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1. Introduction

We consider the Cauchy problem for the Schrödinger equation with an inhomogeneous nonlinearity

i
∂

∂t
u + ∆u + |x|−τ|u|p−1u = 0; (INLS)

u|t=0 = u0. (1.1)

In this context, the wave function u is a complex-valued function defined on the variable (t, x) ∈
R × RN . Additionally, the singular inhomogeneous term is given by | · |−τ, where τ > 0.

The inhomogeneous nonlinear equation of Schrödinger type describes beam propagation in
nonlinear optics and plasma physics. In fact, stable high-power propagation can be realized in a
plasma by introducing a preliminary laser beam that forms a channel with reduced electron density,
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thereby decreasing the nonlinearity within that channel [1–3]. In the context of the optical nonlinear
Schrödinger equation, light energy can be confined, enabling the transmission of complex structured
beams and solitons [4, 5]. Additional references include [6–8].

The well-posedness of the inhomogeneous nonlinear Schrödinger equation (INLS) has been
explored by numerous authors. The existence of energy subcritical solutions was first established
in [9]. This result was later revisited in [10], where solutions in Strichartz spaces were examined under
additional restrictions for N = 2, 3. The dichotomy between global existence and scattering versus
finite time blowup below the ground state threshold was addressed in [11–13] using the concentration-
compactness argument by Kenig and Merle [14]. This work was further developed in [15] employing
the Dodson-Murphy method [16], and the spherically symmetric assumption was relaxed in [17].
Additional discussions on more general inhomogeneous terms can be found in [18,19]. The finite time
blowup of solutions without radial or finite time variance assumptions was investigated in [20, 21].
Recently, the Sobolev critical regime has also been considered, with local well-posedness studied
in [22–25]. Scattering for spherically symmetric initial data was demonstrated in [26, 27] in the three-
dimensional case, while the radial assumption for this case was removed in [28]. A result indicating
non-scattering was presented in [29]. For a numerical perspective, a quantitative analysis of solutions
to the three-dimensional cubic nonlinear Schrödinger equation above the mass-energy threshold is
provided in [33], which introduces a new blowup criterion and predicts the asymptotic behavior
of solutions across various initial data classes, including modulated ground states, Gaussian, super-
Gaussian, off-centered Gaussian, and oscillatory Gaussian, along with several conjectures regarding
the scattering threshold.

The motivation of this note is to extend the findings of [26–28] to higher spatial dimensions and to
eliminate the radial assumption. Specifically, the scattering threshold was demonstrated in [26, 27] for
three spatial dimensions. The novel contribution here is to establish the scattering threshold for N ≥ 4
without assuming spherical symmetry. This indicates that every energy-critical solution to (INLS)
asymptotically approaches a solution of the linear Schrödinger equation as t → ∞. The methodology
follows the roadmap laid out by Kenig and Merle in [14].

The remainder of the paper is organized as follows: Section 2 presents the main result along with
some useful estimates. Section 3 provides auxiliary results. Section 4 is dedicated to proving global
existence and scattering. Finally, Section 5 addresses the finite time blowup.

Here and henceforth, the Lebesgue and Sobolev spaces equipped with the standard norms are
denoted by

Lr := Lr(RN), Ḣ1 := { f ∈ S ′(RN), ∇ f ∈ L2}, Ḣ1
rd := { f ∈ Ḣ1, f (·) = f (| · |)};

∥ · ∥r := ∥ · ∥Lr , ∥ · ∥ := ∥ · ∥2, ∥ · ∥Ḣ1 := ∥ ∇ · ∥.

Finally, one denotes by (T−,T+) the maximal existence interval of an eventual energy solution to
(INLS).

2. Background and main result

This section contains the main contribution of this note and some useful standard estimates.
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2.1. Preliminary

Let us denote the free Schrödinger kernel:

eit∆u := F −1
(
e−it|·|2F u

)
, (2.1)

where F is the Fourrier transform. Thanks to the Duhamel formula, solutions to (INLS) are fixed
points of the integral function

f (u(t)) := eit∆u0 − i
∫ t

0
ei(t−s)∆

(
|x|−τ|u|p−1u

)
ds. (2.2)

Solutions of the problem (INLS), formally satisfy the conservation of the energy

E(u(t)) :=
∫
RN
|∇u(t, x)|2 dx −

2
1 + p

∫
RN
|x|−τ|u(t, x)|1+p dx = E(u0). (2.3)

If u resolves the equation (INLS), then so does the family uκ := κ
2−τ
p−1 u(κ2·, κ·), κ > 0. Moreover,

there is only one invariant Sobolev norm under the above dilatation, precisely

∥uκ(t)∥Ḣsc = ∥u(κ2t)∥Ḣsc , sc :=
N
2
−

2 − τ
p − 1

.

In the sequel, we will focus on the energy-critical regime

sc = 1⇔ p = pc := 1 +
2(2 − τ)
N − 2

, N ≥ 3. (2.4)

We will consider the next assumption on the inhomogeneous term

0 < τ < min
{6 − N

2
,

4
N

}
or

2 + N
N

< τ < 2. (2.5)

Let us define the potential energy

P[u] :=
∫
RN
|x|−τ|u|1+p dx. (2.6)

Take the associated ground state

φ(x) :=
(
1 +

|x|2−τ

(N − τ)(N − 2)

)− N−2
2−τ
. (2.7)

Thanks to [35, Theorem 4.3] and [34, Remark 2.1], one has

∆φ + |x|−τφp = 0; (2.8)
1

C∗
:= inf

0,u∈Ḣ1

∥∇u∥

(P[u])
1

1+p

=
∥∇φ∥

(P[φ])
1

1+p

. (2.9)

Finally, we denote for short the Sobolev embedding exponent

2∗ :=
2N

N − 2
, N ≥ 3. (2.10)

From now on, we hide the time variable for simplicity, spreading it out only when necessary.
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2.2. Main result

The main contribution of this note is the next dichotomy of global existence and scattering versus
finite time blowup of energy critical solutions under the ground state threshold.

Theorem 2.1. Let N > 3, τ satisfy (2.5), and p = pc. Let u0 ∈ Ḣ1, satisfying:

E(u0) < E(φ). (2.11)

Then,

1) The solution of (INLS) is global and scatters if

∥∇u0∥ < ∥∇φ∥. (2.12)

2) The solution of (INLS) blows up in finite or infinite time if u0 ∈ L2 and

∥∇u0∥ > ∥∇φ∥. (2.13)

In view of the results stated in the above theorem, some comments are in order.

• φ denotes a ground state solution to (2.7);
• This work complements [26–28] to higher space dimensions N > 3;
• The local existence obtained here complements [22–25], where the data was supposed to be in

H1;
• Due to the use of fixed point argument in the small data theory, for τ < 1, one needs the condition

p ≥ 2. This gives the restriction 0 < 2τ ≤ 6 − N. So one assumes that N ≤ 5. Moreover, the use
of the Sobolev embedding Ḣ1 ↪→ L

2N
N−2 restricts the space dimension to N ∈ {3, 4, 5};

• For τ < 1, the condition τ < 4
N is because one needs the inequality p − 1 − τ > 0 in the local

theory;
•

min
{6 − N

2
,

4
N

}
=


4
3 , if N = 3,
1, if N = 4,
1
2 , if N = 5;

• The condition τ < 6−N
2 doesn’t appear in [26] because only N = 3 is treated and so 0 < τ <

min{ 6−N
2 , 4

N } reads 0 < τ < 4
3 ;

• In the local theory, for τ > 1, we use some weighted Strichartz spaces in the spirit of [27]. The
choice of γ =

(
−2+N

2

)− done in [27] is not possible for N ≥ 4 because of the necessary condition
γ < 1. So, the proof is different and we get the extra restriction τ > 2+N

N ;
• The blowup in finite or infinite time means that sup[0,T+) ∥∇u(t)∥ = ∞;
• The radial assumption is not needed for the blowup;
• If one assumes that xu0 ∈ L2 or u0 radial, the finite time blowup holds;
• This work complements [14] to the inhomogeneous case.
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2.3. Sketch of the proof of the first part of Theorem 2.1

By contradiction, if the first part of Theorem 2.1 fails, then there is a minimal non-scattering solution
under the ground state threshold which possesses certain compactness properties as follows.

Proposition 2.1. If the first part of Theorem 2.1 fails, there exists a maximal solution to (INLS),
denoted by u ∈ C([0,T+), Ḣ1) and a frequency scale function λ : [0,T+) 7→ R+, such that
inft∈[0,T+) λ(t) ≥ 1, and

sup
t∈[0,T+)

∥∇u(t)∥ < ∥∇φ∥; (2.14)

∥u∥S (0,T+) = ∞; (2.15){ 1

λ(t)
N−2

2

u(t,
·

λ(t)
), t ∈ [0,T+)

}
is pre-compact in Ḣ1. (2.16)

To complete the proof of the first part of Theorem 2.1, one proves that the type of solution appearing
in the statement of Proposition 2.1 cannot exist. This is achieved in Subsection 4.2.

Remark 2.1. In Proposition 2.1, there is no moving spatial center x(t) in the parametrization of
the minimal non-scattering solution. Indeed, thanks to Proposition 4.1, the profiles with |xn |

λn
→ ∞

correspond to scattering solutions. By arguments in [36], we can arrange the frequency scale function
to be bounded below.

Remark 2.2. Proposition 2.1 is an adaptation of [28, Theorem 1.2], and the idea of the proof is
somehow similar. Indeed, we aim to generalize [28, Theorem 1.2] for higher space dimensions and for
more general inhomogeneous term, namely N ≥ 3 and b satisfying (2.5) rather than N = 3 and τ = 1.

2.4. Useful tools

For the reader’s convenience, we recall some known and useful tools which play an important role
in the proof of the main result. To start, we recall the homogeneous Sobolev embedding [37, Theorem
1.38], for N ≥ 3,

∥u∥2∗ ≤ CN∥∇u∥, for all u ∈ Ḣ1. (2.17)

The following Caffarelli-Kohn-Nirenberg weighted interpolation inequalities [38, 39], will be
useful.

Lemma 2.1. Let N ≥ 1, 1 < p ≤ q < ∞, and −N
q < b ≤ a < N

q′ . Assume that a − b − 1 = N( 1
q −

1
p ).

Then,
∥| · |b f ∥q ≤ C∥| · |a∇ f ∥p.

Recall the associated Bernstein estimates to the standard Littlewood–Paley projections PM, see [40,
Subsection 11.2],

∥|∇|sPM f ∥r ≃ Ms∥PM f ∥r, for all 1 ≤ r ≤ ∞; (2.18)

∥PM f ∥r1 ≃ MN( 1
r2
− 1

r1
)
∥PM f ∥r2 , for all 1 ≤ r2 ≤ r1 ≤ ∞. (2.19)

The next refined Fatou argument [41, Lemma 11.3] will be useful.
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Lemma 2.2. Let a functional sequence satisfy:

lim sup
n→∞

∥ fn∥r < ∞ and fn → f almost everywhere on RN .

Then,

lim
n

∫
RN

(
| fn|

r − | fn − f |r − | f |r
)

dx = 0. (2.20)

The next linear profile decomposition for bounded radial sequences in Ḣ1 is a key tool for the
scattering proof [41, 42].

Proposition 2.2. Take (un) as a bounded sequence in Ḣ1. Then, for any M ∈ N, there exist a
subsequence denoted also by (un) and

1) For any 1 ≤ j ≤ M, a profile ψ j ∈ Ḣ1;
2) For any 1 ≤ j ≤ M, a sequence (t j

n, λ
j
n, x

j
n) ∈ R × R+ × RN satisfying

t j
n ≡ 0 or t j

n → ∞ and x j
n ≡ 0 or |x j

n| → ∞, (2.21)

and for 1 ≤ i , j ≤ M and n→ ∞,

log
(λ j

n

λk
n
+

t j
n(λ j

n)2 − tk
n(λk

n)2

λ
j
nλk

n

+
|x j

n − xk
n|

λ
j
nλk

n

)
→ ∞; (2.22)

3) A sequence of remainders W M
n ∈ Ḣ1, such that

un =

M∑
j=1

f j
n (eit j

n∆ψ j) +W M
n

:=
1

(λ j
n)

N−2
2

M∑
j=1

[eit j
n∆ψ j](

· − x j
n

λ
j
n

) +W M
n . (2.23)

Moreover,

lim
M→∞

[
lim sup

n→∞
∥∇ei·∆W M

n ∥S (R)

]
= 0. (2.24)

For fixed M, one has the next Pythagorean expansions

∥∇un∥
2 =

M∑
j=1

∥∇ψ j∥2 + ∥∇W M
n ∥

2 + on(1);

E(un) =
M∑
j=1

E
(
eit j

n∆ψ j
)
+ E(W M

n ) + on(1).
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Now, let us collect some standard estimates related to the Schrödinger problem.

Definition 2.1.
A pair (q, r) is said admissible if q, r ≥ 2, (q, r,N) , (2,∞, 2) and N( 1

2 −
1
r ) = 2

q . One says for short
(q, r) ∈ Λ. Let I ⊂ R be an interval, and one denotes the Strichartz space by

Ω(I) :=
⋂

(q,r)∈Λ

Lq(I, Lr).

Let us now state some Strichartz estimates [43].

Proposition 2.3. Let N ≥ 2 and u0 ∈ L2. Then,

1) ∥ei·∆u0∥Ω(I) ≲ ∥u0∥;

2) ∥u − eit∆u0∥Ω(I) ≲ inf
(q̃,r̃)∈Λ

∥i
∂

∂t
u + ∆u∥Lq̃′ (I,Lr̃′ ).

Let us give some Strichartz estimates adapted to the weighted Lebesgue spaces [24].

Definition 2.2. Take N ≥ 3 and 0 ≤ γ < 1. A pair of real numbers (q, r) is γ-admissible if


N( 1

2 −
1
r ) + γ = 2

q ;
γ

2 <
1
q ≤

1
2 ;

γ

2 ≤
1
r <

1
2 .

Take the set Λγ := {(q, r), γ-admissible } and the weighted Strichartz norm

∥ · ∥S γ(I) := sup
(q,r)∈Λγ

∥ · ∥
Lq
(

I,Lr(|x|−rγ)
).

The next Strichartz estimate was proved in [24, Proposition 1.5].

Proposition 2.4. Let N ≥ 3 and 0 ≤ γ, γ̃ < 1, and a time slab I ⊂ R. Take (q, r) ∈ Λγ and (q̃, r̃) ∈ Λγ̃.
Then,

∥ei·∆ f ∥
Lq
(

I,Lr(|x|−rγ)
) ≲ ∥ f ∥; (2.25)∥∥∥∥ ∫ ·

0
ei(·−τ)∆h(τ, ·) dτ

∥∥∥∥
Lq
(

I,Lr(|x|−rγ)
) ≲ ∥h∥

Lq̃′
(

I,Lr̃′ (|x|γ̃r̃′ )
), for q > q̃′. (2.26)

Define the variance potential

Vψ :=
∫
RN
ψ(x)|u(·, x)|2 dx, (2.27)

where ψ : RN → R is a smooth function. Let also the Morawetz action be

AIMS Mathematics Volume 9, Issue 11, 30230–30262.



30237

Mψ = 2ℑ
∫
RN

ū(∇ψ · ∇u) dx := 2ℑ
∫
RN

ū(ψ ju j) dx, (2.28)

where here and in the sequel, the repeated index are summed. Let us give a Morawetz type estimate [45,
Lemma 4.5].

Proposition 2.5. Take u ∈ C([0,T ], Ḣ1) as the local solution to (INLS). Let ψ : RN → R be a smooth
function. Then, the following equality holds on [0,T ],

V ′′ψ [u] = M′ψ[u] = 4
∫
RN
∂l∂kψℜ(∂ku∂lū) dx −

∫
RN
∆2ψ|u|2 dx

− 2
pc − 2

pc

∫
RN
∆ψ|x|−τ|u|p

c
dx +

4
pc

∫
RN
∇ψ · ∇(|x|−τ)|u|p

c
dx.

3. Auxiliary results

This section proves the profile decomposition, a local theory and a variational analysis.

3.1. Profile decomposition

In this subsection, one proves Proposition 2.2. Taking account of [41, 42], it is sufficient to prove
that

P[un] =
M∑
j=1

P
[
eit j

n∆ψ j
]
+ P[W M

n ] + on(1).

For this, denoting the sequence (ψ̃1
l )n := eit1n∆ψ1, one needs to establish that

lim
n

∫
RN
|x|−τ
(
|un|

1+p − |un − (ψ̃1
l )n|

1+p − |(ψ̃1
l )n|

1+p
)

dx := lim
n

In = 0.

One of the two next scenarios happens. The first one is t1
n → ∞. The second one is t1

n ≡ 0. Take the
first case. Recall two useful inequalities. The first one [35] reads, for any m ≥ 2,

||x|m − |x − y|m − |y|m| ≤ m2m−1
(
|x − y|m−1|y| + |x − y||y|m−1

)
. (3.1)

The second one follows from Lemma 2.1,

∥|x|−1 f ∥r ≲ ∥∇ f ∥r, for all 1 < r < N. (3.2)

Now, by (3.2) and (3.1), via Sobolev embeddings and Hölder estimate, one writes

In ≤ (1 + p)2p
∫
RN
|x|−τ
(
|un − (ψ̃1

l )n|
p|(ψ̃1

l )n| + |un − (ψ̃1
l )n||(ψ̃1

l )n|
p
)

dx

≲

∫
RN

(
(|x|−1|un − (ψ̃1

l )n|)τ|un − (ψ̃1
l )n|

p−τ|(ψ̃1
l )n| + (|x|−1|(ψ̃1

l )n|)τ|un − (ψ̃1
l )n||(ψ̃1

l )n|
p−τ
)

dx

≲ ∥|x|−1(un − (ψ̃1
l )n)∥τ∥un − (ψ̃1

l )n∥
p−τ
2∗ ∥(ψ̃

1
l )n∥2∗ + ∥|x|−1(ψ̃1

l )n∥
τ∥un − (ψ̃1

l )n∥2∗∥(ψ̃1
l )n∥

p−τ
2∗

AIMS Mathematics Volume 9, Issue 11, 30230–30262.



30238

≲ ∥un − (ψ̃1
l )n∥

τ
Ḣ1∥un − (ψ̃1

l )n∥
p−τ
2∗ ∥(ψ̃

1
l )n∥2∗ + ∥(ψ̃1

l )n∥
τ
Ḣ1∥un − (ψ̃1

l )n∥2∗∥(ψ̃1
l )n∥

p−τ
2∗ . (3.3)

Using the free Schrödinger operator dispersive estimate [44], ∥eit∆ · ∥r ≤
C

tN( 1
2 −

1
r )
∥ · ∥r′ , for all r ≥ 2,

one gets limn In = 0. In the second case, the claim follows by (3.3) via (2.24) and (2.20). This finishes
the proof.

3.2. Local Theory

One discusses two cases depending on the inhomogeneous index.

3.2.1. First case:

0 < τ < min
{

6−N
2 , 4

N

}
. Here and hereafter, one takes, for an interval I ⊂ R, the spaces

S (I) := L
2(2+N)

N−2
(
I × RN

)
; (3.4)

W(I) := L
2(2+N)

N−2
(
I, L

2N(2+N)
4+N2
)
; (3.5)

∇W(I) :=
{
u : ∇xu ∈ W(I)

}
. (3.6)

This choice implies in particular that

∇W(I) ↪→ S (I); (3.7)(2(2 + N)
N − 2

,
2N(2 + N)

4 + N2

)
∈ Λ. (3.8)

Take also the spaces

Wτ(I) := L
2(2+N)(1+τ)

N(1+τ)−2
(
I, L

2N(2+N)(1+τ)
4+N2(1+τ)

)
; (3.9)

∇Wτ(I) :=
{
u : ∇xu ∈ Wτ(I)

}
. (3.10)

This choice implies in particular that

W0(I) = W(I); (3.11)(2(2 + N)(1 + τ)
N(1 + τ) − 2

,
2N(2 + N)(1 + τ)

4 + N2(1 + τ)

)
∈ Λ. (3.12)

This subsection contains two parts.
• Global solution for small data. The problem (INLS) has a local solution in the energy space which is
global for small data.

Proposition 3.1. Let 0 ∈ I a real interval and u0 ∈ Ḣ1. Then, there exists δ > 0 such that if ∥ei·∆u0∥S (I) ≤

δ, then, there is a unique solution to (INLS) in C(I, Ḣ1). Moreover, ∥u∥S (I) ≤ 2δ and ∥∇u∥Wτ(I)∩W(I) < ∞.

Proof. We proceed with a fixed point argument. Take the Duhamel integral function (2.2). Let also,
for a, b > 0, the space

Xa,b :=
{
u ∈ C(I, Ḣ1), ∥u∥L∞(I,Ḣ1) ≤ 2A, ∥u∥S (I) ≤ a, ∥∇u∥Wτ(I)∩W(I) ≤ b

}
,
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endowed with the complete distance d(u, v) := ∥u − v∥S (I). By the Strichartz estimate, one writes for
u, v ∈ Xa,b and w := u − v,

d( f (u), f (v)) ≲
∥∥∥∥∇[|x|−τ(|u|p−1u − |v|p−1v)

]∥∥∥∥
L2(I,L

2N
2+N )

≲ ∥|x|−τ−1(|u|p−1 + |v|p−1)w∥
L2(I,L

2N
2+N )
+ ∥|x|−τ|u|p−1∇w∥

L2(I,L
2N

2+N )

+ ∥|x|−τ(|u|p−2 + |v|p−2)∇vw∥
L2(I,L

2N
2+N )

:= (I) + (II) + (III).

Thus, by (3.2), one gets

(II) ≲ ∥(|x|−1u)τ|u|p−1−τ∇w∥
L2(I,L

2N
2+N )

≲ ∥|x|−1u∥τWτ(I)∥u∥
p−1−τ
S (I) ∥∇w∥Wτ(I)

≲ ∥∇u∥τWτ(I)∥u∥
p−1−τ
S (I) ∥∇w∥Wτ(I)

≲ bτap−1−τd(u, v). (3.13)

Here, one used the Hölder estimate via the identities

1
2
=

p − 1 − τ
2(2+N)

N−2

+
1 + τ

2(2+N)(1+τ)
N(1+τ)−2

; (3.14)

2 + N
2N

=
p − 1 − τ

2(2+N)
N−2

+
1 + τ

2N(2+N)(1+τ)
4+N2(1+τ)

. (3.15)

Moreover, in order to estimate (I), it is sufficient to consider the following term, by use of (3.2) and
the Hölder estimate via (3.14)–(3.15),

(I)1 := ∥|x|−τ−1|u|p−1w∥
L2(I,L

2N
2+N )

= ∥(|x|−1u)τ|u|p−1−τ(|x|−1w)∥
L2(I,L

2N
2+N )

≲ ∥|x|−1u∥τWτ(I)∥u∥
p−1−τ
S (I) ∥|x|

−1w∥Wτ(I)

≲ ∥∇u∥τWτ(I)∥u∥
p−1−τ
S (I) ∥∇w∥Wτ(I)

≲ bτap−1−τd(u, v). (3.16)

Furthermore, in order to estimate (III), it is sufficient to consider the following term, by use of
(3.2), Sobolev embeddings, and the Hölder estimate via (3.14)–(3.15),

(III)1 := ∥|x|−τ|u|p−2∇vw∥
L2(I,L

2N
2+N )

= ∥(|x|−1w)τ|u|p−2∇v|w|1−τ∥
L2(I,L

2N
2+N )

≲ ∥|x|−1w∥τWτ(I)∥u∥
p−2
S (I)∥∇v∥Wτ(I)∥w∥1−τS (I)

≲ ∥u∥p−2
S (I)∥∇v∥Wτ(I)∥w∥Wτ(I)

≲ bap−2d(u, v). (3.17)
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Here, one takes the case τ ≤ 1 and used the assumption pc ≥ 2, which reads

τ ≤
6 − N

2
. (3.18)

Now, if τ > 1, one has p ≥ 2 and p > 1 + τ, so, one writes

(III)1 := ∥|x|−τ|u|p−2∇vw∥
L2(I,L

2N
2+N )

= ∥|u|p−1−τ(|x|−1u)τ−1∇v(|x|−1w)∥
L2(I,L

2N
2+N )

≲ ∥|x|−1u∥τ−1
Wτ(I)∥u∥

p−1−τ
S (I) ∥∇v∥Wτ(I)∥|x|−1w∥Wτ(I)

≲ ∥∇u∥τ−1
Wτ(I)∥u∥

p−1−τ
S (I) ∥∇v∥Wτ(I)∥∇w∥Wτ(I)

≲ bτap−1−τd(u, v). (3.19)

Now, regrouping the identities (3.13) to (3.19), it follows that

d( f (u), f (v)) ≤ c
(
bτap−1−τ + bap−2

)
d(u, v). (3.20)

So, f is a contraction for small 0 < a, b ≪ 1. Next, one proves the stability f (Xa,b) ⊂ Xa,b. Taking
v = 0 in (3.20) via Strichartz estimates, one gets for the choice b := 2cA and 0 < a ≪ 1,

∥∇ f (u)∥Wτ(I)∩W(I) ≤ c∥∇u0∥ + d( f (u), f (0))

≤ cA + c
(
bτap−1−τ + bap−2

)
b (3.21)

≤
[1
2
+ c
(
(2cA)τap−1−τ + 2cAap−2

)]
b (3.22)

< b. (3.23)

Now, by (3.2) via the Hölder estimate and Sobolev embedding via an absorption argument, one gets
for δ := a

2 ≪ 1,

∥ f (u)∥S (I) ≤ ∥ei·∆u0∥S (I) + ∥(|x|−1u)τ|u|p−1−τu∥
L2(I,L

2N
2+N )

≤ δ + c∥|x|−1u∥τWτ(I)∥u∥
p−1−τ
S (I) ∥u∥Wτ(I)

≤ δ + c∥∇u∥τWτ(I)∥u∥
p−1−τ
S (I) ∥u∥Wτ(I)

≤ δ + cb1+τap−1−τ

≤ 2δ = a. (3.24)

Finally, with Sobolev embeddings and arguing as in (3.23), for 0 < a ≪ 1, one gets

∥ f (u)∥L∞(I,Ḣ1) ≤ A + c
(
bτap−1−τ + bap−2

)
b

≤ 2A. (3.25)

The stability f (Xa,b) ⊂ Xa,b follows by (3.23)–(3.25). The proof is closed via a classical Picard
argument. □
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• Long-time perturbation. The second part of this section deals with the next result.

Proposition 3.2. Let T > 0 and I := [0,T ]. Take u ∈ C(I, Ḣ1) as a solution to (INLS) and ũ ∈
L∞(I, Ḣ1), satisfying for some ϵ, A > 0,

∥ũ∥L∞T (Ḣ1)∩S (I) ≤ A; (3.26)

iũt + ∆ũ + |x|−τ|ũ|p−1ũ = e;

max
{
∥∇e∥Ω′(I), ∥ei·∆[u0 − ũ0]∥Wτ(I)

}
≤ ϵ. (3.27)

Then, there exists ϵ0 := ϵ0(A), satisfying for any 0 < ϵ < ϵ0,

∥u∥S (I) ≤ C(A).

Proof. Taking w := u − ũ and N[u] := |x|−τ|u|p−1u, one gets

iwt + ∆w = i
∂

∂t
u + ∆u − (iũt + ∆ũ)

= N[ũ] − N[w + ũ] − e.

Taking account of the Duhamel integral formula (2.2), one writes

w(t) = ei(t−tk)∆w(tk) + i
∫ t

tk
ei(t−τ)∆

(
N[ũ] − N[w + ũ]

)
dτ

+ i
∫ t

tk
ei(t−τ)∆e(τ) dτ. (3.28)

Here, one picks a partition

t0 = 0, I :=
⋃

0≤k≤K

[tk, t1+k) :=
⋃

k

Ik; (3.29)

∥∇ũ∥Wτ(tk ,t1+k) < η ≪ 1, for all 0 ≤ k ≤ K. (3.30)

Indeed, arguing as in the local theory with a Bootstrap argument and Sobolev embeddings via (3.13),
(3.26) and (3.27), one has

∥∇ũ∥Wτ(tk ,t1+k) ≲ ∥ũ(tk)∥Ḣ1 + ∥∇N[ũ]∥
L2(Ik ,L

2N
2+N )
+ ∥∇e∥Ω′(Ik)

≲ A + ∥∇ũ∥1+τWτ(Ik)∥ũ∥
p−1−τ
S (Ik) + ϵ ≲ A.

With a Picard fixed point argument and arguing as in the the local theory, one solves the previous
integral equation in I0. So, with Proposition 3.1,

∥w∥S (I0) ≤ 2ϵ and ∥∇w∥Wτ(I0) ≤ C(ϵ, A).
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Letting t = t1 in the previous integral equality (3.28) and applying ei(t−t1)∆, one gets

ei(t−t1)∆w(t1) = ei(t−t0)∆w(t0) + i
∫ t1

t0
ei(t−τ)∆

(
N[ũ] − N[w + ũ]

)
dτ

+ i
∫ t1

t0
ei(t−τ)∆e(τ) dτ.

Taking account of the proof of Proposition 3.1 via (3.27), one gets

∥ei(t−t1)∆w(t1)∥S (I1) ≤ ∥ei(t−t0)∆w(t0)∥S (I) + 2cϵ ≤ cϵ + 2cϵ.

Iterating this process, it follows that

∥ei(t−tk)∆w(tk)∥S (Ik) ≤ ∥ei(t−t0)∆w(t0)∥S (I) + c2kϵ ≤ c21+kϵ.

Now, applying Proposition 3.1 to the above Duhamel integral formula (3.28), we get

∥w∥S (Ik) ≤ cϵ22+k;

∥w∥S (I) ≤ cϵ
K∑

k=0

22+k ≤ 4c(−1 + 21+K)ϵ. (3.31)

Finally, one ends the proof by the triangle inequality in (3.31) via (3.26),

∥u∥S (I) ≤ ∥w∥S (I) + ∥ũ∥S (I) ≲ C(A).

□

3.2.2. Second case
2+N

N < τ < 2.
• Global solution for small data. The problem (INLS) has a local solution in the energy space which is
global for small data. We start with some notations.

Let 0 < ε ≪ 1, γ := 1 − ε, and the real numbers

r0 :=
2N

N − 2 − ε
=
( 2N
N − 2

)+
; (3.32)

1
r1
=

1
r0
+

1
N
⇐⇒ r1 =

2N
N − ε

; (3.33)

(q0, r1) ∈ Λγ ⇐⇒ q0 =
4

2 − ε
; (3.34)

(q2, r2) ∈ Λγ to be picked later. (3.35)

Here and hereafter, if I is a real interval, one takes the weighted Lebesgue spaces

S (I) := Lq0
(
I, Lr0(|x|−r0γ)

)
; (3.36)

W(I) := Lq0
(
I, Lr1(|x|−r0γ)

)
; (3.37)
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M(I) := Lq2
(
I, Lr2(|x|−r2γ)

)
. (3.38)

Since N ≥ 4 gives N
r0
> γ, by Lemma 2.1, one gets

∥ · ∥S (I) ≲ ∥∇ · ∥W(I). (3.39)

Let us state the small data global existence result.

Proposition 3.3. Let N ≥ 4, 2+N
N < τ < 2, 0 ∈ I be a real interval and u0 ∈ Ḣ1. Then, there exists δ > 0

such that if ∥ei·∆u0∥S (I) ≤ δ, there is a unique solution to (INLS) in C(I, Ḣ1). Moreover, ∥u∥S (I) ≤ 2δ
and ∥∇u∥M(I)∩W(I) < ∞.

Proof. Let f be the Duhamel integral function given in (2.2). Let also, for a, b > 0, the space

Xa,b :=
{
u ∈ C(I, Ḣ1), ∥u∥L∞(I,Ḣ1) ≤ 2A, ∥u∥S (I) ≤ a, ∥∇u∥M(I)∩W(I) ≤ b

}
,

endowed with the complete distance

d(u, v) := ∥u − v∥S (I). (3.40)

Take 0 ≤ γ̃ < 1 and (q̃, r̃) ∈ Λγ̃ to be picked later. Let u, v ∈ Xa,b and w := u − v. By the Strichartz
estimate in Proposition 2.4 via (3.39), one writes

d( f (u), f (v)) ≲
∥∥∥∥∇[|x|−τ(|u|p−1u − |v|p−1v)

]∥∥∥∥
Lq̃′
(

I,Lr̃′ (|x|γ̃r̃′ )
)

≲ ∥|x|−τ−1(|u|p−1 + |v|p−1)w∥
Lq̃′
(

I,Lr̃′ (|x|γ̃r̃′ )
) + ∥|x|−τ|u|p−1∇w∥

Lq̃′
(

I,Lr̃′ (|x|γ̃r̃′ )
)

+ ∥|x|−τ(|u|p−2 + |v|p−2)∇vw∥
Lq̃′
(

I,Lr̃′ (|x|γ̃r̃′ )
)

:= (I) + (II) + (III). (3.41)

In order to estimate (I), it is sufficient to consider the following term

(I)1 := ∥|x|−τ−1|u|p−1w∥
Lq̃′
(

I,Lr̃′ (|x|γ̃r̃′ )
)

= ∥|x|−τ−1+γ̃|u|p−1w∥
Lq̃′
(

I,Lr̃′
). (3.42)

Using the Hölder estimate via Lemma 2.1 and (3.42), we write

(I)1 = ∥(|x|−γ−1u)p−1−θ(|x|−γu)θ|x|−γ−1w∥
Lq̃′
(

I,Lr̃′
)

≲ ∥|x|−γ−1u∥p−1−θ
Lq2 (I,Lr2 )∥|x|

−γu∥θLq0 (I,Lr0 )∥|x|
−γ−1w∥Lq2 (I,Lr2 )

≲ ∥|x|−γ−1w∥p−θLq2 Lr2 ∥|x|
−γu∥θLq0 Lr0

≲ ∥∇u∥p−1−θ
M(I) ∥u∥

θ
S (I)∥∇w∥M(I)

≲ bp−1−θaθd(u, v). (3.43)
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Here, one needs the identities

1
r̃′
=
θ

r0
+

p − θ
r2

; (3.44)

1
q̃′
=
θ

q0
+

p − θ
q2

; (3.45)

0 < θ = γ̃ + p(1 + γ) − 1 − τ < p−1, (3.46)

with the inequalities

0 < γ, γ̃ < 1; (3.47)
γ

2
<

1
q0
≤

1
2
,

γ

2
≤

1
r1
<

1
2

; (3.48)

0 <
γ̃

2
<

1
q̃
≤

1
2
,

γ̃

2
≤

1
r̃
<

1
2
. (3.49)

Note that (3.44) with (3.46) gives (3.45). Now, one picks

2 + N
N

< τ < 2 and 0 < ε <
τN − N − 2

N − 2
. (3.50)

The choice (3.50) implies that

γ̃ := τ − p − ε ∈ (0, 1). (3.51)

Moreover, one picks

θ := γ̃ + p(1 + γ) − 1 − τ = p(1 − ε) − 1 − ε. (3.52)

With (3.51) and (3.52), the inequalities in (3.46) are satisfied for 0 < ε ≪ 1. Now, let us choose

1
q̃
=

1
2

(
2 −

2θ
q0
− γ(p − θ)

)−
=

1
2

(
2 − θ[N(

1
2
−

1
r0
−

1
N

) + γ] − γ(p − θ)
)−
. (3.53)

By (3.32), (3.53) implies that

1
q̃
=

1
2

(
2 − θ(

ε

2
+ γ) − γ(p − θ)

)−
=

1
2

(
2 − θ

ε

2
− γp
)−

=
1
2

(
2 − (1 − ε)p −

ε

2
(p(1 − ε) − 1 − ε)

)−
=

1
2

(
2 − p +

ε

2
(1 + p)(1 + ε)

)−
:=

2 − p + ε′

2
. (3.54)
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Now, one checks the requested assumptions on the above choice. Compute

1
r1
=

1
N
+

1
r0

=
1
2
−

ε

2N
∈ [

γ

2
,

1
2

) = [
1
2
−
ε

2
,

1
2

). (3.55)

Moreover,

2
q0
= N(

1
2
−

1
N
−

1
r0

) + γ

= 1 −
ε

2
∈ (γ, 1]. (3.56)

Furthermore, by (3.51) and (3.54), because τ < 2 implies that 2 − p ∈ (τ − p, 1], it follows that for
ε0 → 0,

(γ̃, 1] ∋
2
q̃
= 2 − p + ε′. (3.57)

Also, by taking ε, ε′ → 0, one gets 2
r̃ = 1 − 2

N (2 − τ + ε′ + ε) < 1 because τ < 2. So, we need to
check that

γ̃ ≤
2
r̃
⇐⇒ −γ̃ + 1 −

2
N

(
2 − p + ε′ − γ̃

)
≥ 0

⇐⇒ (N − 2)τ < N − 4 + N p. (3.58)

The last line is clearly satisfied because

τ < 2. (3.59)

Let us see the couple (q2, r2). By (3.54) and (3.34), for 0 < ε ≪ 1, one writes

(γ, 1] ∋
2
q2
=

1
p − θ

( 2
q̃′
−

2θ
q0

)
(3.60)

=
1

p − θ

(
2 − (2 − p + ε′) − θ

2 − ε
2

)
= 1 −

1
p − θ

(
ε′ − θ

ε

2

)
⇐⇒ εθ < 2ε′ < ε(2p − θ). (3.61)

The identity (3.61) is possible because of (3.52) and taking ε ≪ 1. Moreover, the equality γ+N( 1
2 −

1
r2

) = 2
q2

via (3.61) implies that

[γ, 1) ∋
2
r2
= 1 −

2
N

(
1 −

1
p − θ

(
ε′ − θ

ε

2

)
− γ
)
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= 1 −
2
N

(
ε −

1
p − θ

(
ε′ − θ

ε

2

))
. (3.62)

Now, the identity (3.62) is equivalent to

ε(p − θ) > ε′ −
1
2
εθ; (3.63)

2
N

(
ε −

1
p − θ

(
ε′ − θ

ε

2

))
< ε. (3.64)

The condition (3.63) is satisfied by (3.61) and (3.64) is equivalent to

ε(2p − θ − N(p − θ)) < 2ε′. (3.65)

This is clearly possible via (3.61) because θ < p by (3.52),
Now, (3.55) and (3.56) imply that (q0, r1) ∈ Λγ. Also, (3.57) and (3.58) imply that (q̃, r̃) ∈ Λγ̃.

Finally, (3.60) and (3.61) imply that (q2, r2) ∈ Λγ. Thus, (3.43) follows under the assumption

2 + N
N

< τ < 2. (3.66)

Now, using again the Hölder estimate and Lemma 2.1 via (3.41), one has

(II) = ∥(|x|−γ−1u)p−1−θ(|x|−γu)θ(|x|−γ∇w)∥
Lq̃′
(

I,Lr̃′
)

≲ ∥|x|−γ−1u∥p−1−θ
Lq2 (I,Lr2 )∥|x|

−γu∥θLq0 (I,Lr0 )∥|x|
−γ∇w∥Lq2 (I,Lr2 )

≲ ∥∇u∥p−1−θ
M(I) ∥u∥

θ
S (I)∥∇w∥M(I)

≲ bp−1−θaθd(u, v). (3.67)

In order to estimate (III), it is sufficient to consider the following term, where using again the
Hölder estimate and Lemma 2.1 via (3.41), one obtains

(III)1 = ∥|x|−τ+γ̃|u|p−2∇vw∥
Lq̃′
(

I,Lr̃′
)

= ∥(|x|−γ∇v)(|x|−γu)p−2(|x|−γ−1w)p−1−θ(|x|−γw)θ−p+2∥
Lq̃′
(

I,Lr̃′
)

≲ ∥|x|−γ∇v∥Lq2 (I,Lr2 )∥|x|−γu∥
p−2
Lq0 (I,Lr0 )∥|x|

−γ−1w∥p−1−θ
Lq2 (I,Lr2 )∥|x|

−γw∥θ−p+2
Lq0 (I,Lr0 )

≲ ∥∇v∥M(I)∥∇w∥p−1−θ
M(I) ∥u∥

p−2
S (I)∥w∥

θ−p+2
S (I)

≲ bp−1−θaθd(u, v). (3.68)

Indeed, (3.46) implies that p − 2 < θ < p − 1. Now, regrouping the identities (3.41), (3.43), (3.67)
and (3.68), it follows that

d( f (u), f (v)) ≲ bp−1−θaθd(u, v). (3.69)

So, f is a contraction for small 0 < a ≪ 1. Next, one proves the stability f (Xa,b) ⊂ Xa,b. Taking
v = 0 in (3.69) via Strichartz estimates, one gets for the choice b := 2cA and 0 < a ≪ 1,

∥∇ f (u)∥M(I)∩W(I) ≤ c∥∇u0∥ + d( f (u), f (0))
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≤ cA + cbp−θaθ

≤
(1
2
+ (2cA)p−1−θaθ

)
b

< b. (3.70)

Arguing as previously, for 0 < a ≪ 1, one gets

∥ f (u)∥L∞(I,Ḣ1) ≤ A + cbp−θaθ ≤ 2A. (3.71)

Now, for δ := a
2 ≪ 1, one uses (2.2) via (3.39) and (3.70) to write

∥ f (u)∥S (I) ≤ ∥ei·∆u0∥S (I) + ∥∇ f (u)∥M(I)

≤ δ + caθbp−θ

≤ 2δ = a. (3.72)

The stability f (Xa,b) ⊂ Xa,b follows by (3.70), (3.71) and (3.72). The proof is closed via a classical
Picard argument. □

• Long-time perturbation. The second part of this section deals with the next result.

Proposition 3.4. Let T > 0 and I := [0,T ]. Take u ∈ C(I, Ḣ1) as a solution to (INLS) and ũ ∈
L∞(I, Ḣ1), satisfying for some ϵ, A > 0,

∥ũ∥L∞T (Ḣ1)∩S (I) ≤ A; (3.73)

iũt + ∆ũ + |x|−τ|ũ|p−1ũ = e;

max
{
∥∇e∥

Lq̃′
(

I,Lr̃′ (|x|γ̃r̃′ )
), ∥∇ei·∆[u0 − ũ0]∥M(I)∩W(I)

}
≤ ϵ. (3.74)

Then, there exists ϵ0 := ϵ0(A), satisfying for any 0 < ϵ < ϵ0,

∥u∥S (I) ≤ C(A).

The proof is omitted because it follows like Proposition 3.2.

3.3. Variational analysis

In this section, one prepares some estimates related to the stability of the assumptions (2.11)–(2.13)
by the flow of(INLS). Take φ ∈ Ḣ1 to be the ground state of (2.8), which is a minimizer of (2.9). The
Eq (2.7) gives

∥∇φ∥2 = P[φ]; (3.75)

∥∇φ∥ = C
−

1+p
p−1
∗ = C−

N−τ
2−τ
∗ ; (3.76)

E(φ) =
2 − τ
N − τ

C−2 N−τ
2−τ

∗ . (3.77)

Let us give the first result of this section.
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Lemma 3.1. For δ ∈ (0, 1), there exists δ̃ := δ̃(δ,N) ∈ (0, 1) such that if u ∈ Ḣ1 satisfies

∥∇u∥ < ∥∇φ∥; (3.78)
E(u) < (1 − δ)E(φ), (3.79)

then,

∥∇u∥2 < (1 − δ̃)∥∇φ∥2; (3.80)
∥∇u∥2 − P[u] ≥ δ̃∥∇u∥2; (3.81)

E(u) ≥ 0. (3.82)

Proof. Take the real function f (x) := x − 2
1+pC1+p

∗ x
1+p

2 . Then,

f (∥∇u∥2) = ∥∇u∥2 −
2

1 + p
C1+p
∗ ∥∇u∥1+p

≤ ∥∇u∥2 −
2

1 + p
P[u]

≤ E(u) (3.83)

≤ (1 − δ)E(φ). (3.84)

The equation f ′(x) = 0 is equivalent to x = x∗ = C
−

2(1+p)
p−1

∗ = ∥∇φ∥2. Moreover, by (3.77), one has
f (x∗) = E(φ). Now, since f is positive and strictly increasing on [0, x∗], one has (3.80) and (3.82) by
(3.83) and (3.84). Now, let the real function g(x) := x −C1+p

∗ x
1+p

2 . Then,

∥∇u∥2 − P[u] ≥ ∥∇u∥2 − (C∗∥∇u∥)1+p

= g(∥∇u∥2). (3.85)

Moreover, g(x) = 0 if, and only if, x = 0 or x = x∗. Thus, g(x) ≳ x on [0, (1− δ̃)x∗]. So, (3.80) gives
(3.81). □

Corollary 3.1. If u ∈ Ḣ1 satisfies ∥∇u∥ < ∥∇φ∥. Then, E(u) ≥ 0.

Proof. The case E(u) ≥ E(φ) = 2−τ
N−τC

−2 N−τ
2−τ

∗ > 0 is clear. Otherwise, Lemma 3.1 gives the result. □

With Lemma 3.1 via a continuity argument and the conservation of the energy, one has the following
energy trapping.

Proposition 3.5. For δ ∈ (0, 1), there exists δ̃ ∈ (0, 1) such that if u0 ∈ Ḣ1 satisfies:

∥∇u0∥ < ∥∇φ∥; (3.86)

E(u0) < (1 − δ)E(φ), (3.87)
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then the maximal solution to (INLS) satisfies, for any t ∈ [0,T+),

∥∇u(t)∥2 < (1 − δ̃)∥∇φ∥2; (3.88)
∥∇u(t)∥2 − P[u(t)] ≥ δ̃∥∇u(t)∥2; (3.89)

E(u) ≥ 0; (3.90)
E(u(t)) ≃ ∥∇u(t)∥2 ≃ ∥∇u0∥

2. (3.91)

Proof. For the last point, since E(u(t)) ≤ ∥∇u(t)∥2, by (3.89), one has

E(u(t)) ≥ (1 −
2

1 + p
)∥∇u(t)∥2 +

2
1 + p

(∥∇u(t)∥2 − P[u(t)])

≥ (1 −
2

1 + p
)∥∇u(t)∥2.

The rest of the proof follows by Lemma 3.1 via the conservation of the energy and a continuity
argument. □

Now, one gives a result similar to Lemma 3.1, in the complementary of the assumption (3.78).

Lemma 3.2. For δ ∈ (0, 1), there exists δ̃ := δ̃(δ,N) ∈ (0, 1) such that if u ∈ Ḣ1 satisfies (3.79) and

∥∇u∥ > ∥∇φ∥, (3.92)

then

∥∇u∥2 > (1 + δ̃)∥∇φ∥2; (3.93)
∥∇u∥2 − P[u] ≤ −δ̃∥∇φ∥2. (3.94)

Proof. The proof of (3.93) is omitted because it is similar to Lemma 3.1. For (3.94), one writes

2
(
∥∇u∥2 − P[u]

)
= (1 + p)E(u) − (p − 1)∥∇u∥2

< (1 + p)(1 − δ)E(φ) − (p − 1)∥∇φ∥2

< (1 − δ)(p − 1)∥∇φ∥2 − (p − 1)∥∇φ∥2

< −δ(p − 1)∥∇φ∥2.

This closes the proof. □

4. Energy critical scattering

In this section, one proves the global existence and energy scattering, namely, the first part of
Theorem 2.1. The proof follows with contradiction. To begin, one proves that if the first part of
Theorem 2.1 fails, then Proposition 2.1 holds. Then, one shows that the scenarios in Proposition 2.1
don’t happen.
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4.1. Sketch of the proof of Proposition 2.1

We treat the case 0 < τ < min{ 6−N
2 , 4

N } because the case 2+N
N < τ < 2 follows similarly. For

0 < λn < ∞ and xn ∈ R
N , one defines the operator

fn[ψ] :=
1

λ
N−2

2
n

ψ(
· − xn

λn
). (4.1)

The next result is essential in proving Proposition 2.1 was established in [28, Proposition 3.3] in
three space dimensions.

Proposition 4.1. Let the sequences 0 < λn < ∞, xn ∈ R
N , and tn ∈ R, such that

|
xn

λn
| → ∞, and tn ≡ 0 or tn → ±∞. (4.2)

Take ψ ∈ Ḣ1 and the sequence

ψn := fn[eitn∆ψ] = eiλ2
ntn∆ fn[ψ]. (4.3)

Then, for any n >> 1, there is a global solution to (INLS) denoted by vn ∈ C(R, Ḣ1) satisfying

vn(0) = ψn, ∥vn∥∇Wτ(R) ≲ 1. (4.4)

Moreover, for all ε > 0, there is nε ∈ N and χ ∈ C∞c (R × RN) such that

∥λ
N−2

2
n vn(λ2

n(t − tn), λnx + xn) − χ∥∇Wτ(R) < ε, ∀n > n0. (4.5)

Proof. Let a smooth function be

χn(x) :=

 1, |x + xn
λn
| ≥ 1

2 |
xn
λn
|;

0, |x + xn
λn
| < 1

4 |
xn
λn
|.
, |∂αχn| ≲ |

xn

λn
|−|α|. (4.6)

Take the sequence of slabs

In,T := [a−n,T , a
+
n,T ] := [−λ2

n(tn + T ), λ2
n(−tn + T )]; (4.7)

I+n,T := (a+n,T ,∞), I−n,T := (−∞, a−n,T ). (4.8)

Taking account of [40, Appendix A.2], let a Littlewood-Paley frequency cutoff be

Pn := P| xn
λn
|−θ≤·≤|

xn
λn
|θ , θ ∈ (0, 1). (4.9)

Let us denote the sequence of approximate solutions to (INLS),

ṽn,T (t) :=


fn[χnPnei(λ−2

n t+tn)∆ψ], t ∈ In,T ;
ei(t−a+n,T )∆[ṽn,T (a+n,T )], t ∈ I+n,T ;
ei(t−a−n,T )∆[ṽn,T (a−n,T )], t ∈ I−n,T .

(4.10)
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Using the long-time perturbation result in Proposition 3.2, one proves the existence of the solutions
vn.
• Proof of the condition

lim sup
T→∞

lim sup
n→∞

∥ṽn,T ∥L∞(R,Ḣ1)∩∇Wτ(R) ≲ 1. (4.11)

One has directly from (4.6) via the Hölder estimate,

∥χn∥∞ + ∥∇χn∥N ≲ 1 + |
xn

λn
|−1|B(|

xn

λn
|)|

1
N

≲ 1. (4.12)

Now, by the Hölder estimate, it follows that on In,T ,

∥ṽn,T ∥Ḣ1 = ∥ fn[χnPnei(λ−2
n t+tn)∆ψ]∥Ḣ1

≲ ∥χn(
· − xn

λn
)ei(t+λ2

ntn)∆[ fn(Pnψ)]∥Ḣ1

≲ ∥χn∥∞∥ei(t+λ2
ntn)∆[ fn(Pnψ)]∥Ḣ1 + ∥∇χn∥N∥ei(t+λ2

ntn)∆[ fn(Pnψ)]∥2∗ . (4.13)

Take ϕPn , a bump function associated to the projector Pn. By Strichartz and Bernstein estimates and
Sobolev embedding via (4.13), it follows that on In,T ,

∥ṽn,T ∥Ḣ1 ≲ ∥ fn(Pnψ)∥Ḣ1

≲ ∥Pnψ∥Ḣ1

≲ |
xn

λn
|−θ∥ϕPn∥N∥ψ∥2∗

≲ 1. (4.14)

Also, by the Hölder and Strichartz estimates via Sobolev embedding and (4.13), it follows that

∥ṽn,T ∥∇Wτ(In,T ) = ∥ fn[χnPnei(λ−2
n t+tn)∆ψ]∥∇Wτ(In,T )

≲ ∥χn(
· − xn

λn
)ei(t+λ2

ntn)∆[ fn(Pnψ)]∥∇Wτ(In,T )

≲ ∥χn∥∞∥ei(t+λ2
ntn)∆[ fn(Pnψ)]∥∇Wτ(In,T ) + ∥∇χn∥N∥ei(t+λ2

ntn)∆[ fn(Pnψ)]∥S (In,T )

≲ ∥ fn(Pnψ)∥Ḣ1 . (4.15)

Thus, by (4.14) and (4.15), one gets

∥ṽn,T ∥L∞(In,T ,Ḣ1)∩∇Wτ(In,T ) ≲ 1. (4.16)

Thus, (4.11) follows by (4.10) and (4.16) via Strichartz estimates.
• Proof of the condition

lim sup
T→∞

lim sup
n→∞

∥ṽn,T (0) − ψn∥Ḣ1 = 0. (4.17)
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Let us take two cases: the first one is tn = 0 ∈ In,T . So,

∥ṽn,T (0) − ψn∥Ḣ1 = ∥(1 − χnPn)ψ∥Ḣ1 → 0. (4.18)

In a second case, one assumes that tn → +∞ and 0 ∈ I+n,T . So, by (4.10), one writes

∥ṽn,T (0) − ψn∥Ḣ1 = ∥e−ia+n,T∆[ṽn,T (a+n,T )] − ψn∥Ḣ1

= ∥e−ia+n,T∆[ fn(χnPnei(λ−2
n a+n,T+tn)∆ψ] − ψn∥Ḣ1

= ∥ fn[eitn∆e−iT∆χnPneiT∆ψ] − fn[eitn∆ψ]∥Ḣ1

= ∥(1 − χnPn)eiT∆ψ∥Ḣ1 → 0. (4.19)

• Proof of the condition

lim sup
T→∞

lim sup
n→∞

∥ẽn,T ∥L2(R,Ẇ1, 2N
2+N )

:= lim sup
T→∞

lim sup
n→∞

∥(i∂t + ∆)ṽn,T + |x|−τ|ṽn,T |
pc−1ṽn,T ∥L2(R,Ẇ1, 2N

2+N )

= 0. (4.20)

Let us split the error into two parts as follows ẽn,T := ẽl
n,T + ẽnl

n,T . First one writes on In,T ,

ẽl
n,T = (i∂t + ∆)ṽn,T

= (i∂t + ∆)
(

fn[χnPnei(λ−2
n t+tn)∆ψ]

)
= (i∂t + ∆)

(
[χn(

x − xn

λn
)ei(λ2

ntn+t)∆ fnPnψ]
)

= ∆(χn(
x − xn

λn
))ei(λ2

ntn+t)∆[ fnPnψ] + 2∇(χn(
x − xn

λn
)) · ei(λ2

ntn+t)∆∇[ fnPnψ]. (4.21)

Moreover,

ẽnl
n,T = |x|

−τ|ṽn,T |
pc−1ṽn,T

= |x|−τ| fn[χnPnei(λ−2
n t+tn)∆ψ]|p

c−1 fn[χnPnei(λ−2
n t+tn)∆ψ]

= λ−(2−τ)
n fn

(
|λnx + xn|

−τχpc

n |Pnei(λ−2
n t+tn)∆ψ|p

c−1Pnei(λ−2
n t+tn)∆ψ

)
. (4.22)

Now, by Hölder and Bernstein estimates via (4.6) and (4.21), one writes for 0 < θ ≪ 1,

∥∇ẽl
n,T ∥Ω′(In,T ) ≲

3∑
k=1

∥∂k[χn(
x − xn

λn
)]ei(λ2

ntn+t)∆∂3−k[ fnPnψ]∥L1(In,T ,L2)

≲ |In,T |

3∑
k=1

λ−k
n ∥∂

kχn(
x − xn

λn
)∥∞∥∂3−k[ fnPnψ]∥L∞(In,T ,L2)

≲ λ2
nT

3∑
k=1

λ−k
n |

xn

λn
|−kλk−2

n ∥∂
3−k[Pnψ]∥L∞(In,T ,L2)

≲ T
3∑

k=1

|
xn

λn
|−k+(3−k)θ → 0 as n→ ∞. (4.23)
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Moreover, by (4.22),

∥∇ẽnl
n,T ∥Ω′(In,T ) ≲ λ

−(2−τ)
n

∥∥∥∥∇[ fn

(
|λnx + xn|

−τχpc

n |Pnei(λ−2
n t+tn)∆ψ|p

c−1Pnei(λ−2
n t+tn)∆ψ

)]∥∥∥∥
L2(In,T ,L

2N
2+N )

≲ λτn
√

T
∥∥∥∥∇[χpc

n |λnx + xn|
−τ|Pnei(λ−2

n t+tn)∆ψ|p
c]∥∥∥∥

L∞(In,T ,Ẇ
1, 2N

2+N )
. (4.24)

Now, taking account of (4.6), one has

∥χpc

n |λnx + xn|
−τ∥∞ ≲ |xn|

−τ; (4.25)

∥∇[χpc

n |λnx + xn|
−τ]∥∞ ≲ |xn|

−τ|
xn

λn
|−1. (4.26)

So, by Hölder and Bernstein estimates via (4.24) and (4.26), one writes

∥∇ẽnl
n,T ∥Ω′(In,T ) ≲ λ

τ
n|xn|

−τ|
xn

λn
|−1∥[Pnei(λ−2

n t+tn)∆ψ]pc
∥

L∞(In,T ,L
2N

2+N )

+ λτn∥χ
pc

n |λnx + xn|
−τ|Pnei(λ−2

n t+tn)∆ψ|p
c−1∇(Pnei(λ−2

n t+tn)∆ψ)∥
L∞(In,T ,L

2N
2+N )

:= (A) + (B). (4.27)

Using Hölder and Bernstein estimates and Sobolev embedding, one gets

(A) = λτn|xn|
−τ|

xn

λn
|−1∥|Pnei(λ−2

n t+tn)∆ψ|p
c
∥

L∞(In,T ,L
2N

2+N )

≲ λτn|xn|
−τ|

xn

λn
|−1∥Pnei(λ−2

n t+tn)∆ψ∥
pc

L∞(In,T ,Ḣ1)

≲ |
xn

λn
|−τ−1+θ∥ψ∥

pc

Ḣ1 → 0 as n→ ∞. (4.28)

Also, by Hölder and Bernstein estimates and Sobolev embedding, one gets, via the Strichartz
estimates,

(B) = λτn∥χ
pc

n |λnx + xn|
−τ|Pnei(λ−2

n t+tn)∆ψ|p
c−1∇(Pnei(λ−2

n t+tn)∆ψ)∥
L∞(In,T ,L

2N
2+N )

≲ |
xn

λn
|−τ∥Pnei(λ−2

n t+tn)∆ψ∥
pc−1
L∞(In,T ,LN(pc−1))

∥∇(Pnei(λ−2
n t+tn)∆ψ)∥L∞(In,T ,L2)

≲ |
xn

λn
|
−τ+θ (N−2)(1−τ)

2(2−τ) ∥ei(λ−2
n t+tn)∆ψ∥

pc−1
L∞(In,T ,L2∗ )

∥∇(Pnei(λ−2
n t+tn)∆ψ)∥L∞(In,T ,L2)

≲ |
xn

λn
|
−τ+θ(pc+

(N−2)(1−τ)
2(2−τ) )

∥ψ∥
pc

Ḣ1 → 0 as n→ ∞. (4.29)

Taking θ < min{1 + b, b
pc+

(N−2)(1−τ)
2(2−τ)

}, the proof is finished by (4.27)–(4.29). Now, one turns on I+n,T . In

such a case, one has via (4.10),

ẽn,T = (i∂t + ∆)ṽn,T + |x|−τ|ṽn,T |
pc−1ṽn,T

= |x|−τ|ṽn,T |
pc−1ṽn,T

= |x|−τ|ei(t−a+n,T )∆[ṽn,T (a+n,T )]|p
c−1ei(t−a+n,T )∆[ṽn,T (a+n,T )]. (4.30)
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Arguing as in (3.13), one writes, via (4.11),

∥ẽn,T ∥Ω′(In,T ) ≲ ∥ei(t−a+n,T )∆[ṽn,T (a+n,T )]∥p
c−1−τ

S (In,T ) ∥e
i(t−a+n,T )∆[ṽn,T (a+n,T )]∥1+b

Wτ(In,T )

≲ ∥ei(t−a+n,T )∆[ṽn,T (a+n,T )]∥p
c−1−τ

S (In,T )

≲ ∥eit∆[ fn(χnPneiT∆ψ)]∥p
c−1−τ

S (0,∞)

≲ ∥ fneiλ−2
n t∆[χnPneiT∆ψ]∥p

c−1−τ
S (0,∞) . (4.31)

Moreover, with a change of variable via (4.31) and Sobolev embedding with Strichartz estimates,
one gets

∥ẽn,T ∥Ω′(In,T ) ≲ ∥eit∆[χnPneiT∆ψ]∥p
c−1−τ

S (0,∞)

≲ ∥eit∆[χnPneiT∆ψ]∥p
c−1−τ
∇Wτ(0,∞)

≲ ∥∇[χnPn − 1]eiT∆ψ∥p
c−1−τ + ∥eit∆ψ∥

pc−1−τ
Wτ(T,∞). (4.32)

The proof is achieved by the dominated convergence theorem and (4.32).
Now, (4.4) follows with a direct application of Proposition 3.4 which gives also

lim sup
T→∞

lim sup
n
∥ṽn,T − vn∥∇Wτ(R) = 0. (4.33)

In the rest, one proves (4.5), which is reduced via (4.33) to

lim sup
T→∞

lim sup
n
∥χneit∆Pnψ − χ∥∇Wτ(R) = 0. (4.34)

For large T >> 1 and −T < t < T , by (4.10) and the dominated convergence theorem, one has for
n→ ∞,

∥λ
N−2

2
n ṽn,T (λ2

n(t − tn), λnx + xn) − χ∥∇Wτ(R) = ∥χneit∆Pnψ − χ∥∇Wτ(R)

→ ∥eit∆ψ − χ∥∇Wτ(R). (4.35)

So, (4.5) follows by (4.35) via a density argument. Moreover, for t > T , one has via (4.10),

λ
N−2

2
n ṽn,T (λ2

n(t − tn), λnx + xn) = f −1
n eiλ2

n(t−T )∆ fnχneiT∆Pnψ

= eit∆(e−iT∆χneiT∆)Pnψ. (4.36)

So, (4.5) follows by (4.36) via a density argument. □

Now, one returns to the proof of Proposition 2.1. One says that the statement (S C)(u0) holds if: For
u0 ∈ Ḣ1 satisfying (2.11) and (2.12), the corresponding solution to (INLS) is global and satisfies:

u ∈ S (R), (4.37)

where S (R) is the space defined in (3.4) and (3.36), respectively. Using Sobolev embeddings and the
Strichartz estimate, one writes for 0 < T < T+,

∥ei·∆u0∥S (0,T ) ≲ ∥∇ei·∆u0∥Wτ(0,T ) ≲ ∥∇u0∥. (4.38)
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Thus, if ∥∇u0∥ ≪ 1, by the small data theory in Proposition 3.3, (S C)(u0) holds. Now, for each
δ > 0, one defines the quantities

S δ :=
{
u0 ∈ Ḣ1, E(u0) < δ and ∥∇u0∥ < ∥∇φ∥

}
; (4.39)

Ec := sup
{
δ > 0 s. t u0 ∈ S δ ⇒ (S C)(u0) holds

}
. (4.40)

If the first part of Theorem 2.1 fails, it follows that

Ec < E(φ). (4.41)

Then, there is a sequence un of solutions to (INLS) such that the data un,0 ∈ Ḣ1 satisfies

∥∇un,0∥ < ∥∇φ∥; (4.42)
E(un,0)→ Ec as n→ ∞; (4.43)
∥un∥S (R) = ∞ for any n. (4.44)

Now, using the profile decomposition in Proposition 2.2, one writes

un,0 =

M∑
j=1

f j
n (eit j

n∆ψ j) +W M
n

:=
1

(λ j
n)

N−2
2

M∑
j=1

[eit j
n∆ψ j](

· − x j
n

λ
j
n

) +W M
n . (4.45)

Using Proposition 3.4 and Proposition 4.1 and following lines in [28, Theorem 1.2], one has only
one profile, (tn, xn) ≡ (0, 0) and ∥W1

n∥Ḣ1 → 0. Then, there exists 0 < λn < ∞ such that ∥λ
N−2

2
n u0,n(λn·) −

ψ∥Ḣ1 → 0. Taking account of Propositions 3.4 and 3.5, the solution to (INLS) with datum ψ is the
solution needed. See [28, Theorem 1.2] for more details.

4.2. Preclusion of compact solutions

Let u ∈ C([0,T+), Ḣ1) and a frequency scale function λ : [0,T+) 7→ R+, such that inft∈[0,T+) λ(t) ≥ 1,
given in Proposition 2.1. One discusses two cases.

4.2.1. Finite-time blowup scenario

To preclude the finite-time blowup scenario, one needs the following reduced Duhamel formula [40,
Proposition 8.7], which is a consequence of the compactness properties.

Lemma 4.1. The following weak limit holds in Ḣ1 for T → T+,

i
∫ T

t
ei(t−s)∆

[
|x|−τ|u|p

c−1u
]

ds ⇀ u(t). (4.46)

Now, assume that T+ < ∞. By (4.46) via Hölder, Hardy, and Bernstein estimates, one writes for
M > 0,

∥PMu(t)∥ ≲ ∥PM[|x|−τ|u|p
c−1u]∥L1((0,T+),L2)
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≲ M(T+ − t)∥(|x|−1u)τ|u|p
c−τ∥

L∞((0,T+),L
2N

2+N )

≲ M(T+ − t)∥|x|−1u∥τL∞((0,T+),L2)∥u∥
pc−τ

L∞((0,T+),L2∗ )

≲ M(T+ − t)∥u∥τL∞((0,T+),Ḣ1)∥u∥
pc−τ

L∞((0,T+),L2∗ )
. (4.47)

So, by the Bernstein inequality for the high frequencies via (4.47), one gets

∥u(t)∥ ≲ ∥PMu(t)∥ + ∥(1 − PM)u(t)∥
≲ M(T+ − t) + M−1. (4.48)

Now, taking account of the mass conservation and letting t be close to T+, it follows that u = 0
which contradicts T+ < ∞ and closes the proof.

4.2.2. Soliton-like scenario

In this subsection, one assumes that T+ = ∞. Let us give some notations in the spirit of [16]. Take,
for R >> 1, the radial function defined on RN by

ζ : x 7→
{ 1

2 |x|
2, if |x| ≤ R/2;

R|x|, if |x| > R.

Moreover, one assumes that in the centered annulus C(R/2,R) := {x ∈ RN , R/2 < |x| < R},

∂rζ > 0, ∂2
rζ ≥ 0 and |∂αζ | ≤ CαR| · |1−α, ∀ |α| ≥ 1.

Here, ∂rζ := ·

|·|
· ∇ζ denotes the radial derivative. Note that on the centered ball of radius R/2, one has

ζ jk = δ jk, ∆ζ = N and ∆2ζ = 0.

Moreover, by the radial identity

∂ j∂k =
(δ jk

r
−

x jxk

r3

)
∂r +

x jxk

r2 ∂2
r , (4.49)

one gets for |x| > R,

ζ jk =
R
|x|

(
δ jk −

x jxk

|x|2
)
; (4.50)

∆ζ =
(N − 1)R
|x|

; (4.51)

|∆2ζ | ≲
R
|x|3

. (4.52)

Using Cauchy Schwarz and Hardy estimates via (3.89) and (3.91), one has

|Mζ | = 2
∣∣∣∣ℑ∫

RN
ū(∇ζ · ∇u) dx

∣∣∣∣ ≲ R2E(u). (4.53)
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Taking account of the identity (4.49), one has

ℜ
( ∫

Bc(R/2)
∂l∂kζ∂ku∂lū dx

)
= ℜ

∫
Bc(R/2)

[(δlk

r
−

xlxk

r3

)
∂rζ +

xlxk

r2 ∂2
rζ
]
∂ku∂lū dx

=

∫
Bc(R/2)

(
|∇u|2 −

|x · ∇u|2

|x|2
)∂rζ

|x|
dx +

∫
Bc(R/2)

|x · ∇u|2

|x|2
∂2

rζ dx

=

∫
Bc(R/2)

| ̸ ∇u|2
∂rζ

|x|
dx +

∫
Bc(R/2)

|x · ∇u|2

|x|2
∂2

rζ dx, (4.54)

where the angular gradient is

̸ ∇ := ∇ −
x · ∇
|x|2

x.

Now, by (4.54) via Proposition 2.5, one writes

M′ζ[u] = 4
(
∥∇u∥2L2(B(R/2)) −

∫
B(R/2)

|x|−τ|u|p
c
dx
)

+

∫
Bc(R/2)

| ̸ ∇u|2
∂rζ

|x|
dx +

∫
Bc(R/2)

|x · ∇u|2

|x|2
∂2

rζ dx −
∫

Bc(R/2)
∆2ζ |u|2 dx

−

∫
Bc(R/2)

(4b
pc

∇ζ · x
|x|2

+ 2
pc − 2

pc ∆ζ
)
|x|−τ|u|p

c
dx. (4.55)

So, (4.55) via (3.89), (3.91) and Sobolev embeddings implies that

M′ζ[u] ≥ 4
(
∥∇u∥2L2(B(R/2)) −

∫
B(R/2)

|x|−τ|u|p
c
dx
)
− c
∫

Bc(R/2)

(
|x|−2|u|2 + |x|−τ|u|p

c)
dx

≥ 4
(
∥∇u∥2 −

∫
RN
|x|−τ|u|p

c
dx
)
− c
∫

Bc(R/2)

(
|∇u|2 + |x|−2|u|2 + |x|−τ|u|p

c)
dx

≳ E(u) − c
∫

Bc(R/2)

(
|∇u|2 + |x|−2|u|2 + |x|−τ|u|p

c)
dx. (4.56)

So, (4.53) via (4.56) gives

E(u) ≲
R2

T
+

∫
Bc(R/2)

(
|∇u|2 + |x|−2|u|2 + |x|−τ|u|p

c)
dx. (4.57)

Finally, one picks T := R3 → ∞, so (2.16) via (4.57) gives E(u) = 0. This contradiction finishes
the proof.

5. Blowup

In this section, one proves the second part of Theorem 2.1. Let us denote ϕA := A2ϕ( ·A ), for A > 0,
where ϕ ∈ C∞0 (RN) is radial and satisfies

ϕ(x) =
{ 1

2 |x|
2, |x| ≤ 1;

0, |x| ≥ 2,
and ϕ′′ ≤ 1.
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A calculus gives

ϕ′′A ≤ 1, ϕ′A(r) ≤ r and ∆ϕA ≤ N.

By the localized variance identity [46, Corollary 3.2], one has

M′′A = −

∫
RN
∆2ϕA|u|2 dx + 4

∫
RN
∂l∂kϕAℜ(∂ku∂lū) dx

+
4

1 + p

∫
RN
∇ϕA · ∇(|x|−τ)|u|1+p dx − 2

p − 1
1 + p

∫
RN
∆ϕA|x|−τ|u|1+p dx

= 4
(
∥∇u∥2L2(|x|<A) −

∫
|x|<A
|x|−τ|u|1+p dx

)
−

∫
RN
∆2ϕA|u|2 dx

+
4

1 + p

∫
|x|>A
∇ϕA · ∇(|x|−τ)|u|1+p dx − 2

p − 1
1 + p

∫
|x|>A
∆ϕA|x|−τ|u|1+p dx

+ 4
∫
|x|>A

∂l∂kϕAℜ(∂ku∂lū) dx. (5.1)

Recall the next radial identities

∂2

∂x j∂xk
:= ∂2

jk =
(δ jk

r
−

x jxk

r3

)
∂r +

x jxk

r2 ∂2
r ; (5.2)

∆ = ∂2
r +

N − 1
r

∂r; (5.3)

∇ =
x
r
∂r. (5.4)

Since ϕ is radial, we have from the above identities

∂2
jkϕA∂ku(t)∂ jū(t) = |∇u|2

ϕ′A
r
+
(
ϕ′′A −

ϕ′A
r

) |x · ∇u|2

r2 ; (5.5)

∇ϕA · ∇(|x|−τ) = −τ|x|−τ
ϕ′A
r
. (5.6)

Thus, (5.1), (5.5), and (5.6) give

M′′A = 4
(
∥∇u∥2 − P[u]

)
−

∫
RN
∆2ϕA|u|2 dx − 4

( ∫
|x|>A
|∇u|2 dx −

∫
|x|>A
|x|−τ|u|1+p dx

)
+ 4

∫
|x|>A

(
|∇u|2

ϕ′A
r
+
(
ϕ′′A −

ϕ′A
r

) |x · ∇u|2

r2

)
dx

−
4τ

1 + p

∫
|x|>A

ϕ′A
r
|x|−τ|u|1+p dx − 2

p − 1
1 + p

∫
|x|>A
∆ϕA|x|−τ|u|1+p dx

≤ 4
(
∥∇u∥2 − P[u]

)
−

∫
RN
∆2ϕA|u|2 dx + 4

∫
|x|>A

(ϕ′A
r
− 1
)(
|∇u|2 −

|x · ∇u|2

r2

)
dx

−
4τ

1 + p

∫
|x|>A

ϕ′A
r
|x|−τ|u|1+p dx − 2

p − 1
1 + p

∫
|x|>A
∆ϕA|x|−τ|u|1+p dx + 4

∫
|x|>A
|x|−τ|u|1+p dx

≲ ∥∇u∥2 − P[u] + A−2 + A−τ∥u∥1+p
1+p. (5.7)
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Now, if we assume that sup[0,T+) ∥∇u(t)∥ < ∞, (5.7) implies that

M′′A ≲ ∥∇u∥2 − P[u] + A−2 + A−τ. (5.8)

Thus, (3.94) and (5.8) give M′′A ≤ −c < 0, for large A >> 1. Integrating this inequality twice in
time, it follows that u is non-global. This ends the proof of the second part of Theorem 2.1.

6. Conclusions and discussions

The primary contribution of this note is Theorem 2.1, which complements the findings of [26–28]
to higher spatial dimensions and removes the radial assumption. While the scattering threshold was
established in [26–28] for three spatial dimensions, the novelty of this work lies in demonstrating
the scattering threshold for space dimensions larger than four without the requirement of spherical
symmetry. The approach follows the road-map outlined by Kenig and Merle in [14].
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