In this paper, we establish Pareto $ Z $-eigenvalue inclusion intervals of tensor eigenvalue complementarity problems based on the spectral radius of symmetric matrices deduced from the provided tensor. Numerical examples are suggested to demonstrate the effectiveness of the results. As an application we offer adequate criteria for the strict copositivity of symmetric tensors.
Citation: Xueyong Wang, Gang Wang, Ping Yang. Novel Pareto $ Z $-eigenvalue inclusion intervals for tensor eigenvalue complementarity problems and its applications[J]. AIMS Mathematics, 2024, 9(11): 30214-30229. doi: 10.3934/math.20241459
In this paper, we establish Pareto $ Z $-eigenvalue inclusion intervals of tensor eigenvalue complementarity problems based on the spectral radius of symmetric matrices deduced from the provided tensor. Numerical examples are suggested to demonstrate the effectiveness of the results. As an application we offer adequate criteria for the strict copositivity of symmetric tensors.
[1] | S. Adly, H. Rammal, A new method for solving Pareto eigenvalue complementarity problems, Comput. Optim. Appl., 55 (2013), 703–731. https://doi.org/10.1007/s10589-013-9534-y doi: 10.1007/s10589-013-9534-y |
[2] | K. C. Chang, K. J. Pearson, T. Zhang, Some variational principles for $Z$-eigenvalues of nonnegative tensors, Linear Algebra Appl., 438 (2013), 4166–4182. https://doi.org/10.1016/j.laa.2013.02.013 doi: 10.1016/j.laa.2013.02.013 |
[3] | H. Chen, Z.-H. Huang, L. Qi, Copositivity detection of tensors: theory and algorithm, J. Optim. Theory Appl., 174 (2017), 746–761. https://doi.org/10.1007/s10957-017-1131-2 doi: 10.1007/s10957-017-1131-2 |
[4] | J. Fan, J. Nie, A. Zhou, Tensor eigenvalue complementarity problems, Math. Program., 170 (2018), 507–539. https://doi.org/10.1007/s10107-017-1167-y doi: 10.1007/s10107-017-1167-y |
[5] | L. M. Fernandes, J. J. Judice, H. D. Sherali, M. Fukushima, On the computation of all eigenvalues for the eigenvalue complementarity problem, J. Glob. Optim., 59 (2014), 307–326. https://doi.org/10.1007/s10898-014-0165-3 doi: 10.1007/s10898-014-0165-3 |
[6] | J. He, Y. Liu, X. Shen, Localization sets for pareto eigenvalues with applications, Appl. Math. Lett., 144 (2023), 108711. https://doi.org/10.1016/j.aml.2023.108711 doi: 10.1016/j.aml.2023.108711 |
[7] | R. A. Horn, C. R. Johnson, Topics in matrix analysis, Cambrige: Cambrige University Press, 1994. https://doi.org/10.1017/CBO9780511840371 |
[8] | J. J. Judice, H. D. Sherali, I. M. Ribeiro, The eigenvalue complementarity problem, Comput. Optim. Appl., 37 (2007), 139–156. https://doi.org/10.1007/s10589-007-9017-0 doi: 10.1007/s10589-007-9017-0 |
[9] | K. Kannike, Vacuum stability of a general scalar potential of a few fields, Eur. Phys. J. C, 76 (2016), 324. https://doi.org/10.1140/epjc/s10052-016-4160-3 doi: 10.1140/epjc/s10052-016-4160-3 |
[10] | C. Ling, H. He, L. Qi, On the cone eigenvalue complementarity problem for higher-order tensors, Comput. Optim. Appl., 63 (2016), 143–168. https://doi.org/10.1007/s10589-015-9767-z doi: 10.1007/s10589-015-9767-z |
[11] | M. Ng, L. Qi, G. Zhou, Finding the largest eigenvalue of a nonnegative tensor, SIAM J. Matrix Anal. Appl., 31 (2010), 1090–1099. https://doi.org/10.1137/09074838X doi: 10.1137/09074838X |
[12] | J. Pena, J. C. Vera, L. F. Zuluaga, Completely positive reformulations for polynomial optimization, Math. Program., 151 (2014), 405–431. https://doi.org/10.1007/s10107-014-0822-9 doi: 10.1007/s10107-014-0822-9 |
[13] | L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symb. Comput., 40 (2005), 1302–1324. https://doi.org/10.1016/j.jsc.2005.05.007 doi: 10.1016/j.jsc.2005.05.007 |
[14] | L. Qi, Z. Luo, Tensor analysis: spectral properties and special tensors, Philadelphia: SIAM Press, 2017. https://doi.org/10.1137/1.9781611974751 |
[15] | L. Qi, G. Yu, E. X. Wu, Higher order positive semi-definite diffusion tensor imaging, SIAM J. Imaging Sci., 3 (2010), 416–433. https://doi.org/10.1137/090755138 doi: 10.1137/090755138 |
[16] | C. Sang, Z. Chen, $Z$-eigenvalue localization sets for even order tensors and their applications, Acta Appl. Math., 169 (2020), 323–339. https://doi.org/10.1007/s10440-019-00300-1 doi: 10.1007/s10440-019-00300-1 |
[17] | Y. Song, L. Qi, Eigenvalue analysis of constrained minimization problem for homogeneous polynomial, J. Glob. Optim., 64 (2016), 563–575. https://doi.org/10.1007/s10898-015-0343-y doi: 10.1007/s10898-015-0343-y |
[18] | Y. Song, L. Qi, Tensor complementarity problem and semi-positive tensors, J. Optim. Theory Appl., 169 (2016), 1069–1078. https://doi.org/10.1007/s10957-015-0800-2 doi: 10.1007/s10957-015-0800-2 |
[19] | H. Sun, M. Sun, H. Zhou, A proximal splitting method for separable convex programming and its application to compressive sensing, J. Nonlinear Sci. Appl., 9 (2016), 392–403. https://doi.org/10.22436/jnsa.009.02.05 doi: 10.22436/jnsa.009.02.05 |
[20] | H. Sun, M. Sun, Y. Wang, New global error bound for extended linear complementarity problems, J. Inequal. Appl., 2018 (2018), 258. https://doi.org/10.1186/s13660-018-1847-z doi: 10.1186/s13660-018-1847-z |
[21] | H. Sun, Y. Wang, S. Li, M. Sun, A sharper global error bound for the generalized linear complementarity problem over a polyhedral cone under weaker conditions, J. Fixed Point Theory Appl., 20 (2018), 75. https://doi.org/10.1007/s11784-018-0556-z doi: 10.1007/s11784-018-0556-z |
[22] | H. Sun, Y. Wang, S. Li, M. Sun, An improvement on the global error bound estimation for ELCP and its applications, Numer. Funct. Anal. Optim., 42 (2021), 644–670. https://doi.org/10.1080/01630563.2021.1919897 doi: 10.1080/01630563.2021.1919897 |
[23] | M. Sun, H. Sun, Improved proximal ADMM with partially parallel splitting for multi-block separable convex programming, J. Appl. Math. Comput., 58 (2018), 151–181. https://doi.org/10.1007/s12190-017-1138-8 doi: 10.1007/s12190-017-1138-8 |
[24] | G. Wang, G. Zhou, L. Caccetta, $Z$-eigenvalue inclusion theorems for tensors, Discrete Contin. Dyn. Syst. B, 22 (2017), 87–198. http://doi.org/10.3934/dcdsb.2017009 doi: 10.3934/dcdsb.2017009 |
[25] | G. Wang, Y. Wang, Y. Wang, Some Ostrowski-type bound estimations of spectral radius for weakly irreducible nonnegative tensors, Linear and Multlinear Algebra, 68 (2020), 1817–1834. https://doi.org/10.1080/03081087.2018.1561823 doi: 10.1080/03081087.2018.1561823 |
[26] | H. Wang, J. Du, H. Su, H. Sun, A linearly convergent self-adaptive gradient projection algorithm for sparse signal reconstruction in compressive sensing, AIMS Math., 8 (2023), 14726–14746. https://doi.org/10.3934/math.2023753 doi: 10.3934/math.2023753 |
[27] | Y. Xu, S. Hu, Y. Du, Research on optimization scheme for blocking artifacts after patch-based medical image reconstruction, Comput. Math. Method. Med., 2022 (2022), 2177159. https://doi.org/10.1155/2022/2177159 doi: 10.1155/2022/2177159 |
[28] | B. Xue, J. Du, H. Sun, Y. Wang, A linearly convergent proximal ADMM with new iterative format for BPDN in compressed sensing problem, AIMS Math., 7 (2022), 10513–10533. https://doi.org/10.3934/math.2022586 doi: 10.3934/math.2022586 |
[29] | P. Yang, Y. Wang, G. Wang, Q. Hou, Pareto $Z$-eigenvalue inclusion theorems for tensor eigenvalue complementarity problems, J. Inequal. Appl., 2022 (2022), 77. https://doi.org/10.1186/s13660-022-02816-x doi: 10.1186/s13660-022-02816-x |
[30] | G. Yu, Y. Song, Y. Xu, Z. Yu, Spectral projected gradient methods for generalized tensor eigenvalue complementarity problems, Numer. Algor., 80 (2019), 1181–1201. https://doi.org/10.1007/s11075-018-0522-2 doi: 10.1007/s11075-018-0522-2 |
[31] | J. Zhao, A new $E$-eigenvalue localization set for fourth-order tensors, Bull. Malays. Math. Sci. Soc., 43 (2020), 1685–1707. https://doi.org/10.1007/s40840-019-00768-y doi: 10.1007/s40840-019-00768-y |
[32] | M. Zeng, Tensor $Z$-eigenvalue complementarity problems, Comput. Optim. Appl., 78 (2021), 559–573. https://doi.org/10.1007/s10589-020-00248-1 doi: 10.1007/s10589-020-00248-1 |