] for three spatial dimensions, the novelty of this work lies in demonstrating
the scattering threshold for space dimensions larger than four without the requirement of spherical
symmetry. The approach follows the road-map outlined by Kenig and Merle in [14].
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