Research article

Smoothing algorithm for the maximal eigenvalue of non-defective positive matrices

  • Received: 26 October 2023 Revised: 11 December 2023 Accepted: 10 January 2024 Published: 31 January 2024
  • MSC : 15A42, 15A18

  • This paper introduced a smoothing algorithm for calculating the maximal eigenvalue of non-defective positive matrices. Two special matrices were constructed to provide monotonically increasing lower-bound estimates and monotonically decreasing upper-bound estimates of the maximal eigenvalue. The monotonicity and convergence of these estimations was also proven. Finally, the effectiveness of the algorithm was demonstrated with numerical examples.

    Citation: Na Li, Qin Zhong. Smoothing algorithm for the maximal eigenvalue of non-defective positive matrices[J]. AIMS Mathematics, 2024, 9(3): 5925-5936. doi: 10.3934/math.2024289

    Related Papers:

  • This paper introduced a smoothing algorithm for calculating the maximal eigenvalue of non-defective positive matrices. Two special matrices were constructed to provide monotonically increasing lower-bound estimates and monotonically decreasing upper-bound estimates of the maximal eigenvalue. The monotonicity and convergence of these estimations was also proven. Finally, the effectiveness of the algorithm was demonstrated with numerical examples.



    加载中


    [1] A. Berman, R. J. Plemmons, Nonnegative matrices in the mathematical sciences, Philadelphia: Society for Industrial and Applied Mathematics, 1994. https://doi.org/10.1137/1.9781611971262
    [2] W. Ledermann, Bounds for the greatest latent root of a positive matrix, J. Lond. Math. Soc., s1-25 (1950), 265–268. https://doi.org/10.1112/jlms/s1-25.4.265 doi: 10.1112/jlms/s1-25.4.265
    [3] A. Ostrowski, Bounds for the greatest latent root of a positive matrix, J. Lond. Math. Soc., s1-27 (1952), 253–256. https://doi.org/10.1112/jlms/s1-27.2.253 doi: 10.1112/jlms/s1-27.2.253
    [4] A. Brauer, The theorems of Ledermann and Ostrowski on positive matrices, Duke Math. J., 24 (1957), 265–274. https://doi.org/10.1215/S0012-7094-57-02434-1 doi: 10.1215/S0012-7094-57-02434-1
    [5] H. Minc, Nonnegative Matrices, New York: Wiley, 1988.
    [6] S. L. Liu, Bounds for the greatest characteristic root of a nonnegative matrix, Linear Algebra Appl., 239 (1996), 151–160. https://doi.org/10.1016/S0024-3795(96)90008-7 doi: 10.1016/S0024-3795(96)90008-7
    [7] L. M. Liu, T. Z. Huang, X. Q. Liu, New bounds for the greatest eigenvalue of a nonnegative matrix, J. Univ. Electron. Sci. Techn. China, 2007,343–345.
    [8] P. Liao, Bounds for the Perron root of nonnegative matrices and spectral radius of iteration matrices, Linear Algebra Appl., 530 (2017), 253–265. https://doi.org/10.1016/j.laa.2017.05.021 doi: 10.1016/j.laa.2017.05.021
    [9] H. Cheriyath, N. Agarwal, On the Perron root and eigenvectors associated with a subshift of finite type, Linear Algebra Appl., 633 (2022), 42–70. https://doi.org/10.1016/j.laa.2021.10.003 doi: 10.1016/j.laa.2021.10.003
    [10] P. Liao, Bounds for the Perron root of positive matrices, Linear Multilinear A., 71 (2023), 1849–1857. https://doi.org/10.1080/03081087.2022.2081310 doi: 10.1080/03081087.2022.2081310
    [11] Y. Y. Yan, D. Z. Cheng, J. E. Feng, H. T. Li, J. M. Yue, Survey on applications of algebraic state space theory of logical systems to finite state machines, Sci. China Inform. Sci., 66 (2023), 111201. https://doi.org/10.1007/s11432-022-3538-4 doi: 10.1007/s11432-022-3538-4
    [12] D. Z. Cheng, H. S. Qi, Y. Zhao, An introduction to semi-tensor product of matrices and its applications, World Scientific, 2012. https://doi.org/10.1142/8323
    [13] J. M. Yue, Y. Y. Yan, H. Deng, Matrix approach to formulate and search k-ESS of graphs using the STP theory, J. Math., 2021 (2021), 1–12. https://doi.org/10.1155/2021/7230661 doi: 10.1155/2021/7230661
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(709) PDF downloads(63) Cited by(0)

Article outline

Figures and Tables

Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog