In this paper, we establish Pareto Z-eigenvalue inclusion intervals of tensor eigenvalue complementarity problems based on the spectral radius of symmetric matrices deduced from the provided tensor. Numerical examples are suggested to demonstrate the effectiveness of the results. As an application we offer adequate criteria for the strict copositivity of symmetric tensors.
Citation: Xueyong Wang, Gang Wang, Ping Yang. Novel Pareto Z-eigenvalue inclusion intervals for tensor eigenvalue complementarity problems and its applications[J]. AIMS Mathematics, 2024, 9(11): 30214-30229. doi: 10.3934/math.20241459
[1] | Tinglan Yao . An optimal $ Z $-eigenvalue inclusion interval for a sixth-order tensor and its an application. AIMS Mathematics, 2022, 7(1): 967-985. doi: 10.3934/math.2022058 |
[2] | Shunjie Bai . A tighter M-eigenvalue localization set for partially symmetric tensors and its an application. AIMS Mathematics, 2022, 7(4): 6084-6098. doi: 10.3934/math.2022339 |
[3] | Mingyuan Cao, Yueting Yang, Chaoqian Li, Xiaowei Jiang . An accelerated conjugate gradient method for the Z-eigenvalues of symmetric tensors. AIMS Mathematics, 2023, 8(7): 15008-15023. doi: 10.3934/math.2023766 |
[4] | Jinming Cai, Shuang Li, Kun Li . Matrix representations of Atkinson-type Sturm-Liouville problems with coupled eigenparameter-dependent conditions. AIMS Mathematics, 2024, 9(9): 25297-25318. doi: 10.3934/math.20241235 |
[5] | João Lita da Silva . Spectral properties for a type of heptadiagonal symmetric matrices. AIMS Mathematics, 2023, 8(12): 29995-30022. doi: 10.3934/math.20231534 |
[6] | Yuanqiang Chen, Jihui Zheng, Jing An . A Legendre spectral method based on a hybrid format and its error estimation for fourth-order eigenvalue problems. AIMS Mathematics, 2024, 9(3): 7570-7588. doi: 10.3934/math.2024367 |
[7] | Bin Guan . A prime number theorem in short intervals for dihedral Maass newforms. AIMS Mathematics, 2024, 9(2): 4896-4906. doi: 10.3934/math.2024238 |
[8] | Maja Nedović, Dunja Arsić . New scaling criteria for $ H $-matrices and applications. AIMS Mathematics, 2025, 10(3): 5071-5094. doi: 10.3934/math.2025232 |
[9] | Na Li, Qin Zhong . Smoothing algorithm for the maximal eigenvalue of non-defective positive matrices. AIMS Mathematics, 2024, 9(3): 5925-5936. doi: 10.3934/math.2024289 |
[10] | Imrana Kousar, Saima Nazeer, Abid Mahboob, Sana Shahid, Yu-Pei Lv . Numerous graph energies of regular subdivision graph and complete graph. AIMS Mathematics, 2021, 6(8): 8466-8476. doi: 10.3934/math.2021491 |
In this paper, we establish Pareto Z-eigenvalue inclusion intervals of tensor eigenvalue complementarity problems based on the spectral radius of symmetric matrices deduced from the provided tensor. Numerical examples are suggested to demonstrate the effectiveness of the results. As an application we offer adequate criteria for the strict copositivity of symmetric tensors.
Consider the tensor eigenvalue complementarity problems of finding (λ,x)∈R×Rn+∖{0} such that
0≤x⊥(λx−Axm−1)≥0andx⊤x=1, | (1.1) |
where a⊥b means that vectors a,b are perpendicular to each other, and A=(ai1i2…im)∈R[m,n] is an m-th order n-dimensional real tensor, and Axm−1 is the vector in Rn with entries
(Axm−1)i=∑i2,…,im∈Naii2⋯imxi2⋯xim,N={1,…,n}. |
If (1.1) holds, (λ,x)∈R×Rn+∖{0} is called a Pareto Z-eigenpair of tensor A. Pareto Z-eigenvalue problems of tensors were introduced by Song [17], which can be seen generalizations of classical tensor (matrix) eigenvalue problems [1,5,6,8,13,14,19,20,21,22], have broad applications in higher-order Markov chains [11] and magnetic resonance imaging [15,26,27]. Therefore, Pareto Z-eigenvalue problems of tensors garnered a lot of interest in the literature [4,10,30,32]. To achieve Pareto Z-eigenvalues of tensor eigenvalue complementarity problems, for instance, Zeng [32] suggested a semidefinite relaxation approach. Nonetheless, there exist a huge, potentially endless number of Pareto Z-eigenvalues of tensors [2,32]. Therefore, calculating all Pareto Z-eigenvalues is difficult. A few scholars have turned to investigating Pareto Z-eigenvalue intervals to describe the distribution of Pareto Z-eigenvalues [17,29]. Particularly, Yang et al. [29] proposed Pareto Z-eigenvalue intervals via key tensor elements, which have a significant impact on the Pareto Z-eigenvalue estimation. It is crucial to create new Pareto Z-eigenvalue intervals that are independent of certain tensor constituents. Note that matrices can be viewed as the large elements of tensors, and the spectral radius has relative stability. Can we use the spectral radius of the related symmetric matrices instead of tensor elements to accurately characterize the Pareto Z-eigenvalue? Different from the existing Z-eigenvalue inclusion sets [16,24,25,31], we investigate the relations between the tensor and its induced matrix and establish Pareto Z-eigenvalue intervals from the spectral radius of the linked symmetric matrices.
As we know, tensor A is strictly copositive if Axm>0,∀x∈Rn+∖{0}, which has important applications in vacuum stability of a general scalar potential [9] and polynomial optimization [3,12]. Song et al. [17] pointed out that symmetric tensor A is strictly copositive if and only if its Pareto Z-eigenvalues are positive. Therefore, we can identify whether a tensor is copositive by the lower bounds of Pareto Z-eigenvalues. Inspired by the articles [17,29], we propose some criteria for judging strict copositivity via the spectral radius of the symmetric matrices extracted from the given tensor.
The remainder of this paper is organized as follows: In Section 2, crucial definitions and preliminary results are recalled. In Section 3, we establish two tight Pareto Z-eigenvalue intervals via the spectral radius of the symmetric matrices. In Section 4, sufficient conditions are proposed for identifying strict copositivity of symmetric tensors.
In this section, we first introduce important definitions and notations of tensors [2,13,29].
The set of all real numbers is denoted by R, and the n-dimensional real Euclidean space is denoted by Rn. For any a∈R, we denote [a]+:=max{0,a} and [a]−:=max{0,−a}. For any A∈R[m,n], we define
[A]+:=([ai1i2⋯im]+)∈R[m,n],[A]−:=([ai1i2⋯im]−)∈R[m,n]. |
Definition 2.1. Let A=(ai1i2⋯im)∈R[m,n], and σZ(A) be the set of all Pareto Z-eigenvalues of A.
(i) The maximum Pareto Z-eigenvalue and the minimum Pareto Z-eigenvalue of A are denoted by
ρZ(A)=max{λ:λ∈σZ(A)}andτZ(A)=min{λ:λ∈σZ(A)}. |
(ii) A is called symmetry if
ai1…im=aiπ(1)…iπ(m),∀π∈Γm, |
where Γm is the permutation group of m indices.
(iii) δi1i2…im is called the generalized Kronecker symbol:
δi1i2…im={1,ifi1=i2=…im0,otherwise. |
We conclude this section with significant results of the symmetric matrices [7] and the bound of Pareto Z-eigenvalue.
Lemma 2.1. Let P∈Rn×n be a symmetric matrix and x∈Rn be a unit vector, i.e., x⊤x=1. μmin(P) (or μmax(P)) denotes the minimum (maximum) eigenvalue of a square matrix P, and ρ(P) is the spectral radius of P. Then,
μmin(P)≤x⊤Px≤μmax(P)and|x⊤Px|≤ρ(P). |
Lemma 2.2. (Theorem 2 of [29]) Let A∈R[m,n] and σ(A)≠∅. Then,
σ(A)⊆Ω(A)=⋃i∈NΩi(A):={λ∈R:|λ|≤max{Ri(A)+,Ri(A)−}}, |
where Ri(A)+:=n∑i2,…,im=1[aii2⋯im]+,Ri(A)−:=n∑i2,…,im=1[aii2…im]−.
We begin with the bounds of Pareto Z-eigenvalues for a third-order tensor based on the spectral radius of the symmetric matrix Vi:=Ai::+A⊤i::2.
Theorem 3.1. Let A∈R[3,n] with σZ(A)≠∅. Then,
σZ(A)⊆Υ(A):={λ∈R:−√∑i∈N(ρ[Vi]−)2≤λ≤√∑i∈N(ρ[Vi]+)2}, | (3.1) |
where [Vi]+=[Ai::]++[Ai::]⊤+2,[Vi]−=[Ai::]−+[Ai::]⊤−2 and Ai:: is the matrix by fixing i indices of A.
Proof. Suppose that (λ,x) is a Pareto Z-eigenpair of A. On the one hand, since x⊤x=1 and xi≥0 hold for all i∈N, we obtain
λ∑i∈Nx2i=Ax3≤[A]+x3=∑i,i2,i3∈N[aii2i3]+xixi2xi3=∑i∈N(∑i2,i3∈N[aii2i3]+xi2xi3)xi≤√(∑i2,i3∈N[a1i2i3]+xi2xi3)2+⋯+(∑i2,i3∈N[ani2i3]+xi2xi3)2⋅√x21+⋯+x2n=√(x⊤[A1::]+x)2+⋯+(x⊤[An::]+x)2, | (3.2) |
where the second inequality holds from Cauchy–Schwarz inequality. It follows from the definition of [Vi]+ and x⊤[Ai::]+x=x⊤[Ai::]⊤+x that
x⊤[Vi]+x=x⊤[Ai::]++[Ai::]⊤+2x=x⊤[Ai::]+x. | (3.3) |
Since [Vi]+ is a real symmetric matrix, by (3.2), (3.3), and Lemma 2.1, we obtain
λ≤√∑i∈N(ρ[Vi]+)2. | (3.4) |
On the other hand, from x⊤x=1 and xi≥0 for all i∈N, one has
−λ∑i∈Nx2i=−Ax3≤[A]−x3=∑i∈N(∑i,i2,i3∈N[aii2i3]−xixi2xi3=∑i,i2,i3∈N[aii2i3]−xi2xi3)xi≤√(∑i2,i3∈N[a1i2i3]−xi2xi3)2+⋯+(∑i2,i3∈N[ani2i3]−xi2xi3)2⋅√x21+⋯+x2n=√(x⊤[A1::]−x)2+⋯+(x⊤[An::]−x)2. | (3.5) |
It follows from the definition of [Vi]− and x⊤[Ai::]−x=x⊤[Ai::]⊤−x that
x⊤[Vi]−x=x⊤[Ai::]−+[Ai::]⊤−2x=x⊤[Ai::]−x. | (3.6) |
Taking into account that [Vi]− is a real symmetric matrix, by (3.5), (3.6), and Lemma 2.1, we deduce
λ≥−√∑i∈N(ρ[Vi]−)2. | (3.7) |
Combining (3.4) with (3.7) yields
−√∑i∈N(ρ[Vi]−)2≤λ≤√∑i∈N(ρ[Vi]+)2, |
which implies λ∈Υ(A) and σZ(A)⊆Υ(A).
The following example is proposed to test the efficiency of the obtained results.
Example 3.1. Consider a tensor A=(aijk)∈R[3,3] defined by
aijk={a111=1;a112=−1;a131=1;a133=1;a211=−1;a222=2;a232=1;a311=1;a322=3;a323=1;aijk=0,otherwise. |
By calculating, we have
[A1::]+=[100000101],[A1::]−=[010000000], |
[V1]+=[100.50000.501],[V1]−=[00.500.500000],ρ([V1]+)=1.5000,ρ([V1]−)=0.5000. |
Following the similar calculations to the above, one has
ρ([V2]+)=2.1180,ρ([V2]−)=0.5000,ρ([V3]+)=3.0811,ρ([V3]−)=0.0000. |
According to Theorem 3.1, we obtain
Υ(A)={λ∈R:−√22≤λ≤4.0285}. |
Recalling Theorem 1 of [29], we deduce
Ω(A)={λ∈R:−1.0000≤λ≤5.0000}, |
which implies that the bound of Theorem 3.1 is sharp.
The following example estimates the Pareto Z-eigenvalues to guarantee nonconstant trajectories of equilibrium systems.
Example 3.2. Consider the following differential equilibrium system:
∑:˙x1(t)=x21+x1x2;˙x2(t)=2x22+x1x3;˙x3(t)=x23withx21+x22+x33=1. |
Thus, ∑ can be written as ˙x(t)=Ax2, where x=(x1,x2,x3)⊤ with x21+x22+x33=1 and A=(aijk)∈R[3,3] with
aijk={a111=a121=1;a222=2;a231=a333=1;aijkl=0,otherwise. |
In order to ensure nonconstant trajectories of the equilibrium system, we need to find (λ,x)∈R×Rn+∖{0} such that
0≤x⊥(λx−Ax2)≥0andx⊤x=1. |
Using Algorithm 3.1 of [32], we obtain four Pareto Z-eigenvalues and the associated Pareto Z-eigenvectors about 3.25 seconds:
λ1=0.8944,u1=(0.0000,0.4472,0.8944);λ2=1.0000,u2=(1.0000,0.0000,0.0000);λ3=1.4142,u3=(0.7071,0.7071,0.0000);λ4=2.0000,u4=(0.0000,1.0000,0.0000). |
It follows from Theorem 3.1 that we estimate 0≤λ≤√6. We apply this estimation to Algorithm 3.1 of [32] and can calculate the above Pareto Z-eigenvalues in 2.65 seconds. Therefore, Algorithm 3.1 of [32] could be accelerated by establishing the bound of Pareto Z-eigenvalues.
Using the spectral radius of symmetric matrices extracted from the given tensor, we establish Pareto Z-eigenvalue intervals of an m-order tensor with m≥4.
Theorem 3.2. Let A∈R[m,n] with m≥4, and σZ(A)≠∅. Then,
σZ(A)⊆Θ(A)=⋃i∈NΘi(A):={λ∈R:|λ|≤max{ρ([Bi]+),ρ([Bi]−)}}, |
where [Bi]+=[Ai]++[Ai]⊤+2,[Bi]−=[Ai]−+[Ai]⊤−2 and
[Ai]+=[∑i2,…,im−2∈N[aii2…im−211]+…∑i2,…,im−2∈N[aii2…im−21n]+⋮⋮⋮∑i2,…,im−2∈N[aii2…im−2n1]+…∑i2,…,im−2∈N[aii2…im−2nn]+],[Ai]−=[∑i2,…,im−2∈N[aii2…im−211]−…∑i2,…,im−2∈N[aii2…im−21n]−⋮⋮⋮∑i2,…,im−2∈N[aii2…im−2n1]−…∑i2,…,im−2∈N[aii2…im−2nn]−]. |
Proof. Suppose that (λ,x) is a Pareto Z-eigenpair of A. Then,
λx2i=∑i2,…,im∈Naii2…imxixi2…xim. | (3.8) |
Denote xp=maxi∈N{xi}. Then, 0<xp≤1 as x⊤x=1. Recalling the p-th equation of (3.8), we obtain
λx2p=∑i2,…,im∈Napi2…imxpxi2…xim. |
Taking modulus in the equation above, one has
|λ|x2p=|∑i2,…,im∈N[api2…im]+xpxi2…xim−∑i2,…,im∈N[api2…im]−xpxi2…xim|≤max{∑i2,…,im∈N[api2…im]+xpxi2…xim,∑i2,…,im∈N[api2…im]−xpxi2…xim}≤max{∑im−1,im∈N∑i2,…,im−2∈N[api2…im]+x2pxim−1xim,∑im−1,im∈N∑i2,…,im−2∈N[api2…im]−x2pxim−1xim}=x2pmax{x⊤[Ap]+x,x⊤[Ap]−x}, | (3.9) |
where [Ap]+ and [Ap]− are defined in Theorem 3.2. Certainly, x⊤[Ai]+x=x⊤[Ai]⊤+x and x⊤[Ai]−x=x⊤[Ai]⊤−x. It follows from the definitions of [Bi]+ and [Bi]− that
x⊤[Bp]+x=x⊤[Ap]++[Ap]⊤+2x=x⊤[Ap]+x,x⊤[Bp]−x=x⊤[Ap]−+[Ap]⊤−2x=x⊤[Ap]−x. | (3.10) |
Since [Bp]+ and [Bp]− are real symmetric matrices, by (3.9), (3.10) and Lemma 2.1, we have
|λ|≤max{ρ([Bp]+),ρ([Bp]−)}, |
which implies λ∈Θ(A), and hence σZ(A)⊆Θ(A).
Now, we are in a position to establish tight Pareto Z-eigenvalues inclusion intervals by accurate classification of index sets.
Theorem 3.3. Let A∈R[m,n] with m≥4, and σZ(A)≠∅. Then,
σZ(A)⊆M(A)=⋃i∈N⋂j∈N,i≠jMi,j(A), |
where
Mi,j(A):={λ∈R:(|λ|−ρ([Bji]+))|λ|≤ρ([Dij]−)max{ρ([Bj]+),ρ([Bj]−)}}⋃{λ∈R:(|λ|−ρ([Bji]−))|λ|≤ρ([Dij]−)max{ρ([Bj]+),ρ([Bj]−)}}, |
[Bji]+=[Aji]++[Aji]⊤+2,[Bji]−=[Aji]−+[Aji]⊤−2 and
[Aji]+=[∑δji2…im−2=0[aii2…im−211]+…∑δji2…im−2=0[aii2…im−21n]+⋮⋮⋮∑δji2…im−2=0[aii2…im−2n1]+…∑δji2…im−2=0[aii2…im−2nn]+], |
[Aji]−=[∑δji2…im−2=0[aii2…im−211]−…∑δji2…im−2=0[aii2…im−21n]−⋮⋮⋮∑δji2…im−2=0[aii2…im−2n1]−…∑δji2…im−2=0[aii2…im−2nn]−], |
[Dij]+=[Cij]++[Cij]⊤+2,[Dij]−=[Cij]−+[Cij]⊤−2, |
[Cij]+=[[aij…j11]+…[aij…j1n]+⋮⋮⋮[aij…jn1]+…[aij…jnn]+],[Cij]−=[[aij…j11]−…[aij…j1n]−⋮⋮⋮[aij…jn1]−…[aij…jnn]−]. |
Proof. Let (λ,x) be a Pareto Z-eigenpair of A. Setting 0<xp=maxi∈N{xi} and referring to the p-th equation of (3.8), for any q∈N,q≠p, we obtain
|λ|x2p=|∑i2,…,im∈Napi2…imxpxi2…xim|=|∑i2,…,im∈N[api2…im]+xpxi2…xim−∑i2,…,im∈N[api2…im]−xpxi2…xim|≤max{∑i2,…,im∈N[api2…im]+xpxi2…xim,∑i2,…,im∈N[api2…im]−xpxi2…xim}=max{x⊤[Cpq]+xxpxq+x2px⊤[Aqp]+x,x⊤[Cpq]−xxpxq+x2px⊤[Aqp]−x}. | (3.11) |
Clearly,
x⊤[Cpq]+x=x⊤[Cpq]⊤+x,x⊤[Cpq]−x=x⊤[Cpq]⊤−x, |
x⊤[Aqp]+x=x⊤[Aqp]⊤+x,x⊤[Aqp]−x=x⊤[Aqp]⊤−x. |
With the definitions of [Dij]+,[Dij]−,[Bji]+ and [Bji]−, it is easy to verify that
x⊤[Dpq]+x=x⊤[Cpq]+x,x⊤[Dpq]−x=x⊤[Cpq]−x,x⊤[Bqp]+x=x⊤[Aqp]+x,x⊤[Bqp]−x=x⊤[Aqp]−x. | (3.12) |
Since [Dpq]+,[Dpq]−,[Bqp]+ and [Bqp]− are real symmetric matrices, by (3.11), (3.12), and Lemma 2.1, we deduce
|λ|x2p≤max{ρ([Dpq]+)xpxq+x2pρ([Bqp]+),ρ([Dpq]−)xpxq+x2pρ([Bqp]−)}. | (3.13) |
Recalling the q-th equation of (3.8), one has
|λ|x2q=|∑i2,…,im∈Naqi2…imxqxi2…xim|≤max{∑i2,…,im∈N[aqi2…im]+xqxi2…xim,∑i2,…,im∈N[aqi2…im]−xqxi2…xim}≤max{∑i2,…,im∈N[aqi2…im]+xqxpxim−1xim,∑i2,…,im∈N[aqi2…im]−xqxpxim−1xim}=xpxqmax{x⊤[Aq]+x,x⊤[Aq]−x}=xpxqmax{x⊤[Bq]+x,x⊤[Bq]−x}, | (3.14) |
where [Bq]+ and [Bq]− are defined in Theorem 3.2. It follows from (3.14) and Lemma 2.1 that
|λ|x2q≤xpxqmax{ρ([Bq]+),ρ([Bq]−)}. | (3.15) |
We now break up the argument into two cases.
Case Ⅰ. |λ|x2p≤ρ([Dpq]+)xpxq+x2pρ([Bqp]+). In this case, if xq>0, multiplying (3.13) with (3.15) and dividing x2px2q yield
(|λ|−ρ([Bqp]+))|λ|≤ρ([Dpq]+)max{ρ([Bq]+),ρ([Bq]−)}, |
which implies λ∈Mp,q(A).
Otherwise, xq=0. From (3.13), it holds that
(|λ|−ρ([Bqp]+))|λ|≤0≤ρ([Dpq]+)max{ρ([Bq]+),ρ([Bq]−)}, |
which shows that λ∈Mp,q(A).
Case Ⅱ. |λ|x2p≤ρ([Dpq]−)xpxq+x2pρ([Bqp]−). Following the similar arguments to the proof of Case Ⅰ, we obtain λ∈Mp,q(A). Combining Cases Ⅰ and Ⅱ, we obtain the desired results.
In order to illustrate the validity of Theorems 3.2 and 3.3, we employ a running example.
Example 3.3. Consider a tensor A=(aijkl)∈R[4,3] defined by
aijkl={a1111=0.1;a1112=−0.2;a1122=−0.2;a1213=−0.2;a1222=0.1;a1233=0.1;a1333=−0.1;a2111=−1;a2131=3;a2211=1;a2212=−2;a2222=1;a2311=2;a2333=1;a3111=3;a3112=−2;a3121=2;a3212=−1;a3222=5;a3233=2;a3333=−2;aijkl=0,otherwise. |
From Theorem 3.2, we compute
Θ(A)=⋃i∈NΘi(A)={λ∈R:|λ|≤5.4142}. |
Recalling Theorem 3.3, one has
M(A)=⋃i∈N⋂j∈N,i≠jMi,j(A)={λ∈R:|λ|≤5.1620}. |
From Theorem 2 of [29], we obtain
Ω(A)=⋃i∈NΩi(A)={λ∈R:|λ|≤12}. |
By virtue of Theorem 3 of [29], one has
Φ(A)=⋃i∈N⋂j∈N,i≠jΦi,j(A)={λ∈R:|λ|≤9.2276}. |
It follows from Theorem 4 of [29] that
N(A)=⋃i∈N⋂j∈N,i≠jNi,j(A)={λ∈R:|λ|≤7.4686}. |
Therefore, the bounds in Theorems 3.2 and 3.3 are sharper than those Theorems 2–4 in [29].
In this section, we focus on sufficient conditions for judging strict copositivity via the spectral radius of the symmetric matrices extracted from the given tensor. For this, we give a necessary condition for a strictly copositive tensor.
Lemma 4.1. (Proposition 2.1 of [18]) Let A=(ai1i2…im)∈R[m,n]. If A is strictly copositive, then ai…i>0,∀i∈N.
Theorem 4.1. Let A=(ai1i2i3)∈R[3,n] be symmetric with aiii>0 for all i∈N. If
aiii1√n−√∑δii2i3=0([aii2i3]−)2>0,∀i∈N, | (4.1) |
then A is strictly copositive.
Proof. Suppose that (λ,x) is a Pareto Z-eigenpair of A. Setting 0<xp=maxi∈N{xi} and referring to the p-th equation of (3.10), we obtain
λx2p=∑i2,i3∈Napi2i3xpxi2xi3=apppx3p+∑δpi2i3=0[api2i3]+xpxi2xim−∑δpi2i3=0[api2i3]−xpxi2xi3. |
Further,
λx2p≥apppx3p−∑δpi2i3=0[api2i3]−xpxi2xi3≥apppx3p−∑δpi2i3=0[api2i3]−x2pxi3. | (4.2) |
Dividing both sides by x2p on (4.2), we have
λ≥apppxp−∑δpi2i3=0[api2i3]−xi3≥apppxp−√∑δpi21=0([api21]−)2+…+∑δpi2n=0([api2n]−)2⋅√x21+…+x2n≥apppxp−√∑δpi2i3=0([api2i3]−)2. | (4.3) |
Since xp=maxi∈N{xi} and x⊤x=1, we deduce xp≥1√n. It follows from aiii>0 and (4.3) that
λ≥appp1√n−√∑δpi2i3=0([api2i3]−)2. | (4.4) |
Combining (4.1) with (4.4), we have λ>0. Further, A is strictly copositive from Lemma 2.1.
Theorem 4.2. Let A=(ai1i2…im)∈R[m,n] be symmetric with m≥4 and ai…i>0 for all i∈N. If
ai…i(1√n)m−2−ρ([Ai]−)>0,∀i∈N, | (4.5) |
then A is strictly copositive.
Proof. Let (λ,x) be a Pareto Z-eigenpair of A. Setting 0<xp=maxi∈N{xi} and referring to the p-th equation of (3.10), we obtain
λx2p=n∑i2,…,im=1api2…imxpxi2…xim=ap…pxmp+∑δpi2…im=0[api2…im]+xpxi2…xim−∑δpi2…im=0[api2…im]−xpxi2…xim. |
Further,
λx2p≥ap…pxmp−∑δpi2…im=0[api2…im]−xpxi2…xim≥ap…pxmp−∑δpi2…im=0[api2…im]−x2pxim−1xim≥ap…pxmp−x2px⊤[Ap]−x≥ap…pxmp−x2pρ([Ap]−), | (4.6) |
where [Ap]− is defined in Theorem 3.2. Dividing both sides by x2p on (4.6), we deduce
λ≥ap…pxm−2p−ρ([Ap]−). | (4.7) |
Since xp=maxi∈N{xi} and x⊤x=1, we deduce xp≥1√n. It follows from ai…i>0 and (4.7) that
λ≥ap…p(1√n)m−2−ρ([Ap]−). | (4.8) |
Combining (4.5) with (4.8), we obtain λ>0. Further, A is strictly copositive from Lemma 2.1.
A nice consequence of our results is that Theorems 4.1 and 4.2 are better than that of Theorem 5 of [29].
Lemma 4.2. (Theorem 5 of [29]) Let A=(ai1i2…im)∈R[m,n] be symmetric with ai…i>0 for i∈N. Then, A is strictly copositive, provided that
ai…i(1√n)m−2−Ri(A)−>0, | (4.9) |
where Ri(A)−=∑i2,…,im∈N[aii2…im]−.
Corollary 4.1. Let A=(ai1i2…im)∈R[m,n] be symmetric with ai…i>0 for i∈N. Then,
{aiii1√n−√∑δii2i3=0([aii2i3]−)2≥aiii1√n−Ri(A)−,ifm=3,ai…i(1√n)m−2−ρ([Ai]−)≥ai…i(1√n)m−2−Ri(A)−, otherwisem≥4. |
Proof. It follows from ai…i>0 that Ri(A)−=∑δii2…im=0[aii2…im]−. We now break up the argument into two cases.
Case 1. m=3. It is clear that
√∑δii2i3=0([aii2i3]−)2≤∑δii2i3=0[aii2i3]−=Ri(A)−. |
Further,
aiii1√n−√∑δii2i3=0([aii2i3]−)2≥aiii1√n−Ri(A)−. |
Case 2. m≥4. We obtain
ρ([Ai]−)≤max1≤im−1≤n∑i2,…,im−2,im∈N[aii2…im]−≤∑i2,…,im∈N[aii2…im]−=Ri(A)−. |
Consequently,
ai…i(1√n)m−2−ρ([Ai]−)≥ai…i(1√n)m−2−Ri(A)−. |
Therefore, the desired results hold.
Identifying the strict copositivity actually necessitates A being symmetric. Therefore, symmetry may be relatively strict for general tensors. We can solve this issue by symmetrizing the tensors A=(ai1i2…im)∈R[m,n] as follows:
˜ai1i2…im={ai1i2…imifi1=i2=…=im,1m!∑i2…im∈Γmai1i2…imotherwise, |
where ˜A=(˜ai1i2…im)∈R[m,n] is the symmetrization tensor under permutation group Γm.
The following example shows that Theorem 4.1 can verify the strict copositivity more accurately than that of Theorem 5 of [29] for m=3 tensors.
Example 4.1. Consider a tensor A=(aijk)∈R[3,2] defined by
aijk={a111=12;a112=−15;a121=−15;a122=0;a222=1;a211=−15;a212=0;a221=0. |
It is easy to see that A is symmetric with
a1111√2−√∑δ1i2i3=0([a1i2i3]−)2=√220>0, |
a2221√2−√∑δ2i2i3=0([a2i2i3]−)2=5√2−210>0, |
which means that A is strictly copositive.
Referring to Theorem 5 of [29], we deduce
a1111√2−R1(A)−=5√2−820<0. |
Therefore, it is impossible to judge the strict copositivity of A with Theorem 5 of [29].
When A is asymmetric, we still identify the strict copositivity of tensors by Theorem 4.1.
Example 4.2. Consider a tensor A=(aijk)∈R[3,2] defined by
aijk={a111=12;a112=−110;a121=−25;a122=0;a222=1;a211=−110;a212=0;a221=0. |
Observe that A is asymmetric from a112=−110,a121=−25 and a211=−110. Therefore, we cannot directly use Theorem 4.1 to judge whether A is strictly copositive. Symmetrizing A, we obtain ˜A with
˜aijk={˜a111=12;˜a112=−15;˜a121=−15;˜a122=0;˜a222=1;˜a211=−15;˜a212=0;˜a221=0. |
It is easy to see that ˜A is symmetric with
a1111√2−√∑δ1i2i3=0([a1i2i3]−)2=√220>0, |
a2221√2−√∑δ2i2i3=0([a2i2i3]−)2=5√2−210>0, |
which implies that ˜A is strictly copositive. Taking into account that Ax3=˜Ax3>0, we deduce that A is strictly copositive.
In what follows, we reveal that the results of Theorem 4.2 are sharper than those of Theorem 5 of [29] for m≥4 tensors.
Example 4.3. Consider a tensor A=(aijkl)∈R[4,2] defined by
aijkl={a1111=36;a1112=a1121=a1211=a2111=50;a2222=66;a1122=a1221=a1212=−10;a2221=a2212=a2122=a1222=70;a2211=a2121=a2112=−20. |
First, we rewrite
[A1]−=[0101010],[A2]−=[2020200] | (4.10) |
and compute
a1111(1√2)2−ρ([B1]−)=1.8197>0,a2222(1√2)2−ρ([B2]−)=0.6393>0, |
which means that A is strictly copositive.
Recalling to Theorem 5 of [29], we obtain
a1111(1√2)2−R1(A)−=−12<0. |
Consequently, we cannot judge the strict copositivity of A from Theorem 5 of [29].
In this paper, we proposed sharp Pareto Z-eigenvalue inclusion intervals for tensor eigenvalue complementarity problems via the spectral radius of symmetric matrices. Further, we proposed some criteria to confirm the strict copositivity of real tensors. It may be possible to conduct additional research to create some algorithms for tensor eigenvalue complementarity problems using Pareto Z-eigenvalue intervals, such as parametric algorithms and ADMM algorithms [5,23,28].
Xueyong Wang: Conceptualization, Methodology, Writing-original draft preparation; Gang Wang: Conceptualization, Writing-review, Project administration; Ping Yang: Software, Formal analysis. All authors have read and agreed to the published version of the manuscript.
This work was supported by the Natural Science Foundation of China (12071250) and the Natural Science Foundation of Shandong Province (ZR2021MA088).
The authors declare that there are no conflicts of interest regarding the publication of this paper.
[1] |
S. Adly, H. Rammal, A new method for solving Pareto eigenvalue complementarity problems, Comput. Optim. Appl., 55 (2013), 703–731. https://doi.org/10.1007/s10589-013-9534-y doi: 10.1007/s10589-013-9534-y
![]() |
[2] |
K. C. Chang, K. J. Pearson, T. Zhang, Some variational principles for Z-eigenvalues of nonnegative tensors, Linear Algebra Appl., 438 (2013), 4166–4182. https://doi.org/10.1016/j.laa.2013.02.013 doi: 10.1016/j.laa.2013.02.013
![]() |
[3] |
H. Chen, Z.-H. Huang, L. Qi, Copositivity detection of tensors: theory and algorithm, J. Optim. Theory Appl., 174 (2017), 746–761. https://doi.org/10.1007/s10957-017-1131-2 doi: 10.1007/s10957-017-1131-2
![]() |
[4] |
J. Fan, J. Nie, A. Zhou, Tensor eigenvalue complementarity problems, Math. Program., 170 (2018), 507–539. https://doi.org/10.1007/s10107-017-1167-y doi: 10.1007/s10107-017-1167-y
![]() |
[5] |
L. M. Fernandes, J. J. Judice, H. D. Sherali, M. Fukushima, On the computation of all eigenvalues for the eigenvalue complementarity problem, J. Glob. Optim., 59 (2014), 307–326. https://doi.org/10.1007/s10898-014-0165-3 doi: 10.1007/s10898-014-0165-3
![]() |
[6] |
J. He, Y. Liu, X. Shen, Localization sets for pareto eigenvalues with applications, Appl. Math. Lett., 144 (2023), 108711. https://doi.org/10.1016/j.aml.2023.108711 doi: 10.1016/j.aml.2023.108711
![]() |
[7] | R. A. Horn, C. R. Johnson, Topics in matrix analysis, Cambrige: Cambrige University Press, 1994. https://doi.org/10.1017/CBO9780511840371 |
[8] |
J. J. Judice, H. D. Sherali, I. M. Ribeiro, The eigenvalue complementarity problem, Comput. Optim. Appl., 37 (2007), 139–156. https://doi.org/10.1007/s10589-007-9017-0 doi: 10.1007/s10589-007-9017-0
![]() |
[9] |
K. Kannike, Vacuum stability of a general scalar potential of a few fields, Eur. Phys. J. C, 76 (2016), 324. https://doi.org/10.1140/epjc/s10052-016-4160-3 doi: 10.1140/epjc/s10052-016-4160-3
![]() |
[10] |
C. Ling, H. He, L. Qi, On the cone eigenvalue complementarity problem for higher-order tensors, Comput. Optim. Appl., 63 (2016), 143–168. https://doi.org/10.1007/s10589-015-9767-z doi: 10.1007/s10589-015-9767-z
![]() |
[11] |
M. Ng, L. Qi, G. Zhou, Finding the largest eigenvalue of a nonnegative tensor, SIAM J. Matrix Anal. Appl., 31 (2010), 1090–1099. https://doi.org/10.1137/09074838X doi: 10.1137/09074838X
![]() |
[12] |
J. Pena, J. C. Vera, L. F. Zuluaga, Completely positive reformulations for polynomial optimization, Math. Program., 151 (2014), 405–431. https://doi.org/10.1007/s10107-014-0822-9 doi: 10.1007/s10107-014-0822-9
![]() |
[13] |
L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symb. Comput., 40 (2005), 1302–1324. https://doi.org/10.1016/j.jsc.2005.05.007 doi: 10.1016/j.jsc.2005.05.007
![]() |
[14] | L. Qi, Z. Luo, Tensor analysis: spectral properties and special tensors, Philadelphia: SIAM Press, 2017. https://doi.org/10.1137/1.9781611974751 |
[15] |
L. Qi, G. Yu, E. X. Wu, Higher order positive semi-definite diffusion tensor imaging, SIAM J. Imaging Sci., 3 (2010), 416–433. https://doi.org/10.1137/090755138 doi: 10.1137/090755138
![]() |
[16] |
C. Sang, Z. Chen, Z-eigenvalue localization sets for even order tensors and their applications, Acta Appl. Math., 169 (2020), 323–339. https://doi.org/10.1007/s10440-019-00300-1 doi: 10.1007/s10440-019-00300-1
![]() |
[17] |
Y. Song, L. Qi, Eigenvalue analysis of constrained minimization problem for homogeneous polynomial, J. Glob. Optim., 64 (2016), 563–575. https://doi.org/10.1007/s10898-015-0343-y doi: 10.1007/s10898-015-0343-y
![]() |
[18] |
Y. Song, L. Qi, Tensor complementarity problem and semi-positive tensors, J. Optim. Theory Appl., 169 (2016), 1069–1078. https://doi.org/10.1007/s10957-015-0800-2 doi: 10.1007/s10957-015-0800-2
![]() |
[19] |
H. Sun, M. Sun, H. Zhou, A proximal splitting method for separable convex programming and its application to compressive sensing, J. Nonlinear Sci. Appl., 9 (2016), 392–403. https://doi.org/10.22436/jnsa.009.02.05 doi: 10.22436/jnsa.009.02.05
![]() |
[20] |
H. Sun, M. Sun, Y. Wang, New global error bound for extended linear complementarity problems, J. Inequal. Appl., 2018 (2018), 258. https://doi.org/10.1186/s13660-018-1847-z doi: 10.1186/s13660-018-1847-z
![]() |
[21] |
H. Sun, Y. Wang, S. Li, M. Sun, A sharper global error bound for the generalized linear complementarity problem over a polyhedral cone under weaker conditions, J. Fixed Point Theory Appl., 20 (2018), 75. https://doi.org/10.1007/s11784-018-0556-z doi: 10.1007/s11784-018-0556-z
![]() |
[22] |
H. Sun, Y. Wang, S. Li, M. Sun, An improvement on the global error bound estimation for ELCP and its applications, Numer. Funct. Anal. Optim., 42 (2021), 644–670. https://doi.org/10.1080/01630563.2021.1919897 doi: 10.1080/01630563.2021.1919897
![]() |
[23] |
M. Sun, H. Sun, Improved proximal ADMM with partially parallel splitting for multi-block separable convex programming, J. Appl. Math. Comput., 58 (2018), 151–181. https://doi.org/10.1007/s12190-017-1138-8 doi: 10.1007/s12190-017-1138-8
![]() |
[24] |
G. Wang, G. Zhou, L. Caccetta, Z-eigenvalue inclusion theorems for tensors, Discrete Contin. Dyn. Syst. B, 22 (2017), 87–198. http://doi.org/10.3934/dcdsb.2017009 doi: 10.3934/dcdsb.2017009
![]() |
[25] |
G. Wang, Y. Wang, Y. Wang, Some Ostrowski-type bound estimations of spectral radius for weakly irreducible nonnegative tensors, Linear and Multlinear Algebra, 68 (2020), 1817–1834. https://doi.org/10.1080/03081087.2018.1561823 doi: 10.1080/03081087.2018.1561823
![]() |
[26] |
H. Wang, J. Du, H. Su, H. Sun, A linearly convergent self-adaptive gradient projection algorithm for sparse signal reconstruction in compressive sensing, AIMS Math., 8 (2023), 14726–14746. https://doi.org/10.3934/math.2023753 doi: 10.3934/math.2023753
![]() |
[27] |
Y. Xu, S. Hu, Y. Du, Research on optimization scheme for blocking artifacts after patch-based medical image reconstruction, Comput. Math. Method. Med., 2022 (2022), 2177159. https://doi.org/10.1155/2022/2177159 doi: 10.1155/2022/2177159
![]() |
[28] |
B. Xue, J. Du, H. Sun, Y. Wang, A linearly convergent proximal ADMM with new iterative format for BPDN in compressed sensing problem, AIMS Math., 7 (2022), 10513–10533. https://doi.org/10.3934/math.2022586 doi: 10.3934/math.2022586
![]() |
[29] |
P. Yang, Y. Wang, G. Wang, Q. Hou, Pareto Z-eigenvalue inclusion theorems for tensor eigenvalue complementarity problems, J. Inequal. Appl., 2022 (2022), 77. https://doi.org/10.1186/s13660-022-02816-x doi: 10.1186/s13660-022-02816-x
![]() |
[30] |
G. Yu, Y. Song, Y. Xu, Z. Yu, Spectral projected gradient methods for generalized tensor eigenvalue complementarity problems, Numer. Algor., 80 (2019), 1181–1201. https://doi.org/10.1007/s11075-018-0522-2 doi: 10.1007/s11075-018-0522-2
![]() |
[31] |
J. Zhao, A new E-eigenvalue localization set for fourth-order tensors, Bull. Malays. Math. Sci. Soc., 43 (2020), 1685–1707. https://doi.org/10.1007/s40840-019-00768-y doi: 10.1007/s40840-019-00768-y
![]() |
[32] |
M. Zeng, Tensor Z-eigenvalue complementarity problems, Comput. Optim. Appl., 78 (2021), 559–573. https://doi.org/10.1007/s10589-020-00248-1 doi: 10.1007/s10589-020-00248-1
![]() |
1. | Junchi Ma, Lin Chen, Xinbo Cheng, Virtual element method for the Laplacian eigenvalue problem with Neumann boundary conditions, 2025, 10, 2473-6988, 8203, 10.3934/math.2025377 |