This paper introduced a smoothing algorithm for calculating the maximal eigenvalue of non-defective positive matrices. Two special matrices were constructed to provide monotonically increasing lower-bound estimates and monotonically decreasing upper-bound estimates of the maximal eigenvalue. The monotonicity and convergence of these estimations was also proven. Finally, the effectiveness of the algorithm was demonstrated with numerical examples.
Citation: Na Li, Qin Zhong. Smoothing algorithm for the maximal eigenvalue of non-defective positive matrices[J]. AIMS Mathematics, 2024, 9(3): 5925-5936. doi: 10.3934/math.2024289
This paper introduced a smoothing algorithm for calculating the maximal eigenvalue of non-defective positive matrices. Two special matrices were constructed to provide monotonically increasing lower-bound estimates and monotonically decreasing upper-bound estimates of the maximal eigenvalue. The monotonicity and convergence of these estimations was also proven. Finally, the effectiveness of the algorithm was demonstrated with numerical examples.
[1] | A. Berman, R. J. Plemmons, Nonnegative matrices in the mathematical sciences, Philadelphia: Society for Industrial and Applied Mathematics, 1994. https://doi.org/10.1137/1.9781611971262 |
[2] | W. Ledermann, Bounds for the greatest latent root of a positive matrix, J. Lond. Math. Soc., s1-25 (1950), 265–268. https://doi.org/10.1112/jlms/s1-25.4.265 doi: 10.1112/jlms/s1-25.4.265 |
[3] | A. Ostrowski, Bounds for the greatest latent root of a positive matrix, J. Lond. Math. Soc., s1-27 (1952), 253–256. https://doi.org/10.1112/jlms/s1-27.2.253 doi: 10.1112/jlms/s1-27.2.253 |
[4] | A. Brauer, The theorems of Ledermann and Ostrowski on positive matrices, Duke Math. J., 24 (1957), 265–274. https://doi.org/10.1215/S0012-7094-57-02434-1 doi: 10.1215/S0012-7094-57-02434-1 |
[5] | H. Minc, Nonnegative Matrices, New York: Wiley, 1988. |
[6] | S. L. Liu, Bounds for the greatest characteristic root of a nonnegative matrix, Linear Algebra Appl., 239 (1996), 151–160. https://doi.org/10.1016/S0024-3795(96)90008-7 doi: 10.1016/S0024-3795(96)90008-7 |
[7] | L. M. Liu, T. Z. Huang, X. Q. Liu, New bounds for the greatest eigenvalue of a nonnegative matrix, J. Univ. Electron. Sci. Techn. China, 2007,343–345. |
[8] | P. Liao, Bounds for the Perron root of nonnegative matrices and spectral radius of iteration matrices, Linear Algebra Appl., 530 (2017), 253–265. https://doi.org/10.1016/j.laa.2017.05.021 doi: 10.1016/j.laa.2017.05.021 |
[9] | H. Cheriyath, N. Agarwal, On the Perron root and eigenvectors associated with a subshift of finite type, Linear Algebra Appl., 633 (2022), 42–70. https://doi.org/10.1016/j.laa.2021.10.003 doi: 10.1016/j.laa.2021.10.003 |
[10] | P. Liao, Bounds for the Perron root of positive matrices, Linear Multilinear A., 71 (2023), 1849–1857. https://doi.org/10.1080/03081087.2022.2081310 doi: 10.1080/03081087.2022.2081310 |
[11] | Y. Y. Yan, D. Z. Cheng, J. E. Feng, H. T. Li, J. M. Yue, Survey on applications of algebraic state space theory of logical systems to finite state machines, Sci. China Inform. Sci., 66 (2023), 111201. https://doi.org/10.1007/s11432-022-3538-4 doi: 10.1007/s11432-022-3538-4 |
[12] | D. Z. Cheng, H. S. Qi, Y. Zhao, An introduction to semi-tensor product of matrices and its applications, World Scientific, 2012. https://doi.org/10.1142/8323 |
[13] | J. M. Yue, Y. Y. Yan, H. Deng, Matrix approach to formulate and search k-ESS of graphs using the STP theory, J. Math., 2021 (2021), 1–12. https://doi.org/10.1155/2021/7230661 doi: 10.1155/2021/7230661 |